THE GREAT TRIGONOMETRICAL SURVEY OF INDIA

VOIUMIE XIII.
37661

DETAILS OF THE

PRINCIPAL TRIANGULATION

of five of the component series of

THE SOUTHERN TRIGON

including the following series;
THE SOUTH KONKAN COAST
THE MANGALORE MERIDIONAL
THE MADRAS MERIDIONAL AND COAST

THE SOUTH-EAST COAST
THE MADRAS LONGITUDINAL

PREPARED UNDER THE DIRECTIONS OF
LIEUT.-COLONEL G. STRAHAN, R.E., DEPUTY SURVEYOR GENERAL, TRIGONOMETRICAL BRANCH.

PUBLISHED UNDER THE ORDERS OF
COLONEL H. R. THUILLIER, R.E., SURVEYOR GENERAL OF INDIA.

PRinted at the office of the trigonometrical branch, survey of india.
B. V. HUGHES.
1890.

CONTENTS.

THE DETAILS OF THE OBSERVATIONS AND THE FINAL RESULTS OF THE TRIANGULATION OF FIVE OF THE COMPONENT SERIES INCLUDED IN THE SOUTHERN TRIGON.

SOUTH KONKAN COAST SERIES.

Introduction	III-
Alphabetical List of Stations	\cdots	...	1 -c.
Numerical do. do.	\ldots	\ldots	...	\ldots	$i b$.
Description of Stations	\ldots	\ldots	\cdots	...	$2-c$.
Observed Angles ...	\ldots	\ldots	...	\ldots	\cdots	.	7 -c.
Errors of Mean Squares	\cdots	\cdots	...	\cdots	\ldots	\cdots	24
Reduction of Figures	\cdots	\cdots	...	$25-c$.
Sides and Angles of Triangles	\cdots	...	\ldots	\ldots	\cdots	...	29-c.
Latitudes, Longitudes and Azimuths of Stations			...	\cdots	...	-	32
Heights above Mean Sea Level	...	\cdots	\ldots	...	\cdots	...	34
Description of Spirit-levelled Po		\cdots	\ldots	\cdots	\ldots	...	37
Azimuthal Observations and the	Reduc	\ldots	38

Plate 1.

MANGALORE MERIDIONAL SERIES.

Plates 1 and 2.

MADRAS MERIDIONAL AND COAST SERIES.

Introduction	\cdots	...	III-
Alphabetical List of Stations	\cdots	1 - $_{\text {E }}$.
Numerical do. do.	\cdots	\cdots	\cdots	...	3 - ${ }_{\text {E }}$.
Description of Stations	-•	
Observed Angles	-•	$17{ }_{\text {E }}$.
Errors of Mean Squares	\cdots	...	\ldots	\cdots	79
Reduction of Figures	\cdots	$81_{-6 .}$
Sides and Angles of Triangles	\cdots	\cdots	\cdots	101 - ${ }_{\text {E }}$.
Latitudes, Longitudes and Azimuths of Stations			110
Heights above Mean Sea Level	\cdots	...	\cdots	115
Description of Spirit-levelled Points		\cdots	\cdots	...	127 -r.
Azimuthal Observations and their Reduction		128

Plates 1 to 3.

SOUTH-EAST COAST AND CEYLON BRANCH SERIES.

							Pags
Introduction	\cdots	\ldots	$\mathrm{III}_{\text {F }}$.
Alphabetical List of Stations	\ldots	\ldots	\ldots	...	\ldots	\ldots	F
Numerical do. do.	\ldots	\cdots	\ldots	3-
Description of Stations	\ldots	\ldots	\ldots	\ldots	
Observed Angles	\cdots	\ldots	\ldots	...	\ldots	\ldots	17
Errors of Mean Squares	\ldots	\ldots	\ldots	...	87
Reduction of Figures	\ldots	...	\ldots	\ldots	\ldots	89
Sides and Angles of Triangles	\cdots	\ldots	\ldots	114
Latitudes, Longitudes and Azimuths of Stations			...	\ldots	$126-F$.
Heights above Mean Sea Level	\ldots	133
Description of Spirit-levelled Points		\cdots	...	\ldots	147
Azimuthal Observations and their Reduction		\cdots	\ldots	149

Plates 1 to 3.

MADRAS LONGITUDINAL SERIES.

CONTENTS.

MADRAS LONGITUDINAL SERIES-(Continued).
Page
Azimuthal Observations. and their Reduction 79-a.
Plates 1 and 2.

The Reduction Chart of the Sodthern Trigon.

尸尺曰円AC耳。

This volume forms the thirteenth of that series of publications，known as the＂Account of the Operations of the Great Trigonometrical Survey of India＂，of which the design is，as has already been stated in the， second volume of the series，＂to give full reports－historical and descriptive－of the nature and the general ＂procedure of the operations；to describe the instruments which were employed in executing the several ＂linear and angular measurements；to furnish complete details of the actual facts of observation and the ＂methods of reduction by which these facts have been combined together and duly harmonized；and，lastly ＂to give the results which have been arrived at after the final reduction of the operations．＂

The present volume and the one immediately preceding it－Volume XII—are devoted to the details of that section of the Principal Triangulation known as the Southern Trigon．Vol．XII gives a sketch of the general principles in accordance with which the operations have been conducted，indicates the formulæ employed in the calculations and gives full details－explanatory and numerical－of the Simultaneous Re－ duction of the seven chains of triangles included in the Trigon；it also gives full numerical details of two of these chains．The numerical details of the remaining five chains are given in the present volume．

The two chains of which the details are given in Volume XII are ：－
A．The Great Arc Series，Section 8° to 18° ．
B．The Bombay Longitudinal Series．

The five chains of which the details are given in the present volume are ：－
C．The South Konkan Coast Series．
D．The Mangalore Meridional Series．
E．The Madras Meridional and Coast Series．
F．The South－East Coast and Ceylon Branch Series．

Reference should be made to the Preface to Volume XII for a general explanation of the information and numerical data which the present volume furnishes for each series of triangles；also for a description of the system adopted in the orthography of Indian names．

Full details regarding the Unit of the Linear Measures，the Base－lines，the initial Elements of Lati－ tude，Longitude and Azimuth，and the Elements of the Figure of the Earth which have been adopted in the calculations，will be met with in Volumes I and II．In this place it is only necessary to state that，－
（1）．The Unit of Length is the Indian Standard 10 －foot Bar A，the relations between which and the principal European Standards of Length are given at page 28 of Volume I．
（2）．The adopted Elements of the Figure of the Earth－assumed to be spheroidal－are given at page 21 of Volume XII．
(3). The Longitudes depend on an astronomically determined value of the Longitude of the Madras Observatory, East of the Royal Observatory at Greenwich, which was deduced about the year 1815. The Longitude of the Madras Observatory was subsequently determined by the Electro-Telegraphic method, by observations made at Greenwich, Mokattam (in Egypt), Suez, Aden, Bombay and certain stations of the triangulation in India, and with the following preliminary results :-

Longitude of Mokattam	$\begin{array}{lll}\mathrm{h} & \mathrm{m} & \mathrm{B}^{\text {b }} \\ \mathbf{2} & 5 & 6.30\end{array}$	East of Greenwich \} Supplied by Sir G. Airy, from observations taken
Increase for Suez	- 56.917	$\}$ in connection with Transit of Venus in 1874.
Aden	- $4942 \cdot 656$) By the operations of this Survey; see the
Bombay	15119.983 0	$\left\{\begin{array}{l} \text { Dy } \\ \text { Anual Report for 1876-77. } \end{array}\right.$
Madras	- 2943.540) Anual Report for 1876-7.
Longitude of Madras	52059.416	" .

This value of the Longitude of the Madras Observatory is equivalent to $80^{\circ} 14^{\prime} 51^{\prime \prime}$; and as the originally adopted value, on which the longitudes of all the stations of this Survey are based, is $80^{\circ} 17^{\prime} 21^{\prime \prime}$ see page 135 of Volume II—the following precept may be accepted with considerable confidence :-

All the Longitudes require a constant correction, probably of -2' $\mathbf{3 0}^{\prime \prime}$.
$\left.\begin{array}{c}\text { Debra Dun, } \\ \text { May, } 1890 .\end{array}\right\}$
G. Strahan, Lieut.-Colonel, R.E.,

Deputy Surveyor General,
In charge Trigonometrical Surveys.

ERRATA ET ADDENDA.

Page				
$\mathrm{VI}_{\text {-c }}$. in line 3 from top	for	- $0^{\prime \prime} \cdot \mathrm{OII}$	read	+ $0^{n \prime 011}$
$\left.\begin{array}{c} \text { VII_c. }, \text { lines } 1 \text { and } 8 \\ \text { VIII_c. } \Rightarrow, 3,10 \text { and } 15 \end{array}\right\} \text { fromtop }$	"	19 feet	"	17 feet
18_c. at Station XV (Pil)	"	circle reading $61{ }^{\circ} 24$	"	$161^{\circ} 24^{\prime}$
$\mathrm{II}_{\text {-D. }}$. in lines 5 and 6 from top		(lit. rain-district) . .		ad from Malai, a hill and Nadu, a country, meaning a hill. country.
54-E. \% col. 1, line 2 from top	for	LXVI	read	XLVI
xII-F. , line 17 from bottom	"	No. 2	"	No. 1
11-F. \#, 25.0 top	"	10 feet	"	11 feet
13-F. \% 7 \%	"	rectangular	"	original circular
16e-F. \#, 6 , bottom	"	$8^{\circ} 16^{\prime}$,	"	$9^{\circ} 16^{\prime}$,
144-F. \% col. 14, line 1 of table	"	356	"	354
$72 \text { _G. " " } \underset{\substack{\text { 3, lines } \\ \text { table }}}{ } \text { and } 4 \text { of }$	"	*Manjerabad	"	*Mánjarabad
76_G. „ \% 14, line 2 of table	"	50.58	"	53.58

VOCABULARY OF CERTAIN NATTVE WORDS MADE USE OF IN THIS VOLUME.

Orthograpit sMPLOXBD.			$\underset{\text { ORTHOGRAPB }}{\text { Corrger }}$			Meaning.
Brahman	Bráhman	\ldots		The highest of the four castes of Hindus.
Chattram	\ldots	...	Chattram	...		A rest-house.
Chauki	\ldots	...	Chaukí	...		A small police station.
Daffadar	Dafadár	...		An officer whose rank corresponds to that of a sergeant.
Dargah	Dargáh	A Muhammadan shrine.
Ghát	\ldots	...	Ghat	A pass.
Idgah	Idgáh	\ldots	\ldots	A Muhammadan place of worship.
Jain	\ldots	\ldots	Jain	\ldots	\cdots	A sect of Hindus.
Kachạ.	\cdots	\ldots	Kachchá	\ldots	...	Built of clay only; or of stone or unburnt brick, and clay.
Kacheri	\ldots	...	Kachahri	\ldots	\ldots	Court house.
Kasba	\ldots	\ldots	Kasba	A small town.
Paka		\cdots	Pakká	Built of stone, or brick, and mortar.
Pargana	\ldots	...	Pargana	\ldots	...	A sub-division of a district.
Pír	\ldots	...	Pir	\ldots		A saint, a holy man.
Raja	\ldots	...	Raja	\ldots	...	A king or ruler.
Sumaca	\ldots		Samáka	\ldots		A small fishing boat.
Taluk Thatuk	\ldots		Taälluk	\ldots		A sub-division of a district.
Taluka	\ldots		Taälluka	...		A sub-division of a district.
Thana			Thana	...		A small police sub-division.
Zamíndár	...	\cdots	Zamíndár	...		A revenue farmer or holder of land immediately from Government.
$\left.\begin{array}{l} \text { Zamíndári } \\ \text { Zamindári } \end{array}\right\}$	\cdots		Zamíndári	...		A landed estate.

May, 1890.

W. H. COLE,
In charge of Computing Office.

SOUTH KONKAN COAST SERIES.

SOUTH KONKAN COAST SERIES.

INTRODUCTION.

On the conclusion of the original triangulation of the Bombay Longitudinal Series and after the completion of the Bider Base-line, in the measurement of which the Bombay Party assisted, Lieutenant W. S. Jacob, of the Bombay Engineers, undertook the South Konkan Coast Series, which was accordingly commenced early in 1842. In the previous October Mr. Thomas Sanger, Sub-Assistant, Great Trigonometrical Survey, had been despatched to select and build the principal stations: he had been ordered to make the side Karanja-Singi the base of the new Series, but finding on arrival that it was not suitable, he took upon himself the responsiblity of starting from the side Karanja-Mándvi, a change that subsequently met with the Executive Officer's approval.

The portion of country between Bombay and Mangalore over which the triangulation was to pass was fairly well known, having some years previously been surveyed by Major Jervis, an Engineer Officer who had worked under the Bombay Government independently of the Surveyor General. Mr. Sanger's approximate series consisted of two lines of stations, one running near the coast and the other along the line of gháts, and by the end of the field season it had been carried down to the parallel of 16°.

The Bider Base-line having been finished by February, Lieutenant Jacob proceeded to Mándvi to commence observing the final angles; on his arrival he found the station mark had been entirely destroyed and every stone of the platform had been removed and rolled down the hill. Fortunately the lower mark-stone had been set in a circular excavation in the rock of about 15 inches diameter, so that it was possible to restore the point to within 2 or 3 inches of the original position, and angles between several points being taken, it was proved that the error did not exceed that amount. Lieutenant Jacob considered a probable error of 3 inches as rejectaneous on a line of 40 miles, and determined therefore as far as the Konkan Series was concerned to treat the side Karanja-Mandvi as correct. Having been considerably delayed by this occurrence, Lieutenant Jacob did not commence his operations until the end of February : the haziness of the weather greatly obstructed his progress, and finding it hopeless to attempt to obtain good angles he brought the season's field-work to a close on the 21st of March at the station of Mahábaleshvar.

Lieutenant Jacob had constantly suffered from illness brought on by exposure in peculiarly pestilential tracts of country, and in the summer of 1842 his health entirely gave way: he proceeded to England on medical certificate and his connection with the Survey

Department terminated*: he was succeeded on December 14th, 1842, by Lieutenant Harry Rivers of the Bombay Engineers, an officer of great mathematical ability, who had been appointed to the Trigonometrical Survey only three months previously.

During the field season of 1842-43 the party were employed on the North Konkan Series,

Season 1843-44. Personnel.

Lieut. H. Rivers, Bombay Engineers, 2nd Asaiat. Mr. J. Fraser, 1st Class, Sub-Assistant.
" T. Sanger, 1st ,
"J. DaCosta, 2nd " " now known as the Singi Meridional, and it was not till November, 1843, that work on the South Konkan Coast Series was resumed. The first station visited was Kanta (III), and by the lst of January, 1844, the observations of and Valvan (x) Mr and Valvan (x). Mr. DaCosta was then sent to Surat to select the stations for the North Konkan Series, and Mr. Sanger proceeded south in advance of the main party to complete the approximate work of the South Konkan Coast Series to Goa. The weather continued remarkably favourable, and no difficulties or delays occurred to hinder the observations, so that by the 15th of February Lieutenant Rivers had practically completed the field-work of the Series including the observation of astronomical azimuths at Chaukola and Kumbhári. The southern stations were visited in the following order:-Chaukola, Salili, Kumbhári, Pil, Agoada, Parule; and the party embarked at the last named for Bombay the day after closing work. Apparently as an after-thought, astronomical observations for azimuth were taken in October, 1844, at Mirya.

The instrument employed on the South Konkan Coast Series was the same 15 -inch Theodolite by Dollondt, that was used in the observations of the Bombay Longitudinal Series. It was constructed on a design and under the direction of Captain Kater, and possessed, like all Dollond's instruments, a very fine telescope : but the horizontal circle was one of the first that had ever been engine-divided, and proved of an inferior order, giving angles differing to the extent of $13^{\prime \prime}$ on different parts of the limb. The microscopes too were not adjustable for "run", and corrections varying with the temperature had therefore to be applied to the recorded readings of the angles.

Weak as the instrument undoubtedly was, its defects were not nearly sufficient to account for the want of harmony visible in the results of the observations: the condemnation of this Series by Sir Andrew Waugh to the third rank of geodetical undertakings, if indeed it deserves to be classed as such at all, must be considered to be entirely due to the fewness of the zero changes made during the measurement of the angles. The method of changing zero pursued on this Series gave readings at every 20° of the limb instead of at every 10° according to the recognised system in force in the G. T. Survey, a deviation from established practice which resulted in the triangular error being on an average $4^{\prime \prime}$ and amounting in one instance to no less than $13^{\prime \prime}$. The greatest triangular error in the Bombay Longitudinal Series, executed with the same instrument, was $3^{\prime \prime}$ and the average $1^{\prime \prime}$.

[^0]The heights of the Principal Stations were deduced from those of Mándvi and Karanja as determined by the Bombay Longitudinal Series; the observations of vertical angles were however chiefly confined to the flanks of the series, and were seldom taken on the diagonal rays connecting the two flanks : the usual check obtained by having two independent determinations for each station was therefore altogether wanting. This peculiarity arose not from any mistake or oversight but because the Officer in charge of the operations considered that results derived from cross rays would be valueless since the laws of refraction must be different on the summit of the Gháts and along the sea-coast. Sir Andrew Waugh has pointed out, that, if a difference in the laws of refraction does exist, the original determination of the height of the first station on the Gháts must itself have been affected thereby, and the discrepancy so introduced must have remained constant throughout the eastern flank; he has moreover put his opinion on record that the heights of the stations on the Gháts would have been more accurately determined by frequent reference to the sea-level and repeated cross observations. As before stated the vertical observations emanated from Mándvi and Karanja and proceeded in two distinct lines along each flank. These lines afterwards met at the station of Mirya with the following discrepant results :-

Height of Mirya deduced from Karanja by observations along the Coast Line $\quad 490.0$ feet

"	刀	Mándvi	g	\%	Gháts	. $452 \cdot 2$	
					Difference	$-37 \cdot 8$	

The height of Mirya was also determined by direct reference to the sea-level and found to be $464 \cdot 4$ feet. The error generated through five stations along the Gháts was therefore $-12 \cdot 2$ feet, and that generated through four stations along the coast $+25 \cdot 6$ feet. This result, which shews the coast error to be twice as large as the ghát error, clearly exposes the fallacy of avoiding cross observations. From Mirya the observations again proceeded in separate lines along the flanks as far as Valvan, where there were two deductions differing by 3.4 feet, and further south at Agoada and Salili there were also double deductions differing 10.8 feet and 12.2 feet respectively.

In 1866 and 1867 the southern extremity of the South Konkan Coast Series was connected with the Mangalore Meridional Series by Captain (now Colonel) C. T. Haig, r.E., and Lieutenant H. Trotter, r.e.: the connecting series followed the parallel of $15^{\circ} 30^{\prime}$ and consisted of a small chain of six single triangles; it was known at the time as the Goa Longitudinal Series, but this name is no longer recognised and the six small triangles have been incorporated for purposes of reduction and publication in the South Konkan Coast Series: as however the angles were observed in the same seasons and by the same officers and party as those of the neighbouring portion of the Mangalore Meridional Series, it has been considered advisable for the sake of continuity in description to give the historical account of the work in the Introduction to the latter to which therefore readers are referred.

The triangulation of the South Konkan Coast Series has been included in the simultaneous reduction of the Southern Trigon : the errors actually dispersed on this Series between
the origin Karanja-Mándvi and the terminus Samshergad-Yalúr (the side of junction between the Mangalore Meridional Series and the old Goa Longitudinal Series) are :-

	Latitude	...	\ldots	\ldots			$0^{\prime \prime} \cdot 011$
"	Longitude	...	\ldots	...			- 218
	Azimuth	\cdots					I. 469
	Side $\left\{\begin{array}{l}\text { L } \\ \text { gi }\end{array}\right.$						$\begin{aligned} & 0 \cdot 000,01478 \text {, } \\ & \text { ile. } \end{aligned}$

Owing to the large circuit errors in the values of Lieutenant Rivers' heights, the omission of the cross rays in his observations, and the adverse criticism passed on the work by Sir Andrew Waugh, it was decided in 1885 when the compilation of this volume was being taken in hand to revise all the vertical angles of the Series. The revision which was carried out by Messrs. Belcham and Prunty, Assistants in the Tidal and Levelling Party, in the field season of 1885-86, had for its origin the height of Karanja, which was derived directly by reciprocal vertical observations to and from Trombay, a station whose height had been previously determined by Spirit-levelling: on account of the uncertain refraction on rays between the top of the ghats and the sea-coast, the reciprocal vertical angles were observed on all such rays simultaneously from the upper and lower stations-a precaution ordered by Colonel C. T. Haig, r.e., the Deputy Surveyor General, with a view to minimizing the errors caused by refraction, of which Lieutenant Rivers forty years before had been so afraid; a comparison between the new heights and the old exhibited discrepancies with a range of 43 feet, which in Colonel Haig's words "amply justified the revision"; the resulting heights were accepted as "exceptionally accurate" and were reported as "probably true to within two or three feet." As, however, in the next field season (1886-87), a line of spirit-levelling had to be executed to connect the new Tidal Station of Mormugáo with that at Kárwár, and Pil, the southernmost station of the South Konkan Coast Series, was in the immediate vicinity, Colonel Haig decided to have a short line of spirit-levels taken to it for the purpose of determining "any small residual error that there might be in the trigonometrical levelling ": he also directed Agoada which is only 5 miles north of Mormugáo Tidal Station to be directly connected with the latter.* By these two connections, contrary to the Deputy Surveyor

[^1]General's sanguine expectations an accumulated error of 19 feet was shown up in the trigonometrical heights at both places. It must be concluded that reciprocal observations though made simultaneously are not equally affected by refraction; if the refraction at both stations is the same, the subtended angle, which is half the difference of a pair of reciprocal vertical angles, should remain constant, and not be affected by variations in the amount of refraction; on this Series however it was found in many instances to vary between limits far exceeding those of errors of observation.

Besides disclosing an error of 19 feet in what were considered as "exceptionally accurate" trigonometrical heights, the line of levels brought to light another peculiarity : it was that the spirit-levelled values of Agoada and Pil agreed exactly with the old results, discarded añ much abused, of Lieutenant Rivers. This agreement gave rise to a discussion, as to whether the rejection of Rivers' heights was justifiable after all: there were but two circuits of vertical observations able to be formed in the old work throughout the Series: one closed at Mirya with an error of 38 feet, the other at Agoada with an error of 11 : in the face of such discrepancies the correct results at Agoada and Pil could not be regarded as anything but happy coincidences due to cancelment of errors, and it was finally decided to throw out Rivers' observations altogether as unworthy of combination with those of the revision.

The question then arose as to whether Lieutenant Rivers' value of the height of Mirya, which it will be remembered he derived directly from the sea-level, should be retained as an absolute height and used as a means for dispersing residual errors of trigonometrical work or whether it should be rejected also. By reference to the old angle books it was found that Rivers had determined the height of Mirya above mean sea-level as follows:He first placed an upright pole in the water, and on three successive days marked upon it the level of the sea at high and low tide: half-way between the upper and lower marks he drew a horizontal line, which represented the mean sea level, and which he found to be 3.2 feet below the highest point that the tide rose to. He then erected a second pole on a firm rock, that was just covered at high water, and proceeded to his trigonometrical station of Mirya, a little over half-a-mile off, from which he observed the angles of depression to the top and bottom of the pole. From these two angles and the measured length of the pole he computed the height of Mirya above high water and then referred it to mean sea level by increasing it 3.2 feet. His observations extended over a week, three different poles, a 7 -foot, a 13 -foot and a 19-foot being all employed. His angles of depression were never repeated more than twice (i.e. once on each face of the instrument), and on some days they were only observed once on but one face. The results were very discrepant, more than half were rejected on the spot for apparently no other reason than discordance, and those retained depended on three days' observations only, two of which differed by 7 feet. Sir Andrew Waugh writes:-"The average " height of the pole was about 15 feet : the height of Mirya Station is 464 feet. Consequently " the unknown quantity sought is 31 times greater than the known base it is derived from : "from this circumstance it appears that the principle employed in determining the height of "Mirya has been extended beyond its legitimate limits." Whilst passing this criticism on Lieutenant Rivers' method, the Surveyor General gave it as his final opinion that on the whole the determination of the height of Mirya might be considered true within two feet.

VIII-C. SOUTH KONKAN COAST SERIES.

Now the vertical observations of $1885-86$ brought out the height of Mirya as 464 feet, the identical value obtained by Rivers. If therefore Rivers' results were to be retained, the residual error of 19 feet mentioned above in the modern trigonometrical work would have to be distributed between Mirya and Agoada; while if Rivers' results were to be discarded, the same residual would have to be distributed between Karanja and Agoada, and in this case Rivers' height would be shown to be $8 \frac{1}{2}$ feet in error. The number of triangles in the Series between Karanja and Mirya was eight, and between Mirya and Agoada fire: one triangle only had a closing vertical error as large as 4 feet, whilst the average discrepancy per circuit was $1 \frac{1}{8}$ feet: the sum of all the circuit errors between Mirya and Agoada amounted to only 11 feet. It was considered astonishing that a residual error of 19 feet should have appeared at Agoada at all, but that it was generated wholly between Mirya and Agoada, is in the face of the small circuit discrepancies, incredible. It was therefore decided in spite of the accordance of the old and modern results, and notwithstanding Sir Andrew Waugh's opinion that Rivers' height of Mirya was correct to within 2 feet, to reject Rivers' observations in toto. 'Ihis has now been done : the residual error of 19 feet has been dispersed between Karanja and Agoada, and the height of Mirya has been determined as 473 feet. It is probable even now, in spite of the additional precautions taken in measuring the vertical angles, that on account of peculiarities in refraction the heights of the South Konkan Coast Series are not so reliable as ordinary modern trigonometrical heights : it would in fact be no matter for surprise, if an error of 5 feet was discovered hereafter in the height of any one of the stations.

Secondary Work.

The Secondary work of Lieutenants Jacob and Rivers was scanty, only about 80 points of this class being fixed in the entire length-nearly 250 miles-of the Series: the principal places whose positions were determined were:-The towns of Poona and Ratnagiri, and the forts of Ráigad, Partábgad, Matgad and Bhaura; the Agoada light-house and the more important headlands likely to be of use in navigation were now accurately fixed for the first time. In 1864, Lieutenant-Colonel J. T. Walker, the Superintendent of the Great Trigonometrical Survey, ordered Captain C. T. Haig, who was then employed on the triangulation of the Mangalore Meridional Series, to detach, as opportunities offered, one of his assistants to the South Konkan and to allot to him the work of laying down all points of importance along the coast. Accordingly, Mr. Anding with a small party was sent to Bombay in January, 1865 ; and, working at intervals, he was able in that and the next field season to add about 35 additional points along the length of the coast-line between the extremities of the South Konkan Series.

July, 1888.
S. G. BURRARD,

In charge of Computing Office.
\qquad -

SOUTH KONKAN COAST SERIES.

 PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.

 PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.}

PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.

SOUTH KONKAN COAST SERIES.

DESCRIPTION OF PRINCIPAL STATIONS.

All the Principal Stations hereafter described, with the exception of that on the bastion of Agoada fort, are situated on hills. Stations numbered XXXI, and XXXIV (of the Bombay Longitudinal Series), II, III, XIV, XVII, XVIII, XX, and XXII and XXIII (of the Mangalore Meridional Series), each consists of a circular and isolated pillar of masonry, either solid or perforated, from 2 to $3 \frac{1}{3}$ feet in diameter, and from $3 \frac{1}{2}$ to 5 feet in height excepting at two stations at which the pillars are sunk in the ground and have their surfaces flush with the ground level. Around each pillar and level with its upper surface, a platform of stones and earth 10 to 14 feet square was built for the accommodation of the observatory tent. Stations numbered I and XIX are denoted simply by circle and dot cut on the rock in situ. The remaining stations have platforms of stones and earth, some circular and 10 to 13 feet in diameter, and some square 8 to 14 feet in side, and varying in height from 1 to $5 \frac{1}{2}$ feet. In the centre and upper surface of the pillar or platform is embedded a stone on which is engraved a mark (circle and dot) in the normal of one or more similar marks below, the lowermost mark being in some instances cut on the rock in situl.

At all the stations the upper marks have been protected by small pillars of masonry in the form of a frustum of a pyramid, 28 inches square at base, 20 inches at top and $3 \frac{1}{2}$ feet in height, excepting at Agoada station where the pillar is 3 feet in diameter and 5 feet in height. These protecting pillars carry sufficiently accurate marks on their upper surfaces for Topographical and Revenue Survey purposes, as shewn at page 74 of Volume II of the Account of the Operations \&c.

The following descriptions have been compiled from those given by the Officers who executed the Series, and by the Officer in charge Tidal and Levelling Operations, under whose superintendence the vertical angles of the Series executed between the years 1842-44, were revised, supplemented as regards adjacent villages from the Topographical Survey Maps of the country traversed, and corrected, so far as the local sub-divisions in which the several stations are situated, from the latest Annual Reports furnished by the District Officers to whose charge the stations were committed.

The orthography is based on the official lists published under the orders of the Government of India, except that the long e is unaccented as in all previous volumes of this series, and the short e is shewn thus, \breve{e}; the same remarks apply to o. Final vowels and those in well-known terminals are unaccented. When the popular spelling of a name has been accepted by Government, its correct transliteration is given in parenthesis where the name occurs for the first time.
XXXI. (Of the Bombay Longitudinal Series). Mándvi Hill Station, lat. $18^{\circ} 38^{\prime}$, long. $73^{\circ} 35^{\prime}$-observed at in 1839, 1841 and 1842 -is on a ridge of the Western Gháts and occupies the peak locally known as Mándvi : it is $1 \frac{1}{2}$ miles W. of the village of Vaula, whence there is a very fair path to the station, Tikona hill fort $1 \frac{3}{4}$ miles W. is connected with it by a remarkable ridge about a mile in length along which there is a footpath. The station is at the N . end of the summit of the hill which rises precipitously from all sides to a height of about 500 feet above the level of the high ridges of the table-land. The hill is composed generally of hard vesicular basalt; the lower part is of amygdaloid. The station is in the lands of the village of Tikona, táluka Pován Mával, Bhor State.

The station of 1839 consisted of a platform having a mark-stone in its upper surface and another inserted in a circular hole, 15 inches in diameter, excavated in the rock below. No change appears to have been made in 1841. When visited in $18+2$ in connection with the operations of the South Konkan Coast Series, the platform had been entirely destroyed and the lower mark removed : a new station was built consisting of a platform enclosing a solid, circular and isolated pillar of masonry, having two marks, one engraved on the rock in situ in the excavation mentioned above and the other 2 feet above it on a stone embedded in the upper surface of the pillar which is flush with the ground. The upper part of the pillar has three stones for the support of the theodolite stand. From observations taken both at and to this station, its position was found to be identical with that of 1839. In 1881 the mark in the upper surface of the pillar, which is 5 inches lower than the surrounding platform, was found in position but the pillar was somewhat damaged. In 1885 the station was found to consist of a roughly constructed pillar of
masonry $2 \frac{1}{2}$ feet in diameter and 2 feet deep surrounded by an annulus and the upper mark was firmly embedded in position. The directions and distances of the circumjacent villages are:-Malaundi N.W. by N., mile 1; Kásig S.W. by W., miles $1 \frac{1}{2}$; Kolvan S., miles $3 \frac{1}{2}$; and Andhali S.E. by E., miles $1 \frac{8}{4}$. Note. -In 1842 another mark surrounded by a smaller circle was also cut on the rock in situ: this mark is 3.35 inches to the S.E. and a little above the lower mark of the present station.
XXXIV. (Of the Bombay Longitudinal Series). Karanja Hill Station, lat. $18^{\circ} 51^{\prime}$, long. 72° 59'observed at in 1839 and 1842-is situated on the highest part of the southern and higher of two hills on the island of Uran about 6 miles S.E. of Bombay. The hill is locally called Dronagiri, and has the cart road from the town of Uran to Karanja skirting its eastern base. There are two very good reservoirs of water on the hill, one at $\frac{1}{4}$ of a mile N.W. of the station and the other $\frac{3}{4}$ of a mile in the same direction and contiguous to a dilapidated chapel. The station is in the lands of the village of Chanja, táluka Panvel, district Kolába.

The station as built in 1839 is described as "marked by a circle and centre on a square pile of stones." No change appears to have been made in 1842. It was visited in 1866 in connection with the Bombay Island Triangulation but no statement is forthcoming to show that any change was then made. In 1881 Mr. W. G. Beverley found the station to consist of a solid, circular pillar of masonry 3 feet in diameter enclosed in a platform of stones about 10 feet square and 4 feet high. The pillar was much damaged and a flag-staff of the Harbour Surveying Department was found inserted in it, consequently the mark-stone was not in its place but on the side of the platform: the mark-stone was firmly refixed in the centre and upper surface of the pillar. When again visited in 1885, the station was in good preservation. The directions and distances of the circumjacent villages are :Uran N., miles $1 \frac{1}{2}$; Karanja S.E., mile 1 ; Chanja N.E. by E., mile 1 ; and Nagaon N.W., miles $1 \frac{1}{\frac{1}{2}}$.
I. Titvi Hill Station, lat. $18^{\circ} 23^{\prime}$, long. $73^{\circ} 4^{\prime}$-observed at in 1842 -is situated on the highest part of a range of hills running nearly parallel to the coast, and at a distance of about 8 miles from it. The large village of Nándgaon which is $\frac{1}{4}$ mile from the coast and on the main road from Borlai to Murúd lies 6 miles W. of the station and that of Murúd $4 \frac{3}{4}$ miles S.W. The station is in the lands of the village of Tlitvi, táluka Roha, district Kolába.

The station is denoted by a circle and dot engraved on the surface of a large laterite rock surmounted by a cairn of stones. When visited in 1885-86 it was in good preservation. The azimuths and distances of the circumjacent villages are :-Dhangar (hamlet) 222°, mile $\frac{1}{4}$; Titvi 176°, mile 1 ; Khandar 186°, miles 2 ; Sasoli 178°, miles $2 \frac{3}{4}$; and Chenera 194°, miles $2 \frac{1}{2}$.
II. Torna Hill Station, lat. $18^{\circ} 16^{\prime}$, long. $73^{\circ} 40^{\prime}$-observed at in 1842 -is situated on the highest part of the hill fort of Torna or Prichandgad, and near the western brow of the hill: it is 89 yards E. of the western or Konkan gate of the fort and 60 yards \mathbf{W}. of Mengais' temple and sadar (court) house. The ascent from the village of Yela at the \mathbf{E}. foot of the hill is good till the fortifications are reached, after which it becomes steep and dangerous, the summit being reached by steps cut in the rock. It is in the lands of the village of Yela, táluka Prichandgad, Bhor State, Sátára Agency.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry, 3 feet in diameter and 2 feet deep, having its surface flush with the ground level which contains two marks, one in its upper surface and the other 2.08 feet below it in the foundation. The directions and distances of the circumjacent villages are:-Vagdari N.N.W., miles 1f; Yela Buzurg N.E. by N., miles $1 \frac{8}{4}$; Rájgad (fort) E.S.E., miles $4 \frac{1}{4}$; Bársi hamlet S.S.W., miles $1 \frac{1}{2}$; aud Phanas hamlet W.N.W., mile 1 .
III. Kanta Hill Station, lat. $17^{\circ} 58^{\prime}$, long. $73^{\circ} 8^{\prime}$-observed at in 1843 -is situated on the centre and highest of the three conspicuous peaks lying in a straight line and about $\frac{1}{2}$ a mile apart. These peaks rise above the table-land on the S. side of the Sávitri river. The large village of Bánkot is on the slope of the table-land about $2 \frac{3}{4}$ miles N.W. The station is in the lands of the village of Kanta, táluka Dápoli, district Ratnágiri.

The station of 1843 was marked ly a circle and dot cut on the rock. When visited in 1885-86, it was found to consist of a kacha circular pillar 2 feet in diameter and $3 \frac{1}{2}$ feet in height, surrounded by a platform of loose stones. As there was no markstone in the upper surface of the pillar it was removed and the mark of 1843 was found engraved on the rock in sita. On completion of the observations a pillar of paka masonry of the same dimensions as the kacha pillar was built, carrying a mark-stone in its upper surface, in the normal of the mark on the rock. The azimuths and distances of the following villages and objects are :-A mbavli 348°, miles $1 \frac{1}{4}$; Panhál 280°, miles $1 \frac{8}{4}$; Gudagad 245°, miles $1 \frac{1}{4}$; Shipola 198°, mile 1 ; Western peak $124^{\circ} 17^{\prime}$, mile $\frac{1}{\frac{1}{2}}$; and Eastern peak $301^{\circ} 43^{\prime}$, mile 亲.
IV. Mahábaleshvar or Malcolmpeth Hill Station, lat. $17^{\circ} 55^{\prime}$, long. $73^{\circ} 43^{\prime}$-observed at in 1842 -is situated near the S.W. end of the rocky ridge locally known as Sindola, and is the highest point in the sanitarium of Mahábaleshvar. It is immediately above the house called "The Four Oaks", from which a path leads' to the Beckwith Monument and Christ's Church distant $\frac{3}{4}$ of a mile W. by N. The station is in táluka Jávli, district Sátára.

The station consists of a circular platform of stones 13 feet in diameter having a mark-stone in its upper surface and another 4.54 feet below it at the ground level. Around the upper mark-stone three large stones are fixed for the theodolite stand. When visited in 1885-86 the station was in good preservation.

sOUth konkan coast series.

V. Adhúr Fill Station, lat. $17^{\circ} 24^{\prime}$, long. $73^{\circ} 13^{\prime}$-observed at in 1843 -is situated on a very conspicuous hill, the foot of which is washed by the sea on its S., N. and W. sides which are very precipitous: it is $3 \frac{1}{4}$ miles S.W. by W. of the village of Pálshet on the high road from Bombay to Bandar Rohila. The ascent from the E . is tolerably easy. The station is 60 feet N . of the southern extremity of the hill and 79 feet from the S.E. corner, 81.75 feet from the S.W. corner and 86 feet from the centre (top) of Durga Devi temple which is 17 feet square and 15 feet high. It is in the lands of the village of Adhúr, taluka Chiplun, district Ratnágiri.

The station consists of a platform of stones 12 by 13 feet and 1 foot high, having a mark-stone in its upper surface and another 1.01 feet below it. When visited in $1885-86$ the station was in good preservation. The directions and distances of the circumjacent villages are :-Adhúr E. by N., miles 2; Budhal N.E. by N., mile $\frac{1}{4}$; Karul E.S.E., miles 2; and Bori (Customs Office) S.E., miles $1 \frac{3}{3}$.
VI. Kumbhárli Hill Station, lat. $17^{\circ} 25^{\prime}$, long. $73^{\circ} 43^{\prime}$-observed at in 1843 -is situated on a flattopped hill called Torna, about 30 feet from its western edge which is precipitous: it is $1 \frac{1}{2}$ miles of the Engineer's Bungalow near milestone No. 38 on the high road from Karad to Chiplún and immediately above and on the N. side of the Police Chauki at the head of the Kumbhárli Ghát. The station is best approached from the village of Helvak, vid Torna on the table-land. It is in the lands of the village of Torna, taluka Pátan, district Sátára.

The station described in 1843 is as follows :-"The station is marked in the rock." When visited in $\mathbf{1 8 8 5 - 8 6}$ it was found to consist of a rough stone platform 10 feet in diameter with a mark-stone 8 inches square firmly fixed in the centre and flush with the upper surface of the platform which is $2 \frac{1}{\frac{1}{2}}$ feet above the level of the hill. The directions and distances of the circumjacent villages are :-'Torna E.S.E., miles $1 \frac{3}{4}$; Bopoli S.E. by S., miles $1 \frac{3}{4}$; Dhankal S., miles 2 ; Kembsa S.W. by S., miles 2; and Pophli N.W.. by W., miles $3 \frac{1}{3}$.
VII. Mirya Hill Station, lat. $17^{\circ} 2^{\prime}$, long. $73^{\circ} 18^{\prime}$-observed at in 1843 and 1844 -is situated on the summit of a very conspicuous hill locally known as Mirya Dongar, and is surrounded on three sides by the sea : it is about 2 miles W. of Shirgaon village and 3 miles N.N.W. of the Ratnagiri Light-house. The station is in the lands of the village of Vada Mirya, táluka and district Ratnágiri.

The station was originally denoted by the usual circle and dot engraved on the top of a large rock around which a platform was built. When visited in $1885-86$, the mark on the rock was found intact. The azimuths and approximate distances of the following places are:-Mirya No. 1230°, mile 1 ; Mirya No. 2285°, mile $\frac{4}{4}$; Mirya Dharmshála 216°, miles $1 \frac{1}{4}$; and Ratnágiri Collector's Office 320°, miles 3 .
VIII. Manoli Hill Station, lat. $16^{\circ} 55^{\prime}$, long. $73^{\circ} 51^{\prime}$-observed at in 1843 -is situated on the \mathbf{W}. edge of a small table-land at the W. end of Manoli hill: it is 18 feet E. of a precipice and somewhat lower than the highest point of the range which is extensive and runs E. and W. The village of Ámba, near the head of Ámbághát on the road from Kolhápur to Ratnágiri, lies 4 miles N. of the station. The ascent, which is steep in two or three parts and through dense forest, is from the village of Manoli. It is in the lands of the village of Manoli, táluka Vishálgad, Kolhápur State.

The station, as described in 1843, consisted of a platform having a mark-stone in its upper surface and another mark 1.54 feet below it engraved on the rock. When visited in $1885-86$ it was found to consist of a rough but substautial stone platform 13 feet in diameter and $3 \frac{1}{\frac{1}{2}}$ feet above the ground, with a mark-stone about 7 incles square set in the centre and on a level with the surface of the platform. The approximate directions and distances of the following villages are :-Manoli N., miles 2 ; and Malkapur E., miles 9.
IX. Ghirya Hill Station, lat. $16^{\circ} 30^{\prime}$, long. $73^{\circ} 22^{\prime}-$ observed at in 1843 -is situated on a low flattopped hill, locally known as Kurutiam, rising perpendicularly above the coast line, about 4 miles S. of the large village of Vijaydurg. It is in the lands of the village of Ghirya, táluka Devgad, district Ratnágiri.

The station in 1843 was marked by the usual circle and dot engraved on the rock. When visited in $1885-86$ it was found to consist of a stone masonry platform $7 \frac{3}{4}$ feet square and 1.83 feet high, in the centre of which stood a staff in a circular hole 19 inches deep and 12 inches in diameter, cut partly into the rock. On removing the platform three flat surfaces (intended for the theodolite stand) were found cut around the circular hole the centre of which agreed with the centre of the circle circumscribed around the equilateral triangle formed by joining the centres of the three flat surfaces above mentioned. A mark-stone was fixed in the centre of this hole flush with the surface of the rock. From observations to the surrounding stations it became evident that the mark occupied the same position with that engraved on the rock in 1843 and which had been destroyed in cutting the hole for the staff. The azimuths and approximate distances of the surrounding places are:-Kumár Vádi 270°, mile $\frac{1}{2}$; Chaundasir temple 240°, mile $\frac{3}{4}$; Kothavadi temple 300°, miles $1 \frac{1}{2}$; and Puruli hamlet 324°, miles $3 \frac{1}{2}$.
X. Valvan Hill Station, lat. $16^{\circ} 25^{\prime}$, long. $73^{\circ} 54^{\prime}$-observed at in 1843 -is situated on the western knoll of an extensive semicircular range of hills, called Mursumbi Dongar, about 3 miles N. of the village of Valvan and 4 miles N. of Dajipur, a village with a travellers' bungalow near the head of Phondághát, on the high road from Kolhápur to Devgad. The knoll on which the station is gradually slopes westward for about

300 yards and then ends precipitously, overlooking the table-land on which lies a small hamlet belonging to Valvan. The station is approached from Valvan by a gradually ascending path up to the foot of the knoll after which the ascent is rather steep. It is in the lands of the village of Valvan, estate Bávda, Kolhápur State.

The station built in $18+3$ consisted of a platform having a mark-stone in its upper surface and another mark $9 \frac{1}{2}$ inches below cut on a large piece of rock around which the platform was built. When visited in $1885-86$ it consisted of a dot and circle 6 inches in diameter deeply engraved on a rock projecting about $4 \frac{1}{2}$ feet above the surrounding ground, around which was a 10-foot square platform of rough stoue-work, with steps on the west side.
XI. Parule Hill Station, lat. $15^{\circ} 58^{\prime}$, long. $73^{\circ} 33^{\prime}$-observed at in 1843 and 1844 -is situated on the highest point and at the N.E. end of a flat-topped, conspicuous hill, rising immediately above the coast line, about $6 \frac{3}{4}$ miles S.S.E. of the town of Málvan. It is in the lands of the village of Parule, táluka Vengurla, district Ratnágiri.

The station originally consisted of a platform which contained two mark-stones, one in its upper surface and the other 5.83 feet below it. When visited in $1885-86$. it was found to be a platform of stones 9 feet square and $5 \frac{3}{4}$ feet high; the upper mark-stone had been removed, but the lower was intact, over which the usual rectangular pillar of masonry has been built. The azimuths and approximate distances of the circumjacent places are:-Asba hamlet 210°, miles $1 \frac{1}{2}$; Parule 252°, miles $1 \frac{1}{2}$; Pat 276°, miles 4; and Málvan Custom house 151°, miles 7.
XII. Chaukola Hill Station, lat. $15^{\circ} 56^{\prime}$, long. $74^{\circ} 2^{\prime}$-observed at in 1843 -is situated on about the centre of a small flat-topped hill, the most westerly point of the group of hills forming the Chaukola plateau: it is about $2 \frac{1}{2}$ miles S. by W. of the Amboli Sanitarium at the top of the Ambolighat, and $\frac{2}{3}$ of a mile S.E. of the 46 th mile-stone on the road from Belgaum to Vengurla. There is a much higher point about $\frac{1}{8}$ a mile N.E., but this did not suit the ray to Valvan station. It is in the lands of the village of Chaukola, Sávantvádi State.

The station consists of a platform 12 feet square having a mark-stone in its upper surface and another mark $2 \cdot 13$ feet below it cut in the rock. When visited in 1885-86, the station was found in good preservation. The directions and distances of the circumjacent places are:-Chaukola S.E. by E., miles $3 \frac{1}{2}$; Phansauda S.S.W., miles $1 \frac{1}{3}$; and Nenanvádi S.E. by E., miles $1 \frac{1}{2}$.
XIII. Agoada Station, lat. $15^{\circ} 30^{\prime}$, long. $73^{\circ} 49^{\circ}$-observed at in 1844 and 1867 -is situated in the centre of the N.E. bastion of the upper fort of Agoada, 273 feet 4 inches from the Light-house, the azimuth of which is $346^{\circ} 42^{\prime} 30^{\prime \prime}$. A few miles lower down is the town of Panjim or New Goa, now (1888) the chief townof the Portuguese territory.

The station, ay built in 1843, was marked by a circle and dot on brass let into the stone at the surface of a pillar and a mark-stone embedded 1.77 feet below it. When visited in 1867 the station pillar was found intact : over this a circular protecting pillar of masonry, 3 feet iu diameter and 5 feet in height, was built, carrying a mark-stone in its upper surface. When again visited in 1885-86, the protecting pillar was found in good preservation.
XIV. Salili Hill Station, lat. $15^{\circ} 35^{\prime}$, long. $74^{\circ} 7^{\prime}$-observed at in 1844 and 1867 -is situated on the highest point of the hill isolated from the line of the Western Ghats, and runs E. and W. The sister hill called Vágiri lies to the N.W. with a very conspicuous clump of trees on its summit. The ascent which is steep and over rugged ground is from the village of Salili at the S . foot of the hill. It is in the lands of the village of Salili, táluka Sanquelim (Sánkuli), Portuguese territory.

The station is said to be the same as that of Captain Garling's triangulation, but no description was given of it when visited in 1844. When visited in 1867 a circular, perforated and isolated pillar of masonry 32 inches in diameter and 4.96 feet in height was built carrying a mark-stone in its upper surface, in the normal of the mark of 1844 . A platform 14 feet square was built, through which and the central pillar an aperture gives access to the lower mark. When again visited in 1885-86, the station was found in good preservation and to consist of a platform 14 feet square, and about 3 feet above the surface of the hill, enclosing an isolated pillar of masonry 32 inches in diameter, with a mark-stone let in flush with the upper surface of the pillar. The approximate directions and distances of the following places are:-Salili S., miles $1 \frac{1}{3}$; and Sanquelim (town) W. by S., miles 5.
XV. Pil Hill Station, lat. $15^{\circ} 6^{\prime}$, long. $74^{\circ} 3^{\prime}$-observed at in 1844 -is situated on the highest point of the hill locally known as Peril. There are two good springs of water on the hill lying N.W. and S.E. respectively, both within a quarter of a mile of the station. It is in the lands of the village of Mor Pil, pargana Bälli, district Goa, Portugnese territory.

The station is marked in the usual munner on two stones, the difference of height between them being $1 \cdot 71$ feet. When visited in 1886, the station was fonnd slightly damaged but the upper mark-stone was intact. The azimuths and approximate distances of the following places are :-Baitul 128°, miles $4 \frac{1}{2}$; Mor Pil 148°, mile 1 ; Cape Ramas 70°, miles 4 ; and Kopi 59°, miles 2.
XVI. Kumbhári Hill Station, lat. $15^{\circ} 9^{\prime}$, long. $74^{\circ} 20^{\prime}$-observed at in 1844 -is situated on a peak of the Western Gháts overlooking the Konkan, about 3 and 6 miles S.E. of the villages of Kumbhariri, and Bhattia respectively; and 14 miles S.E. of the town of Sanguem (Sangi). The summit of the hill is pointed and very precipitous on the N. and W. sides, and has just sufficient space for the station : on the E. and S. the hill
slopes down gradually. It is on the boundary of Kagloli and Kumbhari villages, the former in the Supa taluka, district Kánara, and the latter in the Sanguem táluka, Portuguese territory.

The station consists of a platiorm 12 feet square and $2 \frac{1}{2}$ feet high which contains two mark-stones, one in its upper surface and the other $1 \cdot 25$ feet below it. Around the upper mark three large stones are fixed for the theodolite stand.
XVII. Bori Hill Station, lat. $15^{\circ} 21^{\prime}$, long. $74^{\circ} 5^{\prime}$-observed at in 1867 -is situated on a high hill about 5 miles S.S.E. of Panda in Portuguese territory. The best route to the station is by the river Rachol which should be ascended as far as the village of Bori, whence there is a stiff climb of two hours over a very rough road. It is probably within about 4 feet of the station of "Boree" of Colonel Lambton's triangulation. The station is in Portuguese territory.

The station consists of a platform enclosing a circular, perforated and isolated pillar of masonry 4 feet high, which contains two mark-stones, one in its upper surface and the other below it : an aperture gives access to the lower mark.
XVIII. Jarma Hill Station, lat. $15^{\circ} 36^{\prime}$, long. $74^{\circ} 9^{\prime}-$ observed at in 1866 -is situated on the eastern of two remarkable hills which rise almost from sea level to a height of about 2,000 feet and are detached from the main line of the Western Ghats: the station is on the centre and highest of three summits, the northern having a grove of trees forming quite a landmark, about $6 \frac{1}{2}$ miles E. by N. of the town of Sanquelim on the main road from Bicholim to Khánápur, and 4 miles S.W. by S. of Chorlen Ghat. The station is in the lands of the village of Jarma, táluka Sanquelim, Portuguese territory.

The station consists of a platform enclosing a circular, isolated and perforated pillar of masonry which contains two mark-stones, one in its upper surface and the other below it : an aperture gives access to the lower mark.
XIX. Darsinga Hill Station, lat. $15^{\circ} 31^{\prime}$, long. $74^{\circ} 19^{\prime}$-observed at in 1866 -is situated on the extreme western edge of the precipitous crest of a high and commanding plateau, somewhat detached from the main line of the Western Gháts. The stone marking the trijunction of the districts of Kánara, Belgaum and Goa is about 11 chains S. It is about 3 miles N. of the small village of Paldi, and $2 \frac{1}{2}$ miles $8 . W$. of Mundil. The only easy ascent is from the village of Paldi at the S. side of the hill. The station is in the lands of the village of Paldi, táluka Supa, district North Kánara.

The station is denoted only by a circle and dot cut on the rock in situ.
XX. Bailúr Hill Station, lat. $15^{\circ} 45^{\prime}$, long. $74^{\circ} 22^{\prime}$-observed at in 1866 -is situated on the highest ridge of the hill, about $6 \frac{1}{4}$ miles W. by S. of Kiniya village on the road from Jámboti to Belgaum, and $4 \frac{1}{4}$ miles S.S.W. of that of Tudiya. It is in the lands of the village of Betgeri, táluka and district Belgaum.

The station consists of a platform of loose rubble enclosing a circular, isolated and perforated pillar of masonry 5 feet high, which contains two mark-stones, one in its upper surface and the other below: an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Betgeri N.E. by N., mile $\frac{\underset{y}{c}}{}$; Mahalunga W.N.W., miles $2 \frac{1}{2}$; and Boknúr E.N.E., miles $1 \frac{1}{3}$.
XXII. (Of the Mangalore Meridional Series). Yalúr Hill Station, lat. $15^{\circ} 45^{\prime}$, long. $74^{\circ} 34^{\prime}$-observed at in 1866-is situated near the S.W. corner of the ramparts of the hill fort of Yalúr lying $2 \frac{1}{2}$ miles \mathbf{E}. of the Railway Station of Desúr, and about 7 miles S. by E. of the cantonment of Belgaum. The station is in Kurundvád State, Southern Marátha Agency.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in the upper surface of the pillar and the other 6 feet below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjacent villages are :-Yalúr N. by W., miles 2 ; Solgi N.W., mile 1;

XXIII. (Of the Mangalore Meridional Series). Samshergad Hill Station, lat. $15^{\circ} 34^{\prime}$, long. $74^{\circ} 34^{\prime}$ observed at in 1866-is situated on the highest of the three conical shaped hills, about 3 miles \mathbf{W}. of the large village of Nandgad on the high road from 'linaighát to Kittúr, and $5 \frac{1}{2}$ miles S.S.E. of the town and Railway Station of Klánápur. The station is in the lands of the village of Nandgad, táluka Khánápur, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are:--Naikol W.S.W., miles $1 \frac{7}{3}$; Sávargali N.W. by N., miles $1 \frac{1}{4}$; Hirebhalke S.W., miles 2; and Karanjol S. by E., miles 2.

SOUTH KONKAN COAST SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

At XXXI (Mándvi)

February 1842; observed by Lieutenant W. S. Jacob with Dollond's 15-inch Theodolite.

Anglebetwoon	Circle readings, telescope being set on II						$M=$ Mean of Groups ${ }^{w}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
	$321^{\circ} 47^{\prime}$	$141^{\circ} 47^{\prime}$	$341^{\circ} 47^{\prime}$	$161^{\circ} 48^{\prime}$	$1^{\circ} 48^{\prime}$	$181^{\circ} 47^{\prime}$	
II \& I	"	"	"	"	"	" ${ }^{\text {" }}$	$\begin{aligned} M & =17^{\prime \prime} \cdot 63 \\ w & =0 \cdot 28 \\ \frac{1}{w} & =3 \cdot 61 \\ C & =75^{\circ} 50^{\prime} 17^{\prime \prime} \cdot 63 \end{aligned}$
	h 20.90	h 18.94	l1757	$l 9.26$	\%14.24	h 22.57	
	h 14.93	h 19.27	$l 23.53$	$l 9 \times 3$	$\begin{aligned} & h 18.57 \\ & d 16.00 \end{aligned}$	d22.06	
	17.92	$19^{\prime 11}$	$20 \cdot 55$	9.60	16.27	22.32	
I \& XXXIV	${ }_{\text {h }} 32 \cdot 73$	$h_{4} 1 \cdot 03$	d 39.06	$l 36.50$	h 39.73	d 34.82	$\begin{aligned} M & =37^{\prime \prime} \cdot 83 \\ w & =0 \cdot 79 \\ \frac{1}{w} & =1 \cdot 26 \\ C & =48^{\circ} 22^{\prime} 37^{\prime \prime} \cdot 84 \end{aligned}$
	${ }_{\text {h }} \mathbf{3 8} \mathbf{8 0}$	h4227	d 35.70	$l 38.50$	$\begin{aligned} & h 39.20 \\ & d 39^{\circ} 06 \end{aligned}$	d 35.52	
	$35 * 47$	42•10	$37 \cdot 38$	37×50	39.33	35^{17}	

At XXXIV (Karanja)

February 1842 ; observed by Lieutenant W. S. Jacob with Dollond's 15-inch Theodolite.

$\begin{gathered} \text { Angle } \\ \text { betmoen } \end{gathered}$	Circle readings, telescope being set on XXXI						$M=$ Mean of Groups $v_{0}=$ Relative Weight $C=$ Concluded Δ ngle
	$111^{\circ} 31^{\prime}$	$291{ }^{\circ} 31{ }^{\prime}$	$181{ }^{\circ} 31^{\prime}$	$811^{\circ} 31^{\prime}$	$151^{\circ} 31^{\prime}$	331 ${ }^{\circ} 31^{\prime}$	
XXXI \& I	"	"	"	"		"	$\begin{aligned} & M=65^{\prime \prime} \cdot 26 \\ & w=0 \cdot 3 \mathbf{1} \\ & \frac{1}{w}=3 \cdot 27 \\ & \boldsymbol{C}=59^{\circ} 30^{\prime} 5^{\prime \prime} \cdot 26 \end{aligned}$
	h 67.67	h $65^{\circ} 00$	${ }_{6} 64.64$	h66.97	h 54.00	h 70.63	
	$\begin{aligned} & d 70.67 \\ & d 69.67 \end{aligned}$	h64.34	h63.64	h66.97	$\begin{aligned} & h 62 \cdot 33 \\ & d 56.79 \end{aligned}$	h 66.00 d 69.52	
	$69 \cdot 34$	$64 \cdot 67$	64.14	66.97	5771	68.72	

Note.-Stations XXXI and XXXIV appertain to the Bombay Longitudinal Series.

At I (Titvi) February 1842; observed by Lieutenant W. S. Jacob with Dollond's 15-inch Theodolite.							
$\underset{\text { between }}{\substack{\text { Angle }}}$	Circle readings, telescope being set on XXXIV						$\boldsymbol{M}=$ Moan of Groupe $\infty=$ Rolative Weight C = Concluded Angle
$\underset{\text { XXXI }}{\text { XXXIV }}$	h 28.70 h 29.30	$\begin{aligned} & h 23.30 \\ & h 20.06 \end{aligned}$	h 26.97 h27.03	h 21.23 h 21.87 h $\mathbf{2 0} \mathbf{7} \mathbf{7}$	$\begin{aligned} & h 22.77 \\ & h 23.77 \end{aligned}$	$\begin{aligned} & h 22 \cdot 64 \\ & h 26 \cdot 74 \end{aligned}$	$\begin{aligned} M & =24^{N \cdot} \cdot 49 \\ \boldsymbol{w} & =0 \cdot 6 \mathbf{1} \\ \frac{\mathbf{I}}{w} & =1 \cdot 64 \\ C & =72^{\circ} \quad 7^{\prime} 24^{N} \cdot 48 \end{aligned}$
	29.00	21.68	27.00	2129	23.27	24.69	
XXXI \& II	$\begin{aligned} & d 15.85 \\ & d 16.5^{2} \end{aligned}$	$\begin{aligned} & h 17.60 \\ & h 15.97 \end{aligned}$	$\begin{array}{r} h_{11} \cdot \infty \\ h_{7} \cdot 67 \end{array}$	h 15.97 h 14.63 d 14.23	$\begin{aligned} & h_{1} 19.93 \\ & h_{15} .60 \end{aligned}$	$\begin{aligned} & h 17.26 \\ & h 14.96 \end{aligned}$	$\begin{aligned} M & =15^{N \cdot 19} \\ w & =0 \cdot 61 \\ \frac{1}{w} & =1 \cdot 64 \\ C & =37^{\circ} 10^{\prime} 15^{N} \cdot 19 \end{aligned}$
	16.19	16.79	9.34	14.94	1777	16.11	
II \& III	$\begin{aligned} & h 39 \cdot 07 \\ & h 38 \cdot 40 \end{aligned}$	$\begin{aligned} & h 35 \cdot 20 \\ & h 37.73 \end{aligned}$	$\begin{aligned} & h 37 \cdot 80 \\ & h \quad 42 \cdot 06 \end{aligned}$	$\begin{aligned} & k 32.53 \\ & k 33.57 \\ & h 32.43 \\ & d \\ & d i .77 \end{aligned}$	$\begin{aligned} & h 35 \cdot 77 \\ & h 36 \cdot 10 \end{aligned}$	$\begin{aligned} & h 38 \cdot 54 \\ & h 36 \cdot 07 \end{aligned}$	$\begin{aligned} M & =3^{6^{N} \cdot 83} \\ w & =0 \cdot 85 \\ \frac{1}{w} & =1 \cdot 18 \\ C & =70^{\circ} 5^{\prime} 36^{N} \cdot 79 \end{aligned}$
	38:74	$36 \cdot 47$	39.93	$32 \cdot 58$	35.94	37'31	
November 1842; observed by Lieutenant W. S. Jacob with Dollond's 15-inch Theodolite.							
Angle betwoen	$184^{\circ} 57^{\prime}$	$\begin{gathered} \text { Cir } \\ 4^{\circ} 58^{\prime} \end{gathered}$	adings, to $204^{\circ} 67^{\prime}$	pe being $24^{\circ} 58^{\prime}$	$\begin{aligned} & \text { IV } \\ & 284^{\circ} 56^{\prime} \end{aligned}$	$44^{\circ} \mathbf{5 7}$	$\boldsymbol{M}=$ Mean of Groupe so $=$ Relative Weight C = Concluded Angle
IV \& III	$\begin{aligned} & d \quad 14.00 \\ & d \\ & d \\ & d \end{aligned} \quad 3.33 .67$	$\begin{aligned} & h 10 \cdot 66 \\ & d \times 1 \times 99 \end{aligned}$	$\begin{aligned} & l 19.00 \\ & l 14: 00 \\ & h 10.33 \end{aligned}$	$\begin{array}{ll} & " \\ l & 6 \cdot 00 \\ l & 9.33 \\ h & 11.34 \end{array}$	$\begin{aligned} & h 18.34 \\ & h 16.67 \end{aligned}$	$\begin{array}{ll} h & 5 \cdot \infty \\ h & 5 \cdot 53 \end{array}$	$\begin{aligned} & M=12^{\prime \prime} \cdot 34 \\ & w=0 \cdot 41 \\ & \frac{1}{w}=2 \cdot 44 \\ & C=66^{\circ} 1^{\prime} 12^{\prime \prime} \cdot 35 \end{aligned}$
	13.67	1133	14.44	$8 \cdot 89$	17.51	$8 \cdot 17$	
III \& I	$\begin{aligned} & h 34 \cdot 00 \\ & h 34.66 \end{aligned}$	$\begin{aligned} & h 34 \cdot 67 \\ & h 33 \cdot 34 \end{aligned}$	$\begin{aligned} & l 20.67 \\ & d 23.33 \\ & d 26.99 \end{aligned}$		$\begin{aligned} & h 30.00 \\ & h 26.67 \end{aligned}$	$\begin{aligned} & h 37 \cdot 66 \\ & h 36 \cdot \infty \end{aligned}$	$\begin{aligned} & M=31^{\prime \prime} \cdot 15 \\ & w=0 \cdot 24 \\ & \frac{1}{w}=4 \cdot 12 \\ & C=42^{\circ} 33^{\prime} 31^{\prime \prime} \cdot 11 \end{aligned}$
	34.33	$34^{\circ} \mathrm{O}$	23.66	$29^{\prime} 75$	28.34	$36 \cdot 83$	

Nore.-Stations XXXI and XXXIV appertain to the Bombay Longitudinal Series.

Anglebetwoen	March 1842; observed by Lieutenant W. S. Jacob with Dollond's 15-inch Theodolite.						
	$177^{\circ} 53^{\prime}$	$\begin{array}{r} \text { Cir } \\ 857^{\circ} 53^{\prime} \end{array}$	adings, te $197^{\circ} 58^{\prime}$	e being ${ }^{\text {a }}$ $17^{\circ} 5 y^{\prime}$	$\begin{aligned} & \text { VI } \\ & 217^{\circ} 52^{\prime} \end{aligned}$	$37^{\circ} \mathbf{5 2}$	$\boldsymbol{M}=$ Mean of Groupe $w_{0}=$ Relative Weight C = Concluded Angle
V1 \& V	d 38.60 d $40 \cdot 61$	$h_{45} 54$ d 40.51	$\begin{aligned} & h \quad 42 \cdot 86 \\ & d 40 \cdot 94 \end{aligned}$	d 36.42 d 36.09	$\begin{gathered} " \\ h_{42} \cdot 84 \\ h \\ h_{43} \cdot 50 \end{gathered}$	h 38.20 h 36.56	$\begin{aligned} & M=40^{\prime \prime} \cdot 23 \\ & w=0 \cdot 63 \\ & \frac{1}{w}=1 \cdot 59 \\ & \boldsymbol{w}=44^{\circ} 10^{\prime} 40^{\prime \prime} \cdot 23 \end{aligned}$
	39^{61}	$43^{\circ} 03$	4190	36.26	$43^{1} 17$	3738	
V \& III	$\begin{aligned} & d 46 \cdot 73 \\ & d 47.73 \end{aligned}$	$\begin{aligned} & d 34.43 \\ & d 33.80 \end{aligned}$	$\begin{aligned} & h_{40 \cdot 80} \\ & d_{45} \cdot 20 \end{aligned}$	$\begin{aligned} & h 37 \cdot 13 \\ & h 37 \cdot 46 \end{aligned}$	$\begin{aligned} & h 33.23 \\ & h 33.23 \end{aligned}$	$\begin{aligned} & h 39 \cdot 86 \\ & h_{40} .80 \end{aligned}$	$\begin{aligned} M & =39^{\prime \prime} \cdot 20 \\ w & =0 \cdot 20 \\ \frac{1}{w} & =4 \cdot 90 \\ C & =5^{\circ} 2^{\prime} 39^{\prime \prime} \cdot 20 \end{aligned}$
	$47 \cdot 23$	34'12	$43^{\circ} \times$	37.30	33.23	$40 \cdot 33$	
III \& II	$\begin{aligned} & d \times 6.89 \\ & d 15.89 \end{aligned}$	$\begin{aligned} & d 27.02 \\ & d 29.69 \end{aligned}$	$\begin{aligned} & h 18.96 \\ & l \\ & l \\ & h \\ & h \\ & h \end{aligned} 8.034$	$\begin{aligned} & d 22 \cdot 76 \\ & d 22.76 \end{aligned}$	$\begin{aligned} & h_{32} \cdot 67 \\ & h_{31} .67 \end{aligned}$	h 19.90 h21.26 d $20 \cdot 76$	$\begin{aligned} & M=23^{\prime \prime} \cdot 24 \\ & w=0 \cdot 17 \\ & \frac{1}{w}=5 \cdot 95 \\ & C=78^{\circ} 28^{\prime} 23^{\prime \prime} \cdot 24 \end{aligned}$
	16.39	28.36	19.11	22.76	32'17	$20 \cdot 64$	
II \& R.M.	$\begin{aligned} & l 38.94 \\ & h 35 \cdot 36 \end{aligned}$	$\begin{aligned} & l 30^{\circ} 97 \\ & l 33.30 \\ & h 29.67 \end{aligned}$	$\begin{aligned} & h 42.37 \\ & l 37.67 \\ & l 40.33 \end{aligned}$	h 38.40 h 38.07	$\begin{aligned} & h 36.63 \\ & h 36 \cdot 30 \end{aligned}$	$\begin{aligned} & h 37.44 \\ & h 33.77 \\ & d 35.79 \end{aligned}$	$\begin{aligned} & M=3^{\prime \prime} \cdot 49 \\ & \boldsymbol{w}=0 \cdot 62 \\ & \frac{1}{w}=1 \cdot 63 \\ & C=8^{\circ} 26^{\prime} 36^{\prime \prime} \cdot 48 \end{aligned}$
	3715	3131	40^{12}	$38 \cdot 24$	36.47	$35 \cdot 67$	

At V (Adhúr)

October 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

Anglobetween	$20^{\circ} 0^{\prime}$	Circle readings, telescope being set on III				$240^{\circ} 0^{\prime}$	$M=$ Mean of Groups $w^{0}=$ Relative Weight $C=$ Concluded Angle
		$200^{\circ} 0^{\prime}$	$40^{\circ} 1^{\prime}$	$220^{\circ} 1^{\prime}$	$60^{\circ} 0^{\prime}$		
III \& IV	"	"	"	$"$	"	"	$\begin{aligned} M & =30^{\prime \prime} \cdot 9 \mathbf{I} \\ w & =0 \cdot 40 \\ \frac{\mathbf{I}}{w} & =2 \cdot 48 \\ C & =50^{\circ} 57^{\prime} 30^{\prime \prime} \cdot 85 \end{aligned}$
	$h 28.34$	${ }_{4} 30.67$	$h 26.34$	$h 38^{\circ} \circ 0$	${ }_{7} 30.34$	h 27.67	
	$\begin{array}{r} 29.00 \\ \hline \end{array}$	$h 35^{\circ} 00$	$\begin{aligned} & h 28.00 \end{aligned}$	$\begin{aligned} & n 36 \cdot 67 \end{aligned}$	$\ldots 30 \cdot 33$	$\begin{array}{ll} h 1 \cdot 33 \end{array}$	
		$h 32.00$	$\begin{aligned} & h 28.33 \\ & d 30.84 \end{aligned}$			$\hbar 34.34$	
	27.78	$32 \cdot 56$	28.38	$37 \cdot 34$	28.22	31'17	

Note.-R.M. denotes. Referring. Mark.

At V (Adhúr)-(Continued).								
Angle betweon	$20^{\circ} 0^{\prime}$	Circle readings, telescope being set on III				$240^{\circ} 0^{\prime}$	$\boldsymbol{M}=$ Mean of Groups $w^{w}=$ Relative Weight C = Concluded Angle	
IV \& VI	h 36:00 h 33.00 d $31 \cdot 83$	$h 33.33$ 438.66	$h_{42} \cdot 33$ h 39.33 d44.1I	h 28.67 h 31•66	K 39.66 ${ }^{\boldsymbol{k}} 4 \mathrm{4} \cdot 67$ h $42 \cdot 67$	h 37.00 h 37.66 h 37.00 d $36 \cdot 66$	$\begin{aligned} & M=35^{\prime \prime} \cdot 80 \\ & w=0 \cdot 23 \\ & \frac{1}{w}=4 \cdot 37 \\ & C=4^{\circ} 32^{\prime} 35^{\prime \prime} \cdot 8 \mathbf{1} \end{aligned}$	
	$33^{\circ} 61$	31*00	41'92	$30 \cdot 17$	41*00	37•08		
VI \& VII	$h 15.66$ $h_{12} 266$ $d 11.49$	$h 16 \cdot 67$ $h 16 \cdot 34$	$\begin{aligned} & h 4 \cdot 33 \\ & h 5 \cdot 34 \\ & d 8 \cdot 12 \end{aligned}$	$\begin{aligned} & h_{17} .66 \\ & h_{14} .67 \end{aligned}$	$\begin{array}{ll} h & 1 I \cdot 67 \\ h & 7.33 \\ h & 6 \cdot 33 \end{array}$	$\begin{array}{rr} h & 8 \cdot 34 \\ h & 7 \cdot 67 \\ h & 15 \cdot 00 \\ d & 9.78 \end{array}$	$\begin{aligned} & M=11^{\prime \prime} \cdot 75 \\ & w=0 \cdot 30 \\ & \frac{\mathbf{1}}{w}=3 \cdot 34 \\ & C=77^{\circ} 42^{\prime} 1 \mathbf{1}^{\prime \prime} \cdot 71 \end{aligned}$	
	13.27	16.51	5*93	16•17	$8 \cdot 44$	10. 20		
October and November 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.								
		Circ	dings, tele	being set	III		$M=$ Mean of Groupe	
between	$232^{\circ} 59^{\prime}$	$53^{\circ} 1^{\prime}$	$252^{\circ} 55^{\prime}$	$72^{\circ} 55^{\prime}$	$272^{\circ} 55^{\prime}$	$92^{\circ} 55^{\prime}$	$\boldsymbol{C}=$ Concluded Angle	
VIII \& VII	"	2 ${ }^{\prime \prime}$			${ }^{\prime \prime}$	"	$\begin{aligned} & M=41^{\prime \prime} \cdot 68 \\ & w=0 \cdot 27 \\ & \frac{1}{w}=3 \cdot 76 \\ & C=59^{\circ} 52^{\prime} 41^{\prime \prime} \cdot 73 \end{aligned}$	
		$h 38.67$ $h 39.66$	$\begin{aligned} & h 37^{\circ} 00 \\ & h \\ & 37^{\circ} 66 \end{aligned}$	$h 43.67$ $h 44.66$		l 17.33 79		
	${ }^{\prime} 49.33$			$d_{41} \cdot 84$	d $35 \cdot 12$	h 43.67		
	$46 \cdot 67$	$39^{\circ 17}$	37•33	$43 \cdot 39$	$36 \cdot 82$	$46 \cdot 67$		
VII \& V	h 65.00	h 68.66	h 67.00	h63.00	${ }^{l} 70 \cdot 33$	h 64.67	$\begin{aligned} & M=64^{\prime \prime} \cdot 48 \\ & w=0 \cdot 44 \\ & \frac{1}{w}=2 \cdot 29 \\ & C=42^{\circ} 39^{\prime} 4^{\prime \prime \cdot} \cdot 4^{2} \end{aligned}$	
	$h 59.33$ $h 55.67$	h $67 \cdot 67$	h 64.67	d 61.17 $d 60 \cdot 18$	$\begin{aligned} & h 68 \cdot \infty \\ & h 69 \cdot 34 \end{aligned}$	$\begin{aligned} & d 60 \cdot 50 \\ & d 59.83 \end{aligned}$		
	d 62.33			d63.77	d 66.67			
	60. 58	68•17	$65 \cdot 84$	$62 \cdot 03$	$68 \cdot 59$	61.67		
V \& III	$h 60 \cdot 67$ $h 62.00$	h $55^{\circ} \mathrm{Co}$ h 54	$h 63.00$ $h 63.00$	$h 55.00$ l l	l l 756.33	$h 54.33$ $h 56000$	$\begin{aligned} & \boldsymbol{M}=57^{N} \cdot 22 \\ & \boldsymbol{w}=0 \cdot 30 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=3 \cdot 3^{8} \\ & \boldsymbol{C}=44^{\circ} 32^{\prime} 57^{\prime \prime} \cdot 20 \end{aligned}$	
	$\begin{array}{r} h 63.33 \\ d 64.33 \end{array}$			${ }^{1} 55 \cdot 33$	$\begin{aligned} & h_{52}^{J J} \cdot \infty \\ & h_{5 \mathrm{I}} \cdot \infty \end{aligned}$	d $50 \cdot 67$		
	$62 \cdot 58$	54.50	$63 \cdot 00$	$55 \cdot 89$	$53 \cdot 67$	53.67		

Note.-R.M. denotes Referring Mark.

At VIII (Manoli)

November 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

Angle between	Circle readings, telescope being set on \mathbf{X}						$M=$ Meen of Groups
	$206^{\circ} 7^{\prime}$	$26^{\circ} 7^{\prime}$	$226^{\circ} 7^{\prime}$	$46^{\circ} 7^{\prime}$	$246^{\circ} 6^{\prime}$	$66^{\circ} 6^{\prime}$	$\boldsymbol{C}=$ Concluded Angle
\mathbf{X} \& IX	"	"	"	"	"	"	$\begin{aligned} & M=32^{\prime \prime} \cdot 41 \\ & w=0 \cdot 39 \\ & \frac{1}{w}=2 \cdot 55 \\ & C=53^{\circ} 5^{\prime} 6^{\prime} 32^{\prime \prime} \cdot 42 \end{aligned}$
	${ }_{4} 40 \cdot 00$	h31.33	¢ $35^{\circ} \mathrm{O}$	h $32 \cdot 0$	h 34.67	h 29.67	
	$\begin{aligned} & h 39 \cdot 00 \\ & h 37 \cdot 67 \end{aligned}$	$\begin{aligned} & h 29.34 \\ & h 26 \cdot 00 \end{aligned}$	h $32 \cdot 34$	h 28.00	h $32 \cdot 33$	h 29.33	
	$38 \cdot 89$	$28 \cdot 89$	$33 \cdot 67$	$30 \cdot 0$	$33 \cdot 50$	29.50	
IX \& VII	h 13.00 $h 13.67$	$h 18 \cdot 00$ $h 21.66$	$\begin{array}{ll}h \\ h & 8.34 \\ h i r\end{array}$	h 19.00	$h 17.67$ $h 18.67$	h 21.00	$\begin{aligned} & M=17^{\prime \prime} \cdot 19 \\ & w=0 \cdot 33 \\ & \frac{1}{w}=3 \cdot 06 \\ & C=54^{\circ} 37^{\prime} 17^{\prime \prime} \cdot 17 \end{aligned}$
	${ }_{\text {d }} 16.33$	d19.78	d $10 \cdot 0$				
	14.33	19•81	10:00	20'00	$18 \cdot 17$	$20 \cdot 84$	
VII \& VI	h24.34 h 23.00	h 21.34 $h 19.67$	$h 26.66$ $h 26.67$	$\begin{aligned} & h_{16} 160 \\ & h_{17} \cdot 33 \end{aligned}$	$\begin{aligned} & h 22 \cdot 66 \\ & h 24 \cdot 00 \end{aligned}$	$\begin{aligned} & h_{21} \cdot 33 \\ & h_{19} \cdot 00 \end{aligned}$	$\begin{aligned} & M=22^{\prime \prime} \cdot 07 \\ & w=0 \cdot 46 \\ & \frac{1}{w}=2 \cdot 18 \\ & C=65^{\circ} 19^{\prime} 22^{\prime \prime} \cdot 08 \end{aligned}$
	d 26.66	$\begin{aligned} & h 21 \cdot 67 \\ & d 20.84 \end{aligned}$	d26.67				
	24.67	20•88	$26 \cdot 67$	$16 \cdot 67$	23*33	20'17	

At IX (Ghirya)

December 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

$\underset{\text { between }}{\substack{\text { Angle }}}$	Circle readings, telescope being set on VII						
	$140^{\circ} 0^{\prime}$	${ }^{32} 0^{\circ} 1^{\prime}$	$160^{\circ}{ }^{\prime}$	$340{ }^{\circ}{ }^{\circ}$	$180{ }^{\circ} \mathrm{O}$	$0^{\circ} 0^{\prime}$	
VII \& VIII	"	"	"	"		"	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 47 \\ & w=0 \cdot 46 \\ & \frac{1}{w}=2 \cdot 17 \\ & C=54^{\circ} \cdot 26^{\prime} 32^{\prime \prime \prime} \cdot 51 \end{aligned}$
	h 31.33 $h 28.33$	h 37.34 $h 33.67$	$\begin{aligned} & h_{28} 8.33 \\ & h_{20} .67 \end{aligned}$	h $40 \cdot 34$ $h 39.30$	h 28.66 $h_{30} \mathbf{6} 66$	${ }_{\text {h }}^{\text {h }} 36 \cdot 33$	
	${ }^{1} 32 \cdot 82$	${ }_{\text {d }}{ }^{2} 45$		${ }_{\text {h }}{ }_{3}{ }^{\circ} \mathrm{O}$	d 27.50	${ }_{\text {h }} 34 \cdot 00$	
	$30 \cdot 83$	34*49	$29^{\circ} 0$	37*45	28.94	$34 \cdot 08$	
VIII \& X	$h 57.67$ $h 60.0$	h $60 \cdot 3$ d 55.	h $70 \cdot 33$ $d 70 \cdot 66$	${ }_{7}{ }_{5} 57.33$	${ }^{\text {h }} 68 \cdot 67$		$\begin{aligned} & M=63^{\prime \prime} \cdot 75 \\ & w=0 \cdot 23 \\ & \frac{1}{w}=4 \cdot 29 \\ & C=52^{\circ} 7^{\prime} 3^{\prime \prime} \cdot 72 \end{aligned}$
	${ }_{\text {d }} 61.83$	d 59.11		h60.0	$\begin{aligned} & h 69^{\circ 07} \\ & d 67.01 \end{aligned}$	$\begin{aligned} & h 61 \cdot 67 \\ & h 64 \cdot 66 \end{aligned}$	
	59.83	58.29	70.50	61.11	68.45	$64 \cdot 33$	

At IX (Ghirya)-(Continued).							
Angle between	Circle readings, telescope being set on VII						$\boldsymbol{M}=$ Mean of Groups wo Relative Weight $C=$ Concluded Angle
\mathbf{X} \& XI	$\begin{aligned} & \\ & h \\ & h \\ & 42 \cdot 00 \\ & h \\ & h 8 \cdot 00 \\ & d \\ & d \end{aligned} 8^{\prime \prime} \cdot 67$	$"$ d $34^{11} 1$ d $30 \cdot 44$ d $29^{\circ} 44$ d $30^{\circ} 11$	$\begin{aligned} & d 32 \cdot 17 \\ & d 30 \cdot 17 \end{aligned}$	$\begin{aligned} & d 28 \cdot 10 \\ & d 28 \cdot 77 \end{aligned}$	$\begin{aligned} & d 30^{\circ} 23 \\ & d 29.22 \end{aligned}$	$\begin{aligned} & d 27 \cdot 59 \\ & d 26 \cdot 59 \end{aligned}$	$\begin{aligned} M & =31^{\prime \prime} \cdot 17 \\ w & =0 \cdot 30 \\ \frac{1}{w} & =3 \cdot 37 \end{aligned}$
	$39^{\prime} 56$	3I•03	31'17	28•44	29*73	27*09	$C=62^{\circ} 45^{\prime} 31^{\prime \prime} \cdot 20$

At \mathbf{X} (Valvan)

November 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

$\begin{gathered} \text { Angle } \\ \text { betweon } \end{gathered}$	Circle readings, telescope being set on XII						$M=$ Mean of Groups ${ }^{w}=$ Relativo Weight $C=$ Concluded Angle
	$\mathbf{8 3 3}^{\mathbf{0}} \mathbf{6}^{\mathbf{\prime}}$	$153^{\circ} 6^{\prime}$	$353^{\circ} 6^{\prime}$	$173^{\circ} 6^{\prime}$	$13^{\circ} 7^{\prime}$	$193^{\circ} 8^{\prime}$	
XII \& XI	"	"	"	"	"	"	$\begin{aligned} M & =6^{\prime \prime} \cdot 93 \\ w & =1 \cdot 46 \\ \frac{I}{w} & =0 \cdot 69 \\ C & =5^{\circ} \quad 1^{\prime} 6^{\prime \prime} \cdot 93 \end{aligned}$
	d 8.33	d 6.78	d 6.11	${ }^{\text {d }} 9.77$	d 4.56	d 6.78	
	d $8 \cdot 34$	d $6 \cdot 78$	$d_{\text {II }} \mathrm{II}^{\text {d }}$	d $3 \cdot 10$	d 3.23	d 7111	
				${ }_{\text {d }} \mathbf{7} 8 \cdot 11$			
	8.34	6•78	8.61	7-02	$3 \cdot 90$	6•95	
XI \& IX	\% 54.00	h 63:00	h $56 \cdot 33$	h 60.00	h 55.33	h 56.66	$\begin{aligned} & M=57^{\prime \prime} \cdot 03 \\ & w=0 \cdot 74 \\ & \frac{1}{w}=1 \cdot 34 \\ & C=61^{\circ} 55^{\prime} 57^{\prime \prime} \cdot 07 \end{aligned}$
	$h_{53} \cdot 67$	$h 60 \cdot 00$ $h 58 \cdot 67$	$\begin{aligned} & h 54 \cdot 34 \\ & h 59 \cdot 33 \end{aligned}$	$\begin{aligned} & h 57 \cdot 33 \\ & h 62 \cdot 33 \end{aligned}$	h 56.67 h $\mathbf{5 5} 57$	$h_{54}{ }^{\circ} \mathrm{O}$	
	$53 \cdot 84$	60•56	56•67	$59 \cdot 89$	$55 \cdot 89$	55*33	
IX \& VIII	h 30.34	h 19.33	h 23.00	h31.34	h 28.00	$h^{27} 967$	$\begin{aligned} & M=26^{\prime \prime} 74 \\ & w=0 \cdot+^{1} \\ & \frac{1}{w}=2 \cdot 42 \\ & C=73^{\circ} 56^{\prime} 26^{\prime \prime} \cdot 66 \end{aligned}$
	h $30 \cdot 66$	${ }_{7} 19.33$	h 30.00	h 23.67	h28.00	h 30.00	
		h23.33	h 26.67	$\begin{aligned} & h 25.67 \end{aligned}$	h 29.66		
	30.50	20.66	$26 \cdot 56$	25.34	$28 \cdot 55$	28.84	
At XI (Parule)							

December 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

$\underset{\text { between }}{\text { Angle }}$	Circle readings, telescope being set on IX						$\boldsymbol{M}=$ Mean of Groups $w_{0}=$ Relative Weight C $=$ Concluded Angle
	$24^{\circ} 41^{\prime}$	$204^{\circ} 42^{\prime}$	$44^{\circ} 41^{\prime}$	$2244^{\circ} 41^{\prime}$	$64^{\circ} 41^{\prime}$	$244^{\circ} 41^{\prime}$	
IX \& X	"	"	"	"	"	"	$\begin{aligned} M & =40^{\prime \prime} \cdot 94 \\ w & =0 \cdot 49 \\ \frac{1}{w} & =2 \cdot \circ 5 \\ C & =55^{\circ} 18^{\prime} 40^{\prime \prime} \cdot 95 \end{aligned}$
	${ }_{4} 42 \cdot 33$	${ }_{2} 38 \cdot 33$	h 33.33	h 43.33	${ }^{\prime} 44.33$	h 41.34	
	h 44.67	${ }^{4} 43^{\circ} 00$	h 35.33	h41.33	$h 43^{\circ} \circ$ $h 42 \cdot \infty$	$h 42 \cdot 0$	
	43•50	40•67	34*33	42•33	$43 \cdot 11$	41*67	

At XI (Parule)-(Continued).

*December 1843; and \dagger February 1844; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

At XII (Chaukola)

December 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

Note.-B. M. denotes Referring Mark.

. At XIV (Salili)-(Continued).							
	Circle readings, telescope being set on XVI						$\boldsymbol{M O}=\begin{aligned} & \text { Mean of Gronps } \\ & \text { Relative Weight }\end{aligned}$ ${ }^{20}$ ㄷ $=$ Concluded $\Delta \mathrm{nglo}$
	$208^{\circ} 43^{\prime}$	$28^{\circ} 41^{\prime}$	$2288^{\circ} 41^{\prime}$	$48^{\circ} 42^{\prime}$	$248^{\circ} 8^{\prime}$	$68^{\circ} 48^{\prime}$	
XV \& XIII	"	"	"	"	"	"	$\begin{aligned} & M=59^{\prime \prime} \cdot 29 \\ & w=0 \cdot 15 \\ & \frac{1}{w}=6 \cdot 67 \\ & C=65^{\circ} 1^{\prime} 59^{\prime \prime} \cdot 29 \end{aligned}$
	$h 53.33$ $h 51.67$			$h 62.67$ $h 68.00$	${ }^{6} 60 \cdot 67$.	${ }^{\text {h } 66.66}$	
				$h 68.00$ $h 65$	h $h_{58} 6.00$	$h 75 \cdot 83$ d 59.17	
				${ }_{d 6 \mathrm{I}} \cdot 23$	${ }^{\text {h }} 56.00$		
	52•00	$60 \cdot 67$	$52 \cdot 52$	$64 \cdot 31$	$59 \cdot 17$	$67 \cdot 05$	
XIII \& XI	${ }_{\substack{\text { h } 26 \cdot 34}}^{\text {h } 26.33}$	${ }^{\text {h25 }}$, 00		$h 21 \cdot 00$ $h 18.34$		${ }_{\text {h }} 20 \cdot 67$	$M=23^{\prime \prime} \cdot 71$
	${ }_{\text {h }} \mathbf{h 2 6 . 3 3}$					$h 13.34$ $h 20.66$	$w=0 \cdot 27$
	${ }^{2} 24.83$		${ }^{\text {d }} 24 \cdot 83$	${ }^{1} 15$ O1	${ }_{\text {h }}^{32}$-34		$w=0 \cdot 27$
	25.96	25.00	26.29	18.09	$28 \cdot 67$	18.22	$\boldsymbol{C}=5^{\prime}{ }^{\circ} 35^{\prime} 23^{\prime \prime \prime} \cdot 73$
XI \& XII	$\begin{aligned} & h 58 \cdot 00 \\ & h 61 \cdot 34 \end{aligned}$	$\begin{aligned} & h_{53}^{53} \cdot 0 \\ & h_{53} \cdot 6_{7} \end{aligned}$	$\begin{aligned} & h 54 \cdot 00 \\ & h 55 \cdot 67 \end{aligned}$	$\begin{aligned} & h \sigma_{2} \cdot 00 \\ & h 60 \cdot 33 \end{aligned}$	${ }^{\text {h } 56.33}$	${ }^{\text {L } 58.00}$	$\begin{aligned} & M=50^{\prime \prime \prime} \cdot 93 \\ & w=0 \cdot 42 \\ & \frac{1}{w}=2 \cdot 3^{8} \\ & C=39^{\circ} 44^{\prime} 56^{\prime \prime} \cdot 91 \end{aligned}$
					$h 49 \cdot 00$ $h_{52} \cdot 6.6$	$\begin{aligned} & h 60 \cdot 33 \\ & h 60 \cdot 33 \end{aligned}$	
					$h_{54} \times 0$		
	$59 \cdot 67$	$53 \cdot 3+$	$54 \cdot 84$	61:17	$53 \cdot 00$	$59 \cdot 55$	

January 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch I'heodolite No 2.

Anglebetweon	Circle readings, telescope being set on XVII										$M=$ Mean of Groups M ${ }^{w}=$ Relative Weight C = Concluded Angle
	359 ${ }^{\circ} 54^{\prime}$	$179^{\circ} 54{ }^{\prime}$	$78^{\circ} 50^{\prime}$	$258^{\circ} 50^{\prime}$	$158^{\circ} 24^{\prime}$	$338^{\circ} 24^{\prime}$	$237^{\circ} 37^{\prime}$	$57^{\circ} 36^{\prime}$	316 ${ }^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$	
XVII \& XIII	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=3^{\prime \prime} \cdot 89 \\ & w=4 \cdot 34 \\ & \frac{1}{w}=0 \cdot 23 \\ & C=64^{\circ} 5^{\prime} \quad 3^{\prime \prime} \cdot 88 \end{aligned}$
	${ }^{6} 4 \cdot 14$	${ }_{\text {h }}^{3} \cdot 84$	h $4 \cdot 28$	h $5 \cdot 68$	h $\mathrm{I} \cdot 58$	h3. 26	h2. 20	${ }_{\text {h }} 1 \cdot 10$	3.6.78	${ }^{6} 5.42$	
	h $6.0+$	$h 5 \cdot 04$	$h_{4} \cdot 66$	$h_{4}{ }^{24}$	$h_{1} 190$	h 3.40	$h_{3} \cdot 84$	hi 78	h 5 . 54	$\hbar 3.00$	
					$h_{3}{ }^{+4}$					$h 2 \cdot 88$	
	5*09	$4 * 44$	$4 * 47$	4*96	$2 \cdot 24$	$3 \cdot 3.3$	3.02	1.44	6•16	$3 \cdot 77$	

At XV (Pil)

January 1844; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

Anglebetween	Circle readings, telescope being set on XIII						$\boldsymbol{M}=$ Mean of Groups $v^{v}=$ Relative Weight C $=$ Concluded Angle
	$841^{\circ} 24^{\prime}$	$61^{\circ} 24$	$1^{\circ} 24^{\prime}$	$181^{\circ} 24^{\prime}$	$21^{\circ} 25^{\prime}$	$201{ }^{\circ} 25^{\prime}$	
XIII \& XIV	"	"	"	"	"	"	$\begin{aligned} M & =30^{\prime \prime} \cdot 05 \\ w & =0 \cdot 84 \\ \frac{1}{w} & =1 \cdot 19 \\ C & =3^{\circ} 35^{\prime} 30^{\prime \prime} \cdot 06 \end{aligned}$
	h28.66	h 26.67	h 35.00	h 33.33	h 27.66	¢ 26.00	
	h 28.38 h 32.00	h27.34	h 33.34	h31.00	h $32 \cdot 66$ h $3 \mathrm{I} \cdot 00$	h 30.00 h26.33	
			h3133	.			
	30.00	27-01	$33 \cdot 22$	32•17	$30 \cdot 44$	$27 \cdot 44$	

At XV (Pil)-(Continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Anglo between} \& \multicolumn{6}{|c|}{Circle readings, telescope being set on XIII} \& \multirow[t]{2}{*}{\begin{tabular}{l}
M = Moan of Groups \\
\(\infty\) = Relative Woight \\
C = Concluded Angle
\end{tabular}} \\
\hline \& \(\mathbf{3 4 1}{ }^{\circ} \mathbf{3 4}\) \& \(161{ }^{\circ} 24^{\prime}\) \& \(1^{\circ} 244^{\prime}\) \& \(181^{\circ} 24{ }^{\prime}\) \& \(21^{\bullet} 25^{\prime}\) \& \(201{ }^{\circ}{ }^{\circ} 5^{\prime}\) \& \\
\hline \multirow{5}{*}{XIV \& XVI} \& " \& " \& " \& " \& " \& * \& \multirow[b]{5}{*}{\[
\begin{aligned}
M \& =29^{\prime \prime} \cdot 27 \\
w \& =0 \cdot 44 \\
\frac{1}{w} \& =2 \cdot 26 \\
C \& =70^{\circ} 38^{\prime} 29^{\prime \prime} \cdot 24
\end{aligned}
\]} \\
\hline \& h \(26 \cdot 00\) \& \({ }^{\prime} 35.67\) \& h 28.66 \& \({ }_{\square} 33.34\) \& h 28.00 \& \({ }^{6} 27.34\) \& \\
\hline \& h 27.00

2 \& h $34 \cdot 0$ \& h 27.33 \& h $32 \cdot 00$ \& h $29^{\circ} 00$ \& h 29.34 \&

\hline \& h25.33 \& \& \& \& h 250.34

$h 27$ \& $$
124 \circ 0
$$

$$
h 26 \cdot 00
$$ \&

\hline \& $26 \cdot 11$ \& $34 \cdot 84$ \& 28•00 \& 32.67 \& 27-34 \& $26 \cdot 67$ \&

\hline
\end{tabular}

At XVI (Kumbhári)

January 1844; observed by Lieutenant H. Rivers, with Dollond's 15-inch Theodolite.

Nore.-R.M. denotes Referring Mark.

At XVII (Bori)

January 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch Theodolite No. 2.

Anglebetween	Circle readings, telescope being set on XIII										$\boldsymbol{M}=$ Mean of Groupe ${ }^{2}=$ Relative Weight C = Concluded Angle
	2440 $21{ }^{\prime}$	$\frac{64^{\circ} 12^{\prime}}{64^{\circ} 16^{\prime}}$	$79^{\circ} 9^{\prime}$	$259^{\circ} 8^{\prime}$	$158^{\circ} 19^{\prime}$	$388^{\circ} 19$	$287{ }^{\circ} 36^{\prime}$	$57^{\circ} 86^{\prime}$	$\mathbf{3 1 6}{ }^{\circ} \mathbf{z}$	$136^{\circ} \mathbf{2}^{\prime}$	
XIII \& XIV	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} M & =47^{\prime \prime} \cdot 86 \\ w & =3 \cdot 19 \\ \frac{\mathbf{I}}{w} & =0 \cdot 3 \mathbf{1} \\ C & =71^{\circ} 21^{\prime} 47^{\prime \prime} \cdot 85 \end{aligned}$
	$h 49.26$	$h 50 \cdot 04$	h $46 \cdot 68$	h $50 \cdot 76$	$h_{47} \cdot 26$	h 49.96	$h_{46} 464$	h 45.34	$h_{44} 96$	$h_{45} \cdot 62$	
	h 50.60	$h_{47} 30$	${ }^{6} 49$ 3 ${ }^{\text {4 }}$	h_{49}-08	$745 \cdot 18$	$h_{49}{ }^{6}$	$h_{46}{ }^{10}$	$h_{46}{ }_{48}$	$h_{47} 76$	$h_{45}{ }^{\prime} 94$	
		$\underline{47736}$							h $50 \cdot 00$	$h_{47} 80$	
	$49^{\circ} 93$	48•23	48*01	49*92	46•22	$49^{\circ} 79$	46*52	$45 \% 91$	47`57	$46 \cdot+5$	
XIII \& XVIII	${ }^{\text {h }} 64.74$	h63.78	${ }^{7} 63^{\circ} \mathrm{O} 2$	h64.34	h63. 44	h62.24	h61.40	k62.52	${ }^{\text {h 61 }} \cdot 76$	h62.96	$\begin{aligned} M & =62^{\prime \prime} \cdot 79 \\ w & =5 \cdot 92 \\ \frac{1}{w} & =0 \cdot 17 \\ C & =75^{\circ} \quad 3^{\prime} 2^{\prime \prime} \cdot 80 \end{aligned}$
	h 62.08	$\begin{aligned} & \longdiv { h 6 5 \cdot 1 4 } \\ & h 62 \cdot 46 \end{aligned}$	$h_{64}{ }^{10}$	h 62.54	$\stackrel{\text { h } 57 * 92}{ }$	${ }^{6} 64.52$	h $62 \cdot 84$	h63.32	h63. 20	$\begin{aligned} & h 60 \cdot 12 \\ & h 63 \cdot 30 \end{aligned}$	
	63.41	$63 \cdot 79$	$63 \cdot 56$	$63 \cdot 44$	$60 \cdot 68$	$63 \cdot 38$	$62 \cdot 12$	62:92	$62 \cdot 48$	$62 \cdot 13$	
XVIII \& XIX	$h 20 \cdot 54$ $h 23.02$	$\overline{\text { h21.04 }}$	h 19.60 h $20 \cdot 12$	$\begin{aligned} & h_{21} \cdot 96 \\ & h_{21} \cdot 92 \end{aligned}$	$\begin{aligned} & h 22 \cdot 86 \\ & h 23 \cdot 58 \end{aligned}$	$\begin{aligned} & h 23 \cdot 02 \\ & h_{21} \cdot 48 \end{aligned}$	$\begin{aligned} & h_{22} \cdot 70 \\ & h 22 \cdot 50 \end{aligned}$	$\begin{aligned} & h_{22} \cdot 10 \\ & h_{21} \cdot 80 \end{aligned}$	$\begin{aligned} & h 20 \cdot 94 \\ & h 10 \cdot 28 \end{aligned}$	$h 22 \cdot 38$ $h 23.36$	$\begin{aligned} & M=21^{\prime \prime} \cdot 59 \\ & w=6 \cdot 38 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=40^{\circ} 36^{\prime} 21^{\prime \prime} \cdot 59 \end{aligned}$
	h 18.98	h $20 \cdot 82$								$h_{19}{ }^{\circ} 44$	
	$21 \cdot 27$	20*93	19.86	21•94	23.22	$22 \cdot 25$	$22 \cdot 60$	21*95	$20 \cdot 11$	21•73	

At XVIII (Jarma)

February 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

$\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$	Circle readings, telescope being set on $\mathbf{X X}$										$M=$ Mean of Groups $\infty=$ Relative Weight $C=$ Concluded Angle
	$0^{\circ} 0^{\prime}$	$180^{\circ} 0^{\prime}$	$43^{\circ} 13^{\prime}$	$223^{\circ} 13^{\prime}$	$86^{\circ} 24^{\prime}$	$266^{\circ} 24^{\prime}$	$129^{\circ} 36^{\prime}$	$809^{\circ} 36^{\prime}$	$172^{\circ} 48^{\prime}$	$352^{\circ} 48^{\prime}$	
XX \& XIX	"	"	*	"	"	"	"			"	$\begin{aligned} M & =42^{\prime \prime} \cdot 02 \\ w & =5 \cdot 70 \\ \frac{1}{w} & =0 \cdot 18 \\ C & =56^{\circ} 20^{\prime} 42^{\prime \prime} \cdot 02 \end{aligned}$
	$h_{43.42}$	h 43.00	${ }^{\prime} 45 \cdot 18$	h $40 \cdot 98$	$141 \cdot 28$	${ }^{2} 41 \cdot 92$	h_{4} 1 76	h_{41} 1 36	h_{41}-08	$h_{40} \cdot 08$	
	h $43 \cdot 16$	$h+1 \cdot 92$	h 44.40	h $40 \cdot 48$	$l 42 \cdot 56$	$l 42 \cdot 92$	$h_{41}{ }^{2}$	$h_{41}{ }^{\text {6 }}$ 4	$h_{41} 12$	$h_{40}{ }^{\text {P }}$	
	43*29	42*46	44*79	40’73	41'92	$42^{\circ} 42$	41*49	41.50	41'10	$40 \cdot 46$	
XIX \& XVII	${ }^{h} 55.86$	h 55.74	${ }^{\text {h }} 57.50$	h 59.40	${ }^{l} 57 \times 38$	$l 57 \cdot 88$	${ }^{6} 57.42$	h 57.38	h 58.08	${ }^{\text {h }} 57 \times 20$	$\begin{aligned} & M=57^{\prime \prime} \cdot 35 \\ & w=13 \cdot 50 \\ & \frac{\mathrm{~J}}{w}=0 \cdot 07 \\ & \boldsymbol{C}=80^{\circ} 31^{\prime} 57^{\prime \prime} \cdot 35 \end{aligned}$
	${ }_{\text {h }}^{56}$-14	${ }^{6} 57^{1} 14$	$h_{57} 36$	$h 58.72$	$l 56 \cdot 78$	$l 57 \cdot 92$	$h_{57}{ }^{\text {P6 }}$	$h_{57}{ }^{26}$	$h_{56}{ }^{\text {P }}$ -	$h_{57} \cdot 26$	
	56•00	56.44	57*43	59*06	57×08	57*90	$57 \cdot 64$	57×32	$57 * 44$	57*23	
XVII \& XIII	¢ 26.98	h 23.06	h25.50	h24.08	$l 23.28$	$l 25.80$	h 25.44	h 24.86	h 24.62	h 26.62	$\begin{aligned} M & =24^{\prime \prime \prime} \cdot 96 \\ w & =6 \cdot 80 \\ \frac{\mathbf{I}}{w} & =0 \cdot 15 \\ C & =59^{\circ} 53^{\prime} 24^{\prime \prime} \cdot 96 \end{aligned}$
	h 25.80	h 24.78	h 24.36	$l 23.78$	$l 22.20$	124.94	h25.96	h 25.70	h 25.06	h $26 \cdot 34$	
	26•39	23*92	24*93	23*93	22•74	$25 \cdot 37$	$25 \cdot 70$	25•28	$24 \cdot 84$	26.48	

At XIX (Darsinga)

February 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

$\underset{\text { Betwoen }}{\text { Angle }}$	Circle readings, telescope being set on X VII										$\boldsymbol{M}=$ Mean of Groups $w_{0}=$ Relative Weight C = Concluded Angle
	$0^{\circ} 0^{\prime}$	$180^{\circ} \sigma^{\prime}$	$43^{\circ} 13^{\prime}$	$223^{\circ} 13^{\prime}$	$86^{\circ} 24^{\prime}$	$266^{\circ} 24^{\prime}$	$129^{\circ} 36^{\prime}$	$309^{\circ} 36^{\prime}$	$172^{\circ} 48^{\prime}$	$352^{\circ} 48^{\prime}$	
$\begin{gathered} \text { XVII \& } \\ \text { XVIII } \end{gathered}$	"	"	"	"	"		"				$\begin{aligned} M & =42^{\prime \prime} \cdot 65 \\ w & =14 \cdot 90 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =58^{\circ} 51^{\prime} 42^{\prime \prime} \cdot 65 \end{aligned}$
	$\begin{aligned} & h_{4} 43^{\circ} 70 \\ & h_{42} \cdot 94 \end{aligned}$	$\begin{aligned} & h_{42} \cdot 02 \\ & h_{42} \cdot 52 \end{aligned}$	$\begin{aligned} & h_{43} \cdot 74 \\ & h_{42} \cdot 98 \end{aligned}$	$\begin{aligned} & h_{4 I} \cdot 94 \\ & h_{43} \cdot{ }_{16} \end{aligned}$	$\begin{aligned} & h_{43} \cdot 06 \\ & h_{44} \cdot 28 \end{aligned}$	$\begin{aligned} & h_{42} \cdot 46 \\ & h_{42} \cdot 48 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l \\ & l \end{aligned} 40 \cdot 70$	$\begin{aligned} & h_{42} \cdot 94 \\ & l_{41} \cdot 38 \end{aligned}$	$\begin{aligned} & l 42 \cdot 62 \\ & l \\ & l \end{aligned}$	$\begin{array}{r} l \\ l \\ l 2 \cdot 46 \\ l 2 \cdot 84 \end{array}$	
	$43 \cdot 32$	42•27	$43 \cdot 36$	$42 \cdot 55$	$43 \cdot 67$	$42 \cdot 47$	41•07	42•16	42•96	$42 \cdot 65$	
XVIII \& XX	$\begin{aligned} & h_{49} \cdot 56 \\ & h_{48} \cdot{ }_{32} \end{aligned}$	$\begin{aligned} & h_{4} 8 \cdot 82 \\ & h_{48} \cdot 96 \end{aligned}$	$\begin{aligned} & h_{48 \cdot 62} \\ & h_{48} \cdot 74 \end{aligned}$	$\begin{aligned} & h_{49 \cdot} \cdot 16 \\ & h_{49} \cdot 34 \end{aligned}$	$\begin{aligned} & k_{48} 48 \cdot 12 \\ & h_{47} \cdot 98 \end{aligned}$	$\begin{aligned} & h 50 \cdot 78 \\ & h_{49} \cdot 68 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l 8 \cdot 74 \\ & 49.86 \end{aligned}$	$\begin{aligned} & h_{48 \cdot 90} \\ & h_{49} \cdot 32 \end{aligned}$	$\begin{aligned} & l 48 \cdot 76 \\ & l \\ & l 8 \cdot 66 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l \\ & l 9 \cdot 28 \\ & 49 \cdot 28 \end{aligned}$	$\begin{aligned} & M=49^{\prime \prime} \cdot 04 \\ & w=26 \cdot 30 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=80^{\circ} 33^{\prime} 49^{\prime \prime} \cdot 04 \end{aligned}$
	48•94	48•89	48•68	$49 \cdot 25$	48•05	50*23	$49 \cdot 30$	49 11	48.71.	$49 \cdot 28$	
XX \& XXIII	${ }_{6} \mathrm{O}$ O. 58	h 3.68	$h_{\text {I }}$ - 84	h 2.46	h 1 -08	h 3.10	$l 3 \cdot 16$	$h^{2} 2 \cdot 84$	$\underline{1} 176$	$\underline{1} 124$	$\begin{aligned} & M=2^{\prime \prime} \cdot 13 \\ & w=11 \cdot 20 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=67^{\circ} 37^{\prime} \cdot 2^{\prime \prime} \cdot 13 \end{aligned}$
	h 134	h 3.54	h $2 \cdot 14$	42.64	h 0.56	h 2.90	62.34	h 1.68	22.60	1 1.12	
	- 96	$3 \cdot 61$	1•99	$2 \cdot 55$	0•82	$3{ }^{\circ} 0$	$2 \cdot 75$	$2 \cdot 26$	$2 \cdot 18$	1'18	

At XX (Bailúr)

February 1866; observed by Captain C. I'. Haig, R.E., with Barrow's 21-inch Theodolite No. 2.

Anglebetween	Circle readings, telescope being set on XXII										$M=$ Mean of Groups ${ }^{20}=$ Relative Weight $C=$ Concluded Augle
	$210^{\circ} 14^{\prime}$	$30^{\circ} 14^{\prime}$	253°. 77^{\prime}	$73^{\circ} 27^{\prime}$	$296^{\circ} 38^{\prime}$	$116^{\circ} 38^{\prime}$	$339^{\circ} 51^{\prime}$	$159^{\circ} 51^{\prime}$	$23^{\circ} 2^{\prime}$	$\mathbf{2 0 3}{ }^{\circ} \mathbf{2}^{\prime}$	
$\underset{\text { XXIIII }}{\text { XXII }}$	"	"	"	"	"	"	*	"	"	"	$\begin{aligned} & M=51^{\prime \prime} \cdot 89 \\ & w=12 \cdot 70 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=47^{\circ} 9^{\prime} 51^{\prime \prime} \cdot 89 \end{aligned}$
	${ }_{\text {h }} 52 \cdot 98$	${ }^{\prime} 50 \cdot 40$	${ }^{h} 5 \mathrm{FI} \cdot 48$	${ }^{\text {h }} 50 \cdot 76$	${ }_{2}{ }_{52} \cdot 16$	${ }^{\text {h } 52.88}$	$l 53.44$	${ }^{4} 5 \mathrm{I} \cdot 90$	$l 53.04$	$l 52 \cdot 30$	
	h ${ }^{\text {c }}$									-5154	
	52•36	49*97	51*59	51.40	52.05	52:79	52.70.	51*94	52•15	51*92	
XXIII \& XIX	${ }_{4} 28.36$	h 27.44	h 30. 12	h 27.08	h 28.56	h25:74	${ }^{l} 27 \times 14$	h 27.72	$l 27.62$	l 28.32	$\begin{aligned} & M=27^{\prime \prime} \cdot 72 \\ & w=8 \cdot 80 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=59^{\circ} 30^{\prime} 27^{\prime \prime} \cdot 72 \end{aligned}$
	h $28 \cdot 32$	h 26.60	h 29.56	h 27.72	h 28.00	$h 25 \cdot 84$	$l 27 \cdot 96$	h 27-28	$l 2712$	$l 27.96$	
	28•34	27-02	$29 \cdot 84$	$27 \cdot 40$	28.28	25*79	27.55	27*50	27×37	28.14	
XIX \& XVIII	h31.04 h31.02	$\begin{aligned} & h_{3} 30 \cdot 86 \\ & h_{31} \cdot 50 \end{aligned}$	$\begin{aligned} & h 29.58 \\ & h 29.60 \end{aligned}$	$\begin{aligned} & h 30 \cdot 68 \\ & h 29 \cdot 02 \end{aligned}$	$\begin{aligned} & h_{30} \cdot 28 \\ & h_{31} \cdot 18 \end{aligned}$	h3I•04 $431 \cdot 60$	$\begin{aligned} & l 30 \cdot 74 \\ & l 31 \cdot 70 \end{aligned}$	$\begin{aligned} & h 29: 96 \\ & h 30 \cdot 56 \end{aligned}$	$\begin{aligned} & l 29 \cdot 98 \\ & l 30 \cdot 38 \end{aligned}$	$\begin{array}{r} l 29.74 \\ l 29.64 \end{array}$	$\begin{aligned} M & =30^{\prime \prime} \cdot 5 \mathbf{I} \\ w & =18 \cdot 90 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =43^{\circ} 5^{\prime} 30^{\prime \prime} \cdot 5 \mathbf{I} \end{aligned}$
	31•03	31-18	29*59	$29 \cdot 85$	30*73	31*32	31*22	30*26	30'18	29*69	

Note.-Stations XXII and XXIII appertain to the Mangalore Meridional Series.

February 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.											
Angle between	$129^{\circ} 46^{\prime}$	$309^{\circ} 46^{\prime}$	$\begin{array}{r} \text { Circ } \\ 172^{\circ} 58^{\prime} \end{array}$	le reading $852^{\circ} 58^{\circ}$	s, telesco $216^{\circ} 9^{\prime}$	pe being set $86^{\circ} \mathbf{g}^{\prime}$	$\begin{aligned} & \text { t on XXI } \\ & 259^{\circ} 22^{\prime} \end{aligned}$	III $79^{\circ} 22^{\prime}$	8028^{38}	$122^{\circ} 88^{\prime}$	M = Mean of Groups $\infty=$ Relutive Weight C = Concluded Angle
XXIII \& XX	h 6.82 h 5 .80	h $5 \cdot 28$ h $5 \cdot 60$	$\begin{aligned} & l \\ & l \\ & l \\ & 7 \cdot 36 \\ & \hline \end{aligned}$	l6.80 $16 \cdot 30$	$\begin{aligned} & h \\ & h \\ & h \\ & k \end{aligned}$	$\begin{aligned} & k \cdot 82 \\ & k \\ & k \cdot 52 \end{aligned}$	k 5 .08 k $5 \cdot 74$	h 7.08 h 7.60	$46 \cdot 70$ 6 6.86	$\text { K } 6 \cdot 06$ $h 6.44$	$\begin{aligned} & M=5^{\prime \prime} \cdot 96 \\ & w=6 \cdot 80 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=0 \cdot 15 \\ & \boldsymbol{C}=86^{\circ} 16^{\prime} 5^{\prime \prime} \cdot 96 \end{aligned}$
	6.31	$5 \cdot 44$	735	$6 \cdot 55$	3.97	4.17	$5 \cdot 41$	7*34	$6 \cdot 78$	$6 \cdot 25$	
At XXIII (Samshergad) January and February 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.											
Anglebetween	$140^{\circ} 55^{\prime}$	$825^{\circ} 55^{\prime}$	Circle readings, telescope being set on XIIX						$818^{\circ} 48^{\prime}$	$188^{\circ} 32^{\prime}$	Y = Monn of Groupe $\infty_{0}=$ Relntive Weight C - Concluded Angle
			$189{ }^{\circ} 7^{\prime}$		$232^{\circ} 18^{\prime}$	$52^{\circ} 18^{\prime}$	$275^{\circ} 31^{\prime}$	$95^{\circ} 31^{\prime}$			
XIX \& XX	h $32 \cdot 70$ h $32 \cdot 78$	h 34 • 52 h 34 - 30	h 33.02 h 34 . 74	h 33.28 k 35.06	$h_{32} \cdot 64$ $k 32 \cdot 80$	h $32 \cdot 28$ $h_{31} \cdot 60$	h 33.58 h $32 \cdot 80$	h $32 \cdot 94$ h $32 \cdot 48$	h 33.44 h $32 \cdot 38$	$\begin{aligned} & h 33 \cdot 28 \\ & h 33 \cdot 26 \end{aligned}$	$\begin{aligned} & M=33^{\prime \prime} \cdot 19 \\ & w=10 \cdot 30 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=52^{\circ} 52^{\prime} 33^{\prime \prime} \cdot 19 \end{aligned}$
	32•74	$34^{\circ} \mathbf{4 I}$	$33 \cdot 88$	34*17	32•72	31*94	33'19	32.71	32.91	$33 \cdot 27$	
XX \& XXII	$\begin{array}{lll}h & 2.58 \\ \text { h } & 4.20\end{array}$	$\begin{array}{ll} \boldsymbol{k} & 2 \cdot 70 \\ h & 3 \cdot 18 \end{array}$	l 2 l 2 l 74 	$\begin{array}{ll} k & 3.54 \\ k & 3.54 \end{array}$	$\begin{aligned} & l 2.60 \\ & l \\ & l \\ & 3.86 \end{aligned}$	$\begin{array}{ll} l & 2.40 \\ l & 1.68 \end{array}$	$\begin{array}{lll} h & 3.76 \\ h & 3.78 \end{array}$	$\begin{aligned} & l \\ & l \\ & l \end{aligned} 4.12$	$\begin{array}{ll} k & 3.54 \\ k & 3 . \\ \hline \end{array}$	$\begin{array}{ll} \hbar & 4.40 \\ h & 4.30 \end{array}$	$\begin{aligned} & M=3^{\prime \prime} \cdot 3 \mathrm{I} \\ & \boldsymbol{w}=18 \cdot 90 \\ & \frac{1}{w}=0 \cdot 05 \\ & \boldsymbol{C}=4^{\circ} 34^{\prime} 3^{\prime \prime} \cdot 31 \end{aligned}$
	3•39	2.94	$2 \cdot 51$	3.52	3'23	$2 \cdot 04$	$3 \cdot 77$	3•84	3.53	4.35	

Note.-Stations XXII and XXIII appertain to the Mangalore Meridional Series.

February 1882.
J. B. N. HENNESSEY,

In charge of Computing Office.

ADDENDUM.

The portion of this Series between Karanja-Mándvi and Pil-Kumbhári, exclusive of the connection from the east on Agoada-Salili, was executed with Dollond's 15 -inch Theodolite read by 3 microscopes, on a system of zero-setting which merely required that the zeros should consist of 3 pairs removed 20° apart.

The system of zero-settings for an instrument of 5 microscopes, laid down for adoption in 1860 and explained at page 63 of Volume II, is

$$
\frac{0^{\circ} 0^{\prime}}{180^{\circ} 0^{\prime}}, \frac{79^{\circ} 12^{\prime}}{259^{\circ} 12^{\prime}}, \frac{158^{\circ} 24^{\prime}}{338^{\circ} 24^{\prime}}, \frac{237^{\circ} 36^{\prime}}{57^{\circ} 36^{\prime}} \text { and } \frac{316^{\circ} 48^{\prime}}{136^{\circ} 48^{\prime}}
$$

- this system was adopted during 1867 in the following instances when Barrow's 24 -inch Theodolite No. 2 with 5 microscopes was used.

For the remaining angles eastward to the side Yalúr-Samshergad of the Mangalore Meridional Series, observed in 1866 with the same instrument as was used in 1867, the system erroneously adopted was

$$
\frac{0^{\circ} 0^{\prime}}{180^{\circ} 0^{\prime}}, \frac{43^{\circ} 13^{\prime}}{223^{\circ} 13^{\prime}}, \frac{86^{\circ} 24^{\prime}}{266^{\circ} 24^{\prime}}, \frac{129^{\circ} 36^{\prime}}{309^{\circ} 36^{\prime}} \text { and } \frac{172^{\circ} 48^{\prime}}{352^{\circ} 48^{\prime}} .
$$

On page 20_c, at Station XVII two zero readings were made use of on the same face; the angular values obtained on each of the zeros are indicated generally on that page; a more precise statement is here added.

On zero 64 ${ }^{\circ} 12^{\prime}$	Seconds of angle		
	XIII \& XIV $\begin{array}{ll} h & 50^{\prime \prime} \cdot 04 \\ h & 0 \cdot 30 \end{array}$	$\begin{gathered} \text { XIII \& XVIII } \\ h 63^{\prime \prime} \cdot 7^{8} \end{gathered}$	XVIII \& XIX
" $64^{\circ} 16^{\prime}$	K $47^{\prime \prime} \cdot 36$	$\begin{array}{lll} h & 65^{\prime \prime} \cdot 14 \\ h & 62 & \cdot 46 \end{array}$	$\begin{array}{lll} h & 21^{\prime \prime} \cdot O_{4} \\ h & 20 & \cdot 82 \end{array}$

J. B. N. HENNESSEY.

February 1882.
In charge of Computing Offioe.

In the calculations of the weights of the observed angles by the formula given in Section 4 of Chapter VII of Volume II and illustrated by an example in the foot note to page 342 of the same Volume, it is necessary to employ the squares of the apparent errors of observation and graduation. These data have been employed to ascertain the e.m.s. (error of mean rquare) of observation of a single measure of an angle, and the e.m.s. of graduation and observation, of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instruments employed were as follows:-
Dollond's 15 -inch Theodolite, having 3 microscopes to read the azimuth circle; observations were taken on 3 pairs of zeros (face right and face left) giving circle readings at 20° apart.

Barrow's 24-inch Theodolite No. 2, having 5 microscopes to read the azimuth circle; observations were taken on 5 pairs of zeros (face right and face left) giving circle readings at $7^{\circ} 12^{\prime}$ apart.

The e.m.s. of observation of a single measure of an angle $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations }- \text { No. of angles } \times \text { No. of changes of zero. }}}$
$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times \text { (No. of changes of zero }-1) .}}$

Group	Observer and Instrument			Number of				e. m. s. of observation of a single measure	e. m. s. of graduation and observation of a single zero
I	$\left\{\begin{array}{l} \text { Lieutenant W. S. Jacob, Dol- } \\ \text { lond's 15-inch Theodolite. } \end{array}\right\}$	Hills,		2.32	13	181	78	$\left\{\frac{497 \cdot 75}{181-78}\right\}^{\frac{1}{3}}- \pm 2^{\prime \prime} \cdot 038$	$\left\{\frac{1078 \cdot 84}{78-13}\right\}^{\prime \prime}= \pm 4^{\prime \prime} \cdot 074$
II	$\left\{\begin{array}{l} \text { Lieutenant H. Rivers, Dol- } \\ \{\text { lond's 15-inch Theodolite. } \end{array}\right\}$	"	200	$2 \cdot 91$	45	786	270	$\left\{\frac{2838 \cdot 31}{786-270}\right\}^{\frac{1}{3}}= \pm 2 \cdot 345$	$\left\{\frac{3796 \cdot 98}{270-45}\right\}^{\prime}- \pm 4 \cdot 108$
III	$\left\{\begin{array}{l} \text { Lieutenant H. Trotter, Bar- } \\ \{\text { row's 24-inch Theodolite No. } 2 . \end{array}\right\}$	"	712	2.20	6	132	60	$\left\{\frac{138 \cdot 51^{\circ}}{132-60}\right\}^{\frac{1}{3}}- \pm 1 \cdot 387$	$\left\{\frac{80 \cdot 41}{60-6}\right\}^{\frac{1}{2}}= \pm 1 \cdot 220$
IV	$\left\{\begin{array}{l} \text { Captain O. T. Haig, Barrow's } \\ \text { 24-inch Theodolite No. 2. } \end{array}\right\}$	"	7. 12	$2 \cdot 00$	12	240	120	$\left\{\frac{35 \cdot 66}{240-120}\right\}^{\frac{3}{3}}= \pm 0 \cdot 545$	$\left\{\frac{90.73}{120-12}\right\}^{\frac{1}{2}}= \pm 0.917$
I\& II	$\left\{\begin{array}{l}\text { Lieutenants W. S. Jacob, and } \\ \text { H. Rivers, Dollond's } 15 \text {-inch } \\ \text { Theodolite. }\end{array}\right\}$	"	200	$2 \cdot 78$	58	967	348	$\left\{\frac{3266 \cdot 06}{967-348}\right\}^{\frac{1}{2}- \pm 2 \cdot 297}$	$\left\{\frac{4875 \cdot 82}{348}=58\right\}^{t}= \pm 4 \cdot 100$
III \& IV	$\left\{\begin{array}{l} \text { Lieutenant H. Trotter, and } \\ \text { Captain C. T. Haig, Barrow's } \\ \text { 24-inch Theodolite No. 2. } \end{array}\right\}$	"	712	2.07	18	372	180	$\left\{\frac{174 \cdot 17}{372-180}\right\}^{\frac{1}{2}}= \pm 0 \cdot 952$	$\left\{\frac{171 \cdot 14}{180-18}\right\}^{\frac{1}{3}}= \pm 1 \cdot 028$

February 1882.
J. B. N. HENNESSEY, In charge of Computing Office.

SOUTH KONKAN COAST SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 26.

* In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the p th term in the q th line being always the same as the co-efficient of the q th term in the p th line.

Figure No. 27.

Figure No. 28.

February 1882.
J. B. N. HENNESSEY,

In charge of Computing Office.

SOUTH KONKAN COAST SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.

No. of Triangle		Number and Name of Station		Corrections to Observed Angle				Corrected Plane Angle	Distance		
Circuit	Non- circuit			Figure	Circuit	Noncircuit	Total		Log. foet	Feet	Miles
25		$\begin{aligned} & \text { XXXIV (Karanja) } \\ & \text { XXXI (Mándvi) } \\ & \text { I (Titvi) } \end{aligned}$	$\begin{aligned} & 2.661 \\ & 2.661 \\ & 2.662 \\ & \hline \end{aligned}$	$"$ $+\quad .214$ +.083 $+\quad .107$	'"1 $+\quad .226$.034 $-\quad 192$	"	$\begin{array}{r}\prime \prime \\ +\quad .440 \\ +\quad .049 \\ \hline-085 \\ \hline\end{array}$	$\begin{array}{rrr} 59 & 30 & 3.039 \\ 48 & 22 & 35 \cdot 228 \\ 72 & 7 & 21 \\ \hline \end{array}$	$\begin{aligned} & 5 \cdot 3054821,0 \\ & 5 \cdot 2437837,8 \\ & 5: 3486653,6 \end{aligned}$	$\begin{aligned} & 202060 \cdot 84 \\ & 175300 \cdot 76 \\ & 223185 \cdot 19 \end{aligned}$	$\begin{aligned} & 38 \cdot 269 \\ & 33 \cdot 201 \\ & 42 \cdot 270 \end{aligned}$
			$7 \cdot 984$				+ 404	180 0 0.000		$\begin{aligned} & 212850 \cdot 71 \\ & 132632 \cdot 69 \\ & 202060 \cdot 84 \end{aligned}$	$\begin{aligned} & 40 \cdot 313 \\ & 25 \cdot 120 \\ & 38 \cdot 269 \end{aligned}$
26		$\begin{aligned} & \text { XXXI (Mándvi) } \\ & \text { I (Titvi) } \\ & \text { II (Torna) } \end{aligned}$	$\begin{aligned} & 2.052 \\ & 2.051 \\ & 2.051 \\ & \hline \end{aligned}$	-1.268 $-\quad .576$ -1.792	 +013 +346 -333		-1.281 -.230 -2.125	75 50 14.297 37 10 12.909 66 59 32.794	$\begin{aligned} & 5 \cdot 3280751,4 \\ & 5 \cdot 1226506,1 \\ & 5 \cdot 3054821,0 \end{aligned}$		
			6.154				-3.636	180	$\begin{aligned} & 5 \cdot 3390892,6 \\ & 5^{\circ} 1897902,2 \\ & 5 \cdot 3280751,4 \end{aligned}$	$\begin{aligned} & 218317 \cdot 87 \\ & 154806 \cdot 86 \\ & 212850 \cdot 71 \end{aligned}$	$\begin{aligned} & 41 \cdot 348 \\ & 29 \cdot 319 \\ & 40 \cdot 313 \end{aligned}$
27		I (Titvi) II (Torna) III (Kanta)	$\begin{aligned} & 2.458 \\ & 2.457 \\ & 2.458 \\ & \hline \end{aligned}$	$\begin{array}{r} +618 \\ +2.157 \\ +1.278 \\ \hline \end{array}$	$\begin{array}{\|cc\|} + & -076 \\ + & -052 \\ - & -128 \\ \hline \end{array}$		$\begin{array}{r} +\quad 694 \\ +2.209 \\ +1.150 \\ \hline \end{array}$	70 51 $35 \cdot 026$ 42 3 $30 \cdot 862$ 67 4 $54 \cdot 112$			
		II (Torna) III (Kanta) IV (Mahábaleshvar)	7.373				+4.053	$180 \quad 00000$		$\begin{aligned} & 203579.96 \\ & 129413.93 \\ & 218317.87 \end{aligned}$	$\begin{aligned} & 38 \cdot 557 \\ & 24 \cdot 510 \\ & 41 \cdot 348 \end{aligned}$
28			$\begin{aligned} & 2 \cdot 038 \\ & 2.038 \\ & 2 \cdot 038 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-278 \\ =-152 \\ =-676 \\ \hline \end{array}$	$\begin{array}{\|lll\|} \hline- & -120 \\ + & 259 \\ - & -139 \\ \hline \end{array}$		$\begin{array}{r}\text { (} \\ \hline \\ +\quad 198 \\ \hline-815 \\ \hline\end{array}$	66 1 99 914 35 30 29.699 78 28 20.387	5•3087350,2 $5 \cdot 1119810,1$ 5•3390892,6		
29			6.114				- I•106	$180 \quad 0 \quad 0.000$	$\begin{aligned} & 5 \cdot 4088952,7 \\ & 5 \cdot 3092602,6 \\ & 5 \cdot 3087350,2 \end{aligned}$	$\begin{aligned} & 256386 \cdot 57 \\ & 203826 \cdot 32 \\ & 203579 \cdot 96 \end{aligned}$	$\begin{aligned} & 48 \cdot 558 \\ & 38 \cdot 603 \\ & 38 \cdot 557 \end{aligned}$
		$\begin{aligned} & \text { III (Kanta) } \\ & \text { IV (Mahábaleshvar) } \\ & \text { V (Adhúr) } \end{aligned}$	$\begin{array}{r} 3.205 \\ 3.205 \\ 3.204 \\ \hline \end{array}$	$\begin{array}{\|r\|} +1 \cdot 188 \\ \hline \\ +\quad .068 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline-033 \\ + & .063 \\ - & .030 \\ \hline \end{array}$		$\begin{array}{r} +1.155 \\ +\quad 289 \\ +\quad 038 \\ \hline \end{array}$	$\begin{array}{rlrl} 77 & 59 & 56 \cdot 610 \\ 51 & 2 & 35 \cdot 706 \\ 50 & 57 & 27 & 684 \\ \hline \end{array}$			
			9.614				+ 904	180			

Nors.-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations XXXI (Mándvi) and XXXIV (Karanja) appertain to the Bombay Longitudinal Series.

* Corrections to eliminate a residual difference of 33 in the 8th place of \log. side XIV-XVI in triangles Nos. 333 and 334.

PRINCIPAL TRIANGULATION. TRIANGLES.

Note.-Stations XXII (Yalúr) and XXIII (Samshergad) appertain to the Mangalore Meridional Series.
W. H. COLE,

June, 1889.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

Station A				Side AB			Station B
$\begin{array}{\|c} \text { Circuit } \\ \text { No. } \end{array}$	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Number and Name of Station
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	XXXI (Mándvi)$" \quad "$$\# \quad "$XXXIV (Karanja)I (Titvi)	- , "	- 11	- , "		- 11	
		1837 51*11	73 34 48•89	III $4040 \cdot 43$	5.3486653,6	291296.38	XXXIV (Karanja)
		"	"	63182.54	5.3054821,0	243875	I (Titvi)
		" ${ }^{\prime}$	"	$3472746 \cdot 19$	5'1226506,1	1672920.77	II (Torna)
		18 51 24.99	$72 \begin{array}{llll}72 & 58 & \text { \% }\end{array}$	$3505912 \cdot 08$	5.2437837,8	171043.14	I (Titvi)
		$182248 \cdot 44$	$73 \quad 3 \begin{array}{ll}73\end{array}$	$2801822 \cdot 49$	5.3280751,4	$1002945 \cdot 92$	II (Torna)
"	$\ddot{\text { II (Torna) }}$	$18 \quad 1627.44$	7339 47.70	351 9	5•1897902,2	$1711116 \cdot 77$	III (Kanta)
		$18 \quad 16 \quad 27 \cdot 44$	$73 \quad 3947 \times 70$	$582612 \cdot 60$	5•3390892,6	2381613.34	"
15	$\ddot{\text { III (Kanta) }}$	1757	73	352250.65	5-119810,1	$1722555^{6} 60$	IV (Mahábaleshvar)
		175731×75	$\begin{array}{llll}73 & 7 & 40\end{array}$	$2734645^{\circ} 08$	5.3087350,2	$935733^{\prime 17}$	
"	" "	"	"	351 $4644 \cdot 89$	5-3092602,6	$1714816 \cdot 3^{2}$	V (Adhúr)
"	IV (Mahábaleshvar)		73 42 44.59	$3134939 \cdot 12$ $425454 \cdot 26$	$5 \cdot 4594916,3$ $5 \cdot 4088952,7$	$134-31 \cdot 13$ $2224547 \cdot 21$	VI (Kumbhárli) V (Adhúr)
		175515.55	734244.59	$425454 \cdot 26$	5*4088952,7	$2224547 \cdot 21$	V (Adhúr)
16	$" \text { (Adhúr) }$	1724 11.50	7312 41-55	$3584413 \cdot 36$	5•2697938,6	$1784426 \cdot 21$	VI (Kumbhárli)
		1724 11.50	731241.55	26918 2I•18	5.2520880,8	$892733 \cdot 21$	
"	" "	"	"	$347 \bigcirc 33 \cdot 65$	5'1470452,4	$167 \quad 2 \quad 9.85$	VII (Mirya)
17	VI (Kumbhárli)	$172430 \cdot 59$	7343 26.96	4648 28-01	5•3060366,1	$2264057 * 99$	
		"	\%"	$3465545 \cdot 65$	5.2599280,9	$1665750 \cdot 74$	VIII (Manoli)
	VII (Mirya)		$7318 \quad 6 \cdot 61$	281 29 0.01	5.2846239,5	IO1 3827.58	"
	VÏI (Manoli)			$3522516 \cdot 15$	5.2855910,6	$1722631 \cdot 62$	IX (Ghirya)
		$16 \quad 55 \quad 13.17$	73 50 30.82	47 1 9115	5*3497576,4	$22653 \quad 5 \cdot 37$	" "

Notr.-Stations XXXI (Mándvi) and XXXIV (Karanja) appertain to the Bombay Longitudinal Series.

Notr.-Stations XXII (Yalúr) and XXIII (Samshergad) appertain to the Mangalore Meridional Series.

June, 1889.
W. H. COLE,

In charge of Computing Office.

SOUTH KONKAN COAST SERIES.

PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, \&c., in pairs of horizontal lines, the first line of which gives the data for the lst or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction and the height of the 2nd station above or below the lst, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results." The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit levelling operations, wherever a junction between the two has been effected. The spirit levelled determinations are always accepted as final, and the trigonometrical heights of stations lying between those fixed by the levelling operations are adjusted by simple proportion to accord with the latter. In the table the spirit levelled values are printed thus, 26150, \&c., to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XIII from Stn. XII, page 36_c., to indicate that one set of adjustments ends and another begins. The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood; when a spirit levelled height does not refer to either of these surfaces, it is given in combination with a correction, thus $\left\{\begin{array}{c}261^{\circ} 50 \\ -5^{\circ} \circ\end{array}\right.$, and the sum of these two quantities, in this case $256 \cdot 50$, represents the value with which the corresponding trigonometrical mean height $239^{\circ} 9$ is comparable. Descriptions follow these tables, exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights.

When the pillar of the station is perforated, the height given in the last column is that between the upper surface of pillar and the ground level mark-stone in the floor of the passage; otherwise, it is the approximate height of the structure above the ground at the base of the station.

The heights of the initial stations above Mean Sea Level are taken from the Bombay Longitudinal Series and are as follows :XXXI (Mándvi) $4120 \cdot 8$ feet; XXXIV (Karanja) 997•1 feet.

Nore.-Slations XXXI (Mándri) and XXXIV (Karanja) appertain to the Bombay Longitudinal Series.

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1886	Mean of Times of obser－ vation				歌	䓪		$\begin{aligned} & \text { tig } \\ & \text { Oig } \end{aligned}$			${\underset{\text { Resi }}{ }}_{\text {Trigonon }}$	metrical sults		
						莒		\mathfrak{a}	－		$\begin{array}{\|c} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{array}$	Mean	Result	
	h m		\bigcirc－\quad ，				＂							feet
Feb．3，4，5， 6	213	VIII（Manoli）	D $01527^{\circ} 4$	16	$2 \cdot 2$		1816		－062	－ 114.2	3239＊3			
\％17，18	146	X （Valvan）	Doil 9＇1	20	$4 \cdot 3$	5．7		13	062	1142	32393			
＂ 17	148	IX（Ghirya）	E 03957.5	20	$2 \cdot 2$	5•1						3238	3250	0
＂ 17	147	X（Valvan）	D I 629.6	16	$2 \cdot 7$	$5 \cdot 7$	1860	137	$\cdot 074$	＋29147	$3236 \cdot 8$			
＂ 18	155	IX（Ghirya）	D $0524^{\circ} \mathrm{O}$	12	1•7	$5^{\cdot 1}$								
＂24，25	134	＊Bhutoba	D ○ 852.6	10	$4 \cdot 1$	$5 \cdot 1$	929	42	－ 04	＋ 48.7	$370 \cdot 8$			
＂ 24	142	X（Valvan）	D 1123.3	24	$2 \cdot 0$	5｀7						$372 \cdot 9$	86	1
＂ 24	145	Bhutoba	E $\circ 4838 \cdot 3$	12	$2 \cdot 2$	5．1	1611	107	－066	$-2863^{\circ} \mathrm{I}$	$375{ }^{\circ}$			
Mar． 3	141	X（Valvan）	D $103 \mathrm{I}^{6}$	24	$7 \cdot 5$	5．7	2012							
3	142	XI（Parule）	E 03128.0	20	$2 \cdot 2$	10.5	2012	137	－068	$-2728 \cdot 7$	509.4	508.4		0
Feb． 25	128	Bhutoba	D ○ $336 \cdot 3$	12	$7 \cdot 6$	5．1							522	
＂28，Mar． 1	132	XI（Parule）	D ○ 1226.3	24	4．1	$10 \cdot 5$	1070	58	－054	＋ 134.5	$507 * 4$			
＂17，18，19	138	X（Valvan）	D ○ 2157.7	32	1．7	5＊7								
Mar．9，10，11	143	XII（Chaukola）	D 0445%	36	$4 \cdot 6$	$5 \cdot 0$	1819	111		－ 458.7	$2779{ }^{\circ} 4$			
＂9，10	141	XI（Parule）	E 03426.4	40	$2 \cdot 8$	$10 \cdot 5$						2778	2794	$2 \cdot 1$
＂9，10	135	XII（Chaukola）	D 05817.2	36	7．5	$5^{\circ} \mathrm{O}$	1658	117	－071	＋2269 ${ }^{\circ}$	2777×4			
＂26，30	24	XI（Parule）	D o $1858{ }^{4}$	20	5．6	$10 \cdot 5$								
，15，16，17	149	XIII（Agoada）	Do 928.8	24	$7 \cdot 0$	$5 \cdot 2$	1944	120	． 062	－ $268 \cdot 2$	$240 \cdot 2$			
＂13，15	I 39	XII（Chaukola）	D 1225.3	32	5．6	$5 \cdot 0$						$239 * 9$	$\begin{aligned} & 26150 \\ & -5 \cdot 0 \end{aligned}$	\dagger
＂13，15	151	XIII（Agoada）	E $03731 \cdot 1$	24	$2 \cdot 8$	$5 \cdot 2$	1725	117	－068	－2538．9	239.5			
＂16，17，22	135	XIII（Agoada）	E 01537.4	26	1．7	$5 \cdot 2$								
Apr． 16	135	XV（Pil）	D 03911.4	16	$5 \cdot 6$	5•1	1625	108	－066	＋13134	1569.9	1569 91	$\left\lvert\, \begin{array}{l\|l\|l\|} 1571 \cdot 5 \\ -3 \cdot 5 \end{array}\right.$	17
Mar．26，27	143	XI（Parule）	E ○ 316.5	28	1•7	10.5		162						
＂26，27	141	XIV（Salili）	D 03828.4	22	$7 \cdot 5$	$5 \cdot 0$	2429	162	－067	＋1498．7	2021 I			
＂11，12，13	148	XII（Chaukola）	D $02954{ }^{\circ}$	48	1.7 4	$5 \cdot 0$								
，22，23，24	146	XIV（Salili）	E $01054^{\circ} \mathrm{I}$	48	4．6	$5 \cdot 0$	1287	77	－060	－771．6	$2022 \cdot 1$			
（1）	220	XIII（Agoada）	E 04538.9	28	$2 \cdot 2$	$5 \cdot 3$						$2022 \cdot 8$	2023	3
（2）	215	XIV（Salili）	D I 1 $39^{\circ} 7$	20	4•1	$5 \cdot 2$	1118	83	－074	＋1767．7	2024＊2			
Apr． 11	I 54	XV（Pil）	D ○ $346 \cdot 9$	24	1•7	$5 \cdot 1$					2023．9			
＂ 11	152	XIV（Salili）	D $02133^{\prime} 1$	24	1．7	$5 \cdot 1$	1743	116	－067	＋ 455°	2023 9			
＂ 22	I 55	XIII（Agonda）	E 025 9．7	16	1．6	4．8				＋2643．2				
＂ 22	150	XVI（Kumbhári）	D 05644.4	16	$5 \cdot 7$	5•3	2191	150		＋2643 2	28997			
Mar．25，26，27，28	147	XIV（Salili）	E 0598	44	1．3	$5{ }^{\circ}$				＋ $872 \cdot 3$		$2897 \cdot 8$	2898	
Apr．18，19	141	XVI（Kumbhári）	D 02932.5	30	4•1	5．0	1705	125	073	＋ 8723	2895 －		2898	25
＂ 18	144	XV（Pil）	E $\circ 3^{6} 23.9$	24	1．9	5•1		66						
18	137	XVI（Kumbhári）	Do5131．1	16	I 7	$5 \cdot 0$	1028	66	－064	＋1330．6	28987			

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1866	Mean of Times of obser－ vation				咢	若		$\begin{aligned} & \text { 菏 } \\ & \end{aligned}$			$\begin{gathered} \text { Trigono } \\ \text { Res } \end{gathered}$	metrical ults		
					$\dot{0}$	髟		$\begin{aligned} & \mathbf{\infty} \\ & \mathbf{\Delta} \end{aligned}$			By each deduc－ tion	Mean	Result	
	$h \quad m$		－ 1				＊							feet
Feb． 27	34	XIII（Agoada）	E $05^{1} 45^{\circ} 5$	4	$2 \cdot 7$	5＊3								
$" 24$	247	XVIII（Jarma）	D I 839.5	4	$2 \cdot 6$	$5 \cdot 3$	1195	95	－079	＋2117．0	2373 5			
＂ 26	225	XIV（Salili）	E 228 1．7	4	2•7	$5 \cdot 3$								
＂ $1867{ }^{24}$	237	XVIII（Jarma）	D 23125.8	4	$2 \cdot 6$	$5 \cdot 3$	81	5	－056	＋357\％	$2380 \cdot 0$			
Jan． 1867	215	XIV（Salili）	Do34 16．2	8	$2 \cdot 8$	5＊3								
＂ 1866	249	XVII（Bori）	E O $2217 \% 7$	8	$2 \cdot 6$	$5 \cdot 3$	815	55		$-678 \cdot 6$	$1344{ }^{\circ}$			
Feb 1866												1341 3	1344	4
	240	XVIII（Jarma）	D $04641 \cdot 2$	2	$2 \cdot 3$	5．3	875	62		－1038＊	$1338 \cdot 4$			
Jan． 22	255	XVII（Bori）．	E $03356 \cdot 5$	10	$2 \cdot 6$	$5 \cdot 3$	875	62	072	-10384	13384			
$\text { " } 1866$	33	XVII（Bori）	$\text { E I } 046 \cdot 3$	8	2.6	$5 \cdot 3$	1009	76	－075	＋2019 ${ }^{\circ}$	$3360^{\circ} 5$			
Feb． 19	249	XIX（Darsinga）	D 11514.5	4	$2 \cdot 6$	$5 \cdot 3$	1009			＋2019	－ 5	$3358 \cdot 6$	3363	0
＂23，24	231	XVIII（Jarma）	E 045 7．8	8	$2 \cdot 6$	$5 \cdot 3$	666	48	$\cdot 072$	＋979．8	$3356 \cdot 6$			
＂ 19	243	XIX（Darsinga）	D 05453.9	4	$2 \cdot 6$	5＊3								
＂23，24	219	XVIII（Jarma）	E 029 I．6	8	$2 \cdot 6$	$5 \cdot 3$	961	59	－062	＋1022．6	$3399 * 4$			
》 12	30	XX（Bailúr）	D 04316.2	4	$2 \cdot 6$	$5 \cdot 3$		5						
19	229		D o 4 21．7		$2 \cdot 6$	$5 \cdot 3$						3399 ³	3405	5
	229	XIX（Darsinga）	D o 4 2I＇7	4	2.6	$5 \cdot 3$	811	49	－060	$+40^{\circ} 5$	$3399^{1} 1$			
＂ 12	253	XX（Bailúr）	Do $745^{\circ} \mathrm{Z}$	4	$2 \cdot 6$	$5 \cdot 3$								
＂ 19	221	XIX（Darsinga）	D o 20 46．9	4	2.6	$5 \cdot 3$	877	51	． 058	－366．9	29917 7			
＂ 15	253	XXIII（Samshergad）	E $0740 \cdot 6$	4	$2 \cdot 8$	$5 \cdot 3$	877	5		36	\％	$2992 \cdot 2$		＊
＂8，12	243	$\mathbf{X X}$（Bailúr）	D $02136 \cdot 4$	8	$2 \cdot 6$	$5 \cdot 3$		61						
Jan．31，Feb． 1	241	XXIII（Samshergad）	E $0776 \cdot 4$	8	$2 \cdot 6$	$5 \cdot 3$	94	61			29927			
Feb．8，12	235	$\mathbf{X X}$（Bailúr）	DOII 15．2	8	$2 \cdot 7$	$5 \cdot 3$	685	41			3276•3			
＂ 2,3	249	XXII（Yalúr）	E O O 57．2	8	$2 \cdot 6$	5•3	685	4				3275－8	3283	6
Jan．31，Feb． 1	234	XXIII（Samshergad）	E o 846.4	8	$2 \cdot 7$	5＊3	693	45	－ 065	$+283 \cdot 1$	$3275{ }^{\circ} 3$			
Feb．2，3	241	XXII（Yalúr）	D ○ 19 4．6	8	$2 \cdot 6$	$5 \cdot 3$	69	45		＋283	－			

Note．－Stations XXII（Yalúr）and XXIII（Samshergad）appertain to the Mangalore Meridional Series．＊Not forthcoming．

Description of Spirit－levelled Points．

When determining the Spirit－levelled heights，given on page 36＿c．the levelling staff stood on the surfaces hereafter described．

XIII（Agoada）．．．．．．Within the circle on the top of the circular protecting pillar．
XV（Pil）．．．．．．On the intersection of the cross lines on the top of the rectangular protecting pillar．

For further particulars of these stations，see page 5－c．
June， 1889.

[^2]
SOUTH KONKAN COAST SERIES.

PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

At VII (Mirya)

 October 1844; observed by Lieutenant H. Rivers with Dollond's 15 -inch Theodolite.

Star observed
Mean Right Ascension 1844.0
Mean North Polar Distance 1844:0
Local Mean Times of Elongation, October 22
a Ursæ Minoris (East and West).
$\left\{\begin{array}{llll} & 1^{\mathrm{h}} & 3^{\mathrm{m}} & 18^{\mathrm{g}} \\ \text { Eastern } & \mathbf{1}^{\circ} & 5^{\mathrm{h}} & \mathbf{1}^{1^{\prime}} \\ 2^{\mathrm{m}} & 20^{\prime \prime} & \\ \text { Western } & 16 & 57\end{array}\right.$

			pact mipt				pack bight			
			Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Oct. 22	E.		$\begin{array}{r} 32328 \cdot 00 \\ 2326 \cdot 33 \\ 2329 \cdot 00 \\ 2338 \cdot 33 \\ 2727 \cdot 67 \\ 2745 \cdot 33 \end{array}$	$\begin{array}{rr} m & 8 \\ 2 & 26 \\ 5 & 7 \\ 53 & 77 \\ 13 & 37 \\ 68 & 38 \\ 70 & 23 \\ 70 & 23 \end{array}$	$\begin{array}{cc} 1 & \prime \prime \\ -0 & 0 \cdot 32 \\ 0 & 1 \cdot 42 \\ 0 & 10 \cdot 07 \\ 0 & 15 \cdot 00 \\ 4 & 9 \cdot 98 \\ 4 & 27.49 \end{array}$	$\begin{array}{r} +32327.68 \\ 24.91 \\ 18.93 \\ 23.33 \\ 17.69 \\ 17.84 \end{array}$	- , "	$\begin{array}{ll}\boldsymbol{m} & 8 \\ 20 & 0\end{array}$,	- 11
							+ 32341.33		-021.71	+ 32319.62
							2351.33 241633	$\begin{array}{lll}22 & 10 \\ 31 & 41\end{array}$	$026 \cdot 69$ 0	24.64 21.87
							2416.33 2419.66	31 31 31 32 	$\begin{array}{ll}0 & 54.46 \\ \text { I } & 0.4 \mathrm{I}\end{array}$	21.87 19.25
							$243 \mathrm{r} \cdot 00$	$3{ }^{3} \mathbf{4 5}$	1 0.41 1 9.04	19.25 21.96
							2623.67	5812	$3 \quad 3.28$	20.39
" 22	W.	$\begin{array}{cc} 10 & 0 \\ \text { \& } \\ 189 & 59 \end{array}$	$\begin{array}{r} 633 \\ +\quad 4.33 \\ 33 \\ 32.67 \\ 3253.00 \end{array}$	$\begin{array}{ll} 24 & 21 \\ 25 & 50 \\ 27 & 6 \end{array}$		$+633 \begin{array}{r} 36 \cdot 47 \\ 39 \cdot 80 \\ 32 \cdot 77 \end{array}$	$\begin{array}{r} 63138 \cdot 67 \\ +3044.66 \end{array}$	$\begin{aligned} & 4417 \\ & 5331 \end{aligned}$	$\begin{array}{r} 145^{\circ} 91 \\ 234.47 \end{array}$	+63324.5819.13
, 23	E.	$\begin{array}{cc}30 & 0 \\ 8 \\ 210 & 0\end{array}$	$\begin{array}{r} 32329 \cdot 67 \\ 2354.34 \\ 244.00 \\ 2414.33 \end{array}$	$\begin{array}{lr} 15 & 57 \\ 24 & 3 \\ 25 & 54 \\ 27 & 51 \end{array}$	$\begin{array}{\|r\|r\|} -0 & 13 \cdot 80 \\ - & 13 \cdot \\ 0 & 3 \mathrm{I} \cdot 40 \\ 0 & 36 \cdot 42 \\ 0 & 42 \cdot 07 \end{array}$	$\begin{array}{r} +32315 \cdot 87 \\ 22.94 \\ 27.58 \\ \\ 32.26 \end{array}$		319	- 00.60	++32319.0618.10
							+ 32319.662320.002323.6723	5155 7 86	(1) 1.90	
							23 23 23 $3^{\circ} 00$	756 848 15	(1) 0	$\begin{aligned} & 18.90 \\ & 24.81 \end{aligned}$
							24 24 42 5	$\begin{aligned} & 3758 \\ & 40 \quad 43 \end{aligned}$	$\begin{array}{lll} 1 & 18 \cdot 19 \\ 1 & 29 \cdot 87 \end{array}$	
" 23	W.	$\begin{array}{cc} 30 \\ \& & 0 \\ 210 & 0 \end{array}$	$\begin{array}{r} 63313 \cdot 67 \\ 3247.67 \\ 3245.33 \\ 3232 \cdot 67 \\ 3230 \cdot 0 \end{array}$	$\begin{array}{rr} 19 & 2 \\ 27 & 42 \\ 30 & 16 \\ 31 & 29 \\ 35 & 35 \end{array}$	$\begin{array}{r} +\quad 0 \quad 19.66 \\ 041.55 \\ 049.61 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	+633	$\begin{array}{rr} 6 & 32 \\ 32 & 7.00 \\ 32.34 \end{array}$	$\begin{aligned} & 40 \quad 23 \\ & 38 \quad 18 \end{aligned}$	$\begin{array}{r} 128.44 \\ 19.54 \end{array}$	$\begin{array}{r}\text { + } 633 \begin{array}{l}35 \cdot 44 \\ 33.88\end{array} \\ \hline\end{array}$

8			pace left				pace bight			
.			Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Oct. 24	E.	$\begin{array}{cc} 0 & 1 \\ 50 & 0 \\ 8 & \\ 230 & 0 \end{array}$	$\begin{array}{r} 32355 \cdot 33 \\ 2352 \cdot 34 \\ 2354 \cdot 34 \\ 2734 \cdot 66 \\ 2740 \cdot 66 \end{array}$	$\boldsymbol{m} 8$		- 17	$+32432 \cdot \infty$	$\boldsymbol{m} \quad 8$	17	$\begin{array}{r} 0111 \\ +32322.44 \end{array}$
				2532	$-035 \cdot 39$	$\begin{array}{rr}\text { + } 323 & 19.94 \\ & 13.68 \\ & 11.72 \\ & 17.03 \\ & 14.40\end{array}$		3549	- 1 9.56	
				2641	- $38 \cdot 66$			3651	113.64	22.36
				$28 \quad 2$	$\bigcirc 42 \cdot 62$			3759	118.25	20.08
				69	$4 \begin{aligned} & 4 \quad 17 \cdot 63\end{aligned}$			3858	$122 \cdot 36$	$16 \cdot 64$
				7013	$426 \cdot 26$			410	$131 \cdot 11$	$15 \cdot 89$
" 24	W.	$\begin{array}{rr} 50 & 0 \\ \& & \\ 230 & 0 \end{array}$	+ 63212.66	3511	+ $17 \begin{array}{rr}712 \\ 0\end{array}$		+63329.66	027	+00.01	+ 63329.67
			$\begin{array}{ll}33 & 3 \cdot 67 \\ 33 & 4.33\end{array}$	1750 1631	0117.26 0 14.80		33 29.66	1 II	$0 \quad 0.08$	29.74
			$\begin{array}{ll}33 & 4 \cdot 33 \\ 33 & 5 \cdot 00\end{array}$	1631 15	0 0 0 14.80		33 29.00	217	- 0.29	- 29.29
			$\begin{array}{ll}33 & 5 \cdot 00 \\ 33 & 7 \cdot 66\end{array}$	15 15 14 1	012.78 0 1.08		33 29	318	- 0.59	- 29.59
			33 8.00	12 12	- 9.08		33 28.33	417	- 0.99	29.32
							33 28.00	520	O 1.54	29.54
\% 24	W.	1900	...	\cdots	$\begin{array}{r} 63219 \cdot 34 \\ 31 \\ 36 \cdot 00 \end{array}$	$\begin{aligned} & 3541 \\ & 44 \quad 54 \end{aligned}$	$188 \cdot 88$$+148 \cdot 94$	+63328.2224.94

Abstract of Astronomical Azimuth observed at VII (Mirya) 1844.

1. By Eastern Elongation of a Ursæ Minoris.

Abstract of Astronomical Azimuth observed at VII (Mirya) 1844-(Continued).
2. By Western Elongation of a Ursæ Minoris.

[^3]
At XII (Chaukola)

Lat. N. $15^{\circ} 55^{\prime} 31^{\prime \prime} \cdot 44$; Long. E. $74^{\circ} 1^{\prime} 48^{\prime \prime} \cdot 31=\stackrel{h}{4}{ }_{5}^{56}{ }^{m} 7^{8} \cdot 2$; Height above Mcan Sca Level, 2794 feet. December 1843; observed by Lieutenant H. Rivers with Dollond's 15 -inch Theodolite.

Star observed	δ Ursæ Minoris (East and West)
Mean Right Ascension $1843 \cdot 0$	$18^{\text {h }} \quad 22^{\text {mim }} 59^{\text {b }}$
Mean North Polar Distance 1843.0	$3^{\circ} 24^{\prime} 23^{\prime \prime} \cdot 77$
Local Mean Times of Elongation, December 27	$\left\{\begin{array}{lcc} \text { Eastern } & 18^{\mathrm{h}} & 3^{\mathrm{m}} \\ \text { Western } & 5 & 57 \end{array}\right.$

			pact lbpt				pace bight			
			Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Dec. 27	E.	$\begin{gathered} \circ \quad 1 \\ 209_{\&} 57 \\ 2957 \end{gathered}$	- 11	$\boldsymbol{m} \quad \boldsymbol{8}$	11	0 , "	- ' 1	$\boldsymbol{m} \boldsymbol{8}$	11	- 11
			$\begin{array}{rl} +2 & 49 \cdot 67 \\ 3 & 34 \cdot 00 \\ 3 & 31 \cdot 33 \\ 3 & 24 \cdot 00 \\ 3 & 26 \cdot 00 \\ 3 & 23 \cdot 00 \\ 3 & 17 \cdot 33 \\ 3 & 16 \cdot 33 \end{array}$	$\begin{array}{ll}18 & 3\end{array}$	- 039.38	2+210.292.028.61	($+\quad 459.67$43	2847	- 139.95128.38	+ 2319.72
				1616	- 31'98			$\begin{array}{ll}27 & 4\end{array}$		12.29
				1342	- $22 \cdot 72$			112	0 0.18	$19^{\circ} 82$
				$\begin{array}{ll}12 & 7\end{array}$	$\bigcirc 17.76$	$\begin{array}{r}6 \cdot 24 \\ \hline 12\end{array}$		026	00.02	13.98
				1027	013.20	$12 \cdot 80$		730	- 6.82	
				912	010.23	12.77		10 12	-12.59	13.74
				$\begin{array}{lr} 8 & 1 \\ 6 & 38 \end{array}$	$\begin{array}{ll}\circ & 7 \cdot 79 \\ \bigcirc & 5 \cdot 33\end{array}$	9.54 11.00			-12-59	13
" 28	W.	$\begin{array}{cc} 190 & 1 \\ \& & \\ 10 & 0 \end{array}$	$\begin{array}{r} 9635 \cdot 00 \\ 632.00 \\ 528 \cdot 33 \\ 514.67 \end{array}$	$\begin{array}{ll} 28 & 27 \\ 29 & 40 \\ 35 & 12 \\ 36 & 43 \end{array}$	$\begin{array}{rl} +\quad 1 & 37 \cdot 67 \\ 1 & 46 \cdot 21 \\ 2 & 29 \cdot 35 \\ 2 & 42 \cdot 48 \end{array}$	$\begin{array}{r} 9772 \cdot 67 \\ 68 \cdot 21 \\ 57 \cdot 68 \\ 57 \cdot 15 \end{array}$	$\begin{array}{rrr} \\ +97 & 7.3 .34 \\ 743.34 \\ 712.00 \\ & 4 & 49.00 \\ 4 & 29.00 \\ & 323.34 \\ & 2 & 55.67\end{array}$	1415	+ 0 24.53	+ 9777.87
								1617	- $32 \cdot 05$	75.39
								2149	- 57.48	69.48
								4146	3 30.00	$79^{\circ} 00$
								4316	345.34	$74 \cdot 34$
								4851	$446 \cdot 87$	$70 \cdot 21$
								5124	$517 \cdot 29$	$72 \cdot 96$
" 28	E.	$\begin{array}{cc} 190 & 1 \\ \& & \\ 10 & 1 \end{array}$			- 227.86	+ 231748	+2931.00	5614	- 619.39	+2311.61
				2618	123.51	115.82	+ 9433	5356	$549 \cdot 10$	15.23
				$\begin{array}{ll}24 & 9 \\ 18 & 7\end{array}$	110.40	14.60	317.67	214	- 0.60	$17^{\circ} 07$
				$\begin{array}{ll}18 & 7\end{array}$	- 39.64	14.03	$\begin{array}{ll}3 & 16 \cdot 34\end{array}$	$\begin{array}{lll}2 & 14 \\ 3 & 33\end{array}$		14.81
				1633	$\bigcirc 33.14$	15.19 12.85	$\begin{array}{llll}3 & 16 & 34 \\ 3 & 23.33\end{array}$	3 3 13	$\begin{array}{ll}0 & 1 \\ 0 & 11\end{array} \cdot 83$	11.49
				$\begin{array}{lll}15 & 10 \\ 13 & 23\end{array}$	O $27 \cdot 82$ 0	12.85 10.68	3 3 $34^{\circ} \mathrm{O}$		-17.03	$16 \cdot 97$
				1323	0 0 21.65	10.68 18.01				
				612	O 4.65	$18 \cdot 01$				
				441	- 2.66	$18 \cdot 34$				
				330	- 1.49	19*51				
				217	- 0.63	$17 \cdot 70$				
" 29	W.	$\begin{array}{cc} 170 & 0 \\ \& & \\ 350 & 0 \end{array}$		3047	$\begin{array}{r} 1 \\ +\begin{array}{l} 1 \\ 2 \end{array} 15 \cdot 34 \\ 227 \cdot 93 \\ 2 \\ 2 \end{array} 9^{\circ} 69$	$\begin{array}{r} 9778 \cdot 00 \\ 70 \cdot 19 \\ 79 \cdot 60 \\ 70.69 \end{array}$	+ 9816.66	558	+ 0 4.31	+ 9780.97
				$33{ }^{32}$			+ 9812.66	851	+ $0 \quad 9.46$	82.12
				$35 \quad 2$			$7 \quad 53.66$	1455	- $26 \cdot 88$	80. 54
				3624			715.67	2256	13.52	79*19
							658.67	2445	113.98	$72 \cdot 65$
							421.67	443^{2}	358.68	$80 \cdot 35$
							$4 \quad 0.67$	46 19	$417 \cdot 94$	$78 \cdot 61$
							$33^{8 \cdot} 33$	$48 \quad 28$	$442 \cdot 39$	80'72

Abstract of Astronomical Azimuth observed at XII (Chaukola) 1843.

1. By Eastern Elongation of δ Ursæ Minoris.

Abstract of Astronomical Azimuth observed at XII (Chaukola) 1843-(Continued).
2. By Western Elongation of δ Ursæ Minoris.

At XVI (Kumbhári)

January 1844; observed by Lieutenant H. Rivers with Dollond's 15 -inch Theodolite.
Star observed $\quad \lambda$ Ursæ Minoris (West and East).
Mean Right Ascension 1844.0
Mean North Polar Distance 1844:0
Local Mean Times of Elongation, January 22
λ Ursæ Minoris (West and East).

$$
\begin{array}{llll}20^{\mathrm{h}} & 18^{\mathrm{m}} & 15^{\bullet} \\ 1^{\circ} & 9^{\prime} & 29^{\prime \prime \prime} \cdot 02\end{array}
$$

$\left\{\begin{array}{lll}\text { Western } & 6^{\mathrm{h}} & 12^{\mathrm{m}} \\ \text { Eastern } & 18 & 12\end{array}\right.$

			pack lipt				pack bigit			
			Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Jan. 22	W.	$\begin{array}{cc} 60 & 0 \\ \& \\ 240 & 0 \end{array}$	$\begin{array}{r} -34444 \cdot 34 \\ 4454 \cdot 0 \\ 4446 \cdot 67 \\ 4457 \cdot 66 \\ 45 \\ 4.33 \\ 45 \\ 45 \cdot 66 \end{array}$	$\boldsymbol{m} 8$	' 1	- , "	- ,	m	,	- 11
				3935		$\begin{array}{r} -34340 \cdot 26 \\ 45 \cdot 43 \\ 44.54 \\ 40 \cdot 29 \\ 4 \mathrm{I} \\ 49.16 \\ 39.16 \end{array}$	$\begin{array}{r} -34420 \cdot 00 \\ 442 \mathrm{I} \cdot 00 \\ 4547 \cdot 33 \\ 455 \mathrm{I} \cdot 33 \\ 46 \quad 4.67 \end{array}$	$\begin{array}{rr} 27 & 36 \\ 29 & 3 \end{array}$	$\begin{array}{r} +031 \cdot 20 \\ 034.57 \end{array}$	- $34348 \cdot 80$
				4057						46.43
				42 ○				$54 \quad 9$	159.63	47•70
				4331				5512	$2{ }^{2} 4.23$	$47 \cdot 10$
				$\begin{array}{lll}45 & 6 \\ 46 & 1\end{array}$				5829	219.40	$45 \cdot 27$
" 22	E.	$\begin{gathered} 60 \\ \& \\ 240 \\ 2 \end{gathered}$	$\begin{array}{lll} -6 & 6 & 54.34 \\ & 6 & 59.34 \\ & 7 & 1.34 \\ & 7 & 6.67 \end{array}$	2857	$\begin{array}{r} -034 \cdot 31 \\ 030.02 \end{array}$	- $6728 \cdot 65$	$\begin{array}{rl}-6 & 720 \cdot 33 \\ 721.66 \\ 722.33 \\ 722.00 \\ 7 & 23.00 \\ 722.66\end{array}$	1518	- 0 9.59	- 6 729.92
				$27 \quad 4$		29.36 -6886		141	-8.06	$\begin{array}{r}69.72 \\ \hline 29.92\end{array}$
				26 I	- 27.73	29.07		1242	- 6.61	28.94
				25 I	- 25.64	$32 \cdot 31$		1049	- 4.79	$26 \cdot 79$
								949	- 3.95	$26 \cdot 95$
								814	- $2 \cdot 78$	25.44
, 23	W.	$\begin{array}{cc} 80 & 0 \\ \& & 0 \\ 260 & 0 \end{array}$	$-34418 \cdot 00$		+ $030 \cdot 27$	- $34347 \cdot 73$	- $34447 \cdot 66$	412	+ 18.86	- 343 38.80
			- 4422.00	2823	$\bigcirc 33^{\circ} \mathrm{O}$	- 3848	$4452 \cdot 66$	426	112.42	- $40 \cdot 24$
			4428.67	3023	- $37 \cdot 78$	$50 \cdot 89$	4458.33	4313	$116 \cdot 32$	$42 \cdot 01$
			4429.67	3134	- $40 \cdot 79$	$48 \cdot 88$	$\begin{array}{lll}45 & 0.33\end{array}$	4418	1 20.19	40.14
			46 30.66	64 6	$247 \cdot 16$	$43 \cdot 50$	$45 \quad 10 \cdot 66$	4559	126.39	$44 \cdot 27$
			4637.66	$\begin{array}{llll}65 & 17\end{array}$	253.46	$44 \cdot 20$	$45 \quad 26 \cdot 33$	484	1 34.32	$52 \cdot 01$ 4
			46 50.66	6621	259.05	51.61	$45 \quad 26 \cdot 66$	4857	1 $37 \cdot 81$	$48 \cdot 85$
			$46477^{\circ} 00$ 46 53	$\begin{array}{rrr}67 & 9 \\ 67 & 59\end{array}$	$\begin{array}{ll} 3 & 3 \cdot 37 \\ 3 & 7 \cdot 92 \end{array}$	$43 \cdot 63$ $45 \cdot 08$				
	E.									
" 23		$\begin{array}{cc} 80 \\ \& \\ 260 & 1 \\ 2 \end{array}$		5424	- 20.69	- $6732 \cdot 36$		4138	- $110 \cdot 84$	- $6741 \cdot 50$
				5246	153.57	$32 \cdot 91$		4033	17.21	37.87
				5134	148.48	$38 \cdot 81$		3937	14.15	$36 \cdot 15$
				5024	143.70	$36 \cdot 03$		3834	$1{ }^{1} 0.84$	33.84
				1231	- 6.43	$30 \cdot 43$		3016		$38 \cdot 84$
				1048	- $4 \cdot 78$	29.78		2722	- 30.65	$33 \cdot 32$
				948 8	- 3.93	28.26		25 253 24 24	027.45	41.45 $36 \cdot 80$
				832	- 2.99	30'99		2446	$\bigcirc 25.13$	$36 \cdot 80$
				7 7 6 6 19	 2.27 $-\quad 1.64$	28.94 28.31		2346	$\bigcirc 23.14$	34*14
				619	- I•64	$28 \cdot 31$				
				553	- 1.42	$32 \cdot 42$				

Abstract of Astronomical Azimuth observed at XVI (Kumbhári) 1844.

1. By Eastern Elongation of λ Ursæ Minoris.

Abstract of Astronomical Azimuth observed at XVI (Kumbhári) 1844—(Continued).
2. By Western Elongation of λ Ursæ Minoris.

July, 1889.
W. H. COLE,

In charge of Computing Office.

Fig. $\mathrm{Na}_{\mathrm{a}} \mathbf{2 6}$

Fig. $\mathrm{N}_{\mathrm{o}} 27$
$\mathrm{F}_{\text {ig. }}$. $\mathrm{Na}_{\mathrm{o}} 28$

Soak I Smak $=12$ Apibe a $\frac{1}{\text { y60320 }}$

MANGALORE MERIDIONAL SERIES.

THE MANGALORE MERIDIONAL SERIES.

INTRODUCTION.

The triangulation on the meridian of 75° is divided into three sections, of which the Series under review is the southern, the Khánpisura Meridional the central, and the Gurhágarh Meridional the northern. It is of a length approaching that of the Great Arc, and considerably longer than any other meridional series in India. It extends from the parallel of $\mathbf{3 3 ^ { \circ }}$, to the parallel of 13°, on which the towns of Madras, Bangalore (Bĕngalưr) and Mangalore (Mangalúr) are situated. In the country traversed by this Series very little triangulation had been executed by Colonel Lambton; his operations on the parallel of Madras did not extend north of Mangalore, and with the exception of a longitudinal series, immediately north of Nagar, which connects the western coast with the general network over the interior, he did not carry out any work near the meridian of 75°.

The Mangalore Meridional Series starts from the Bombay Longitudinal Series in latitude $18 \frac{1}{4}^{\circ}$, its sides of origin being Kem-Alsunda and Alsunda-Bori. At the parallel of $15 \frac{1}{2}^{\circ}$ it is in close proximity with the southern end of the South Konkan Coast Series, and is connected with it by a principal longitudinal series consisting of 6 single triangles. After this junction the meridional series itself becomes a coast series.

The orders for its commencement were issued early in 1861, and the work was given for execution to the Bombay Party under Captain (now Colonel) C. T. Haig, r.e. This party was at the time employed in Gujarát, where it remained for the rest of the field season of 1860-61; but Mr. J. DaCosta, Civil 2nd Assistant, was deputed in January to take up the approximate work, and before his return to Poona (Puna) in the following May he had succeeded in selecting stations forming 5 polygons, which brought the approximate series down to latitude $15 \frac{1_{2}}{}{ }^{\circ}$.

During the field season of 1861-62, the Mangalore Meridional Series remained in abeyance owing to the want of a first class instrument, not one being then available, and the Bombay Party returned to Gujarat where Captain Haig extended the triangulation of the Gujarat Longitudinal Series from the meridian of 73° to its termination on a side of the Khánpisura Meridional Series as well as executing a portion of the Singi Meridional Series.

In October 1862-the instrument known as Barrow's 24-inch Theodolite No. 2 having been sent to Captain Haig-Mr. Anding was sent

Season 1862-63.

Personnel.
Captain C. T. Haig, R.F., 1st Assistant.
Mr. John Mc Gill, Civil Assistant.
„ G. A. Anding, 2nd Class Sub-Assistant. ahead and ordered to build the stations at the points selected by Mr. DaCosta. Before commencing the final angles, Captain Haig was directed to double the Bombay Longitudinal Series from Bidar as far west as the meridian of Mangalore, in order to ensure a firm base of emanation for the new series; whilst so employed he found that with very little extra labour he could also revise the whole of that portion of the Bombay Longitudinal Series. This revision he therefore carried out, and it was not till March 1863 that he was able to begin observing the final angles on the series under review. Meanwhile Mr. McGill, having by the middle of January selected the additional stations required on the Bombay Longitudinal Series, had proceeded to Belgaum (Belgaon), the nearest town to the station of Yalúr, and commenced laying out the small longitudinal chain* that was to connect the Mangalore Meridional with the South Konkan Coast Series. Yalúr-Samshergad was his side of origin, being a flank of one of Mr. DaCosta's approximate polygons, and the chain terminated on a side of the southern figure of the South Konkan Coast Series. Mr. McGill having completed the approximate work, returned to Dhárwár (Dhárvad), and taking up the selection of stations on the meridian of 75°, where Mr. DaCosta had left it, carried the approximate series south to within 30 miles of Mangalore. On this latter work he met with many difficulties, the country being one dense teak jungle; even the tops of the hills were covered with high trees which hindered him from obtaining a good view of the surrounding country; moreover there prevailed at the time a most malignant epidemical fever which had so depopulated the country, that even guides were procurable only with the utmost difficulty; and by the time Mr. McGill closed work, almost the whole of his party were sick.

In February, March and April Captain Haig, working with Barrow's 24-inch Theodolite No. 2, visited the stations of Kem, Alsunda, Bori and Kalas, and then proceeded to Palvan, where a serious accident occurred to the theodolite, which compelled him to close the field season's work. The following account of this untoward event is given by Captain Haig:"On the 17th April 1863, I set up the instrument in the observatory tent on a tower sta"tion near the village of Palvan. On the evening of the following day between seven and "eight o'clock the outer platform on the west side gave way. Rain had then been falling "for about two hours, and there was a very high easterly wind. The pressure and shock "given by the observatory tent against the instrument made the stone of the masonry pillar " underneath one foot of the stand yield, causing the immediate fall of the instrument. "Having examined its position, I perceived that any attempt to remove it in the dark would " only do further damage; I therefore secured all the ropes to keep every thing in statu quo. "On the following morning I succeeded in releasing the instrument from the débris of the " pillar without further injury.
"The platform was about 14 feet high, built of dry stone masonry with an exterior

[^4]"slope of 1 in 3. I examined the exterior work of the part which remained firm. It " seemed to be perfectly well built. My opinion is that the accident arose from an unequal "yielding of the ground, greater towards the centre of the platform than at the edge. It is "evident that it was not caused by any sudden additional pressure, as the instrument had "been fixed for 28 houts, during which period I had frequently been on the platform, at times "accompanied by 5 or 6 persons. No one was on the platform at the time of the fall. I do not " think the yielding could have been in the platform itself, as it was composed entirely of "stone, and would, if liable to give way, have done so suddenly, when the instrument was " being put up, and the platform was crowded with people."

In a letter to Major J. T. Walker, R.e., the Superintendent of the Great Trigonometrical Survey, on the subject of this accident Captain Haig writes:-"The sight on the morn"ing of the 19th was one not easily described. The instrument was upside down, resting with " most pressure on the vertical circle and more lightly on the clamping circle, the axis being "fortunately supported by the observatory table; one of the gunbarrel legs of the table was "entangled between a microscope and the clamping circle, and the whole was enveloped in "the fly of the tent. Having made the slope of the débris, which consisted entirely of large " loose stones, fit for the descent of the bearers who were to carry the instrument down, the " first step was to remove the fly of the tent. I then took off all the microscopes except C , "the upper part of which had already been wrenched off while the lower was too tightly "screwed to the arm. By passing a rope round the axis and one of the tripod arms and " making it fast to a lever, I was enabled to support the instrument, and have the observa"tory table and the stand removed. I next placed a pole between the pillars, and managed "to slide the instrument along it upside down. The Y's being opened whan the instru" ment was raised, the telescope and vertical circle were taken out and at once removed. "The instrument, resting upside down on the pole, and supported in that position on either "side, was then brought down the slope to the stand in the shade of my tent. The lifting "handles being fixed, it was carefully toppled over into three men's hands, and then placed " on the stand without further damage. The horizontal circle and the axis, the two most "important parts, are, I think, uninjured, as also the telescope and six microscopes. The "bend in the vertical circle is clear of those parts generally used in terrestrial observations ; "I am therefore in hopes, that the damage is repairable."

No time was lost in sending the theodolite to Calcutta, where on the 16th June 1863, it was examined and reported on by the Mathematical Instrument Maker from whose statement it appeared that, besides serious injury to nine other components, a new vertical circle and its connecting parts were essentially necessary: the azimuth-circle could not be tested until the vertical axis. was restored to an efficient state. Under these circumstances Major Walker directed the instrument to be despatched to London to Messrs. Troughton and Simms, who renovated so many of its parts that the old instrument may be said to have given place to a new one. The telescope, the vertical circle and the transit-axis were constructed anew; the vertical circle was adapted for shifting round the transit-axis, and the central cube of the telescope was perforated transversely to allow mutual visibility between two collimating telescopes. The pillar-table which had been cracked was renewed, and
advantage was taken of the occasion to have the azimuth circle newly divided by the beautiful dividing engine in the factory of these noted instrument makers and also to have the whole of the microscopes exchanged for others of the newest pattern. This reconstruction was effected so rapidly that the theodolite was absent from the field for only one season.*

During the field season of 1863-64 the party was employed on the triangulation of

Season 1864-65.
Presonnel.
Captain C. T. Haig, R.E., 1st Assistant.
Mr. John McGill, Civil Assistant.
G. A. Anding, 1st Class Sub-Assistant. $\begin{array}{ll}\text { \# A. D. Christie, 3rd } \\ " & \text { C. H. Mc A'Fee, 3rd } \quad ",\end{array}$

Káthiáwár (Káthiávád), while the Mangalore Meridional Series remained in abeyance.

In December 1864 on the return of the theodolite work was resumed. Unfortunately the stand of the instrument was not received in the field until the beginning of February, so that much of the field season was lost. Being thus prevented from continuing the principal triangulation, Captain Haig determined to take some star observations for latitude at Alsunda, a station of the Bombay Longitudinal Series, and one of those from which the Mangalore Meridional Series emanates. To supply the want of the stand three small brass chairs were fitted to that of an 18 -inch instrument, just outside the old chairs, and the 24 -inch was placed upon it : this method of course admitted of no change of zero. Prime vertical transits were taken to 83 Cancri on 21 mornings, and a number of meridian altitudes were observed to six different stars-two close to the zenith, two about $6^{\circ} \mathrm{N}$. and S. of the zenith, and two about $12^{\circ} \mathrm{N}$. and \mathbf{S}. of the zenith. Captain Haig then proceeded to Bori station, where he received the stand for his theodolite on the 4th of February, but owing to rainy and cloudy weather he could not complete observations till the 8th. By the 20th of March the principal triangulation had been carried down to Kundal station in parallel $17^{\circ} 7^{\prime}$. The outturn of work during the season consisted of 11 triangles forming two polygons and extending a direct distance of 85 miles. An azimuth of verification was also observed at Páchvad station.

Captain Haig proceeded on six months' furlough to Europe on the 14th April, and during his absence Lieut. C. A. Mc G. Skinner, r.e., held charge of the party. Mr. McGill had in the meanwhile been working on the approximate series: he took the field on the 3rd December, and proceeded south to Bisale station in latitude $13^{\circ} 35^{\prime}$, the last point in the approximate series that he had fixed in 1862-63, and by the middle of February had selected all the stations for the Mangalore Meridional Series, and then, wheeling to the East, for the three following months was employed on the approximate work of the Madras Longitudinal Series: both were however subsequently re-cast by Major B. R. Branfill, as will be explained presently.

In May 1865 the party returned to Poona for the recess, leaving it again for the

Season 1865-66.
Personnel.
Captain C. T. Haig, R.E., 1 st Assistant. Mr. G. A. Anding, lst Class Sub-Assistant. " A. D. Christie, 2nd "
" C. H. McA'Fee, 3rd " field in the following November, and on the 21st work was resumed at Kundal station. At almost all the stations of the Dandoba Dongar polygon the party was delayed by rain and clouds, but on entering the Karabgati polygon, the weather cleared and continued fine until the station of Samshergad was reached. Before completing the Chikk Nandihallígudd polygon, the party

[^5]was delayed a week through the failure of the approximate series: the ray between the two southern stations was found impracticable, and a site for a new station, Kalkera, had consequently to be selected about a mile and a half east of the useless station. This gave the polygon an unsymmetrical shape, but it was the best that could be done, as the adjacent stations of the next polygon had been already built, and the ground was ill-adapted for good selection owing to the lowness of the hills.

On completing the Chikk Nandihalligudd polygon, Captain Haig took up the longitudinal series to Goa (Gova), intending to return and continue work on the Mangalore meridian when the former was finished. The approximate series however again failed, and another serious delay ensued. Páldi, an old station, was not on the highest point of the hill, and was simply a mark cut on the face of a rock. About 200 feet to the north of it was a ridge 15 feet higher, which entirely obstructed the view from the station of Bailur ; consequently a new station, Darsinga, had to be erected on the ridge. Whilst occupied with this work, Captain Haig received intimation that he had been transferred to the Northern Bombay Party, to take the place of Captain D. J. Nasmyth, r.E. He thought it better, however, to try and complete the series to Goa before his departure, but the country was so difficult, and the hills of Jarma and Salili so high and steep, that he was obliged to leave without carrying outhisintention.

The districts traversed by the Mangalore Meridional Series this season, form a vast plain studded with solitary peaks, and broken here and there by low ranges of hills. Many of the peaks are crowned by small but well-built forts. The ranges of low hills are generally covered with brushwood, but in some cases their sides are carefully cultivated almost to the very summit. Belgaum and Dhárwár were the only towns of note whose positions were fixed. The former is built on' a rock of laterite lying upon the trap of the Deccan; it possesses a fort, about 1000 yards in length and 700 in breadth, which is surrounded by a broad and deep wet ditch cut in hard ground. In 1818, after the overthrow of the Peshwa, the place was invested by a British force, and captured after a 21 days' siege. Dhárwár was formerly a fortified town of considerable strength; according to local tradition it was founded in 1403 by one Dhár Ráo, an officer in the Forest Department under Rám Raja, the Hindu king of Anigundi. The Anigundi kingdom was overthrown by Muhammad Ádil Sháh of Bijápur in 1568 a.D. In 1685 the fort of Dhárwár was captured by the Mughal Emperor of Delhi, and in 1753 fell into the hands of the Mahrattas. On the final overthrow of the Peshwa it came into the possession of the British Government.

During the field season 21 principal triangles were completed, forming one compound figure, one hexagon and one heptagon, and extending a direct distance of 120 miles between the parallels $15 \frac{1}{2}^{\circ}$ and $17 \frac{1}{4}^{\circ}: 4$ single triangles were also completed on the longitudinal series to Goa, covering a distance of about 30 miles.

On November 1st 1866 Lieutenant Trotter took over charge of the party from Captain

Season 1866-67.
Personnel.
Lieut. H. Trotter, R.E., Assistant Surveyor. Mr. G. A. Anding, Sub-Assistant, 2nd Grade. $\begin{array}{lll}\text { " A. D. Christie, } & \text { \# } & \text { 3rd } \\ \text { " J. Bond, }\end{array}$ Haig. Only three stations on the longitudinal series to Goa remained to be visited, so that the party during the field season was to be chiefly employed on the Mangalore Meridional Series in North Kánara (Kánada). The jungles of this district had of late years borne a deadly character,
and enquiries shewed that the earliest possible time for commencing work, with a reasonable chance of the party not being paralysed from fever, was the beginning of February. To ensure reaching the district by this time Lieutenant Trotter proceeded to Bombay early in January, and engaged pattemars (coasting craft) to take himself and his establishment to Goa, where, after a journey of $2 \frac{1}{2}$ days in a ten-ton boat, he arrived on the 12th. When Captain Haig visited Goa, the Bombay Government had applied to His Excellency the Governor General of Portuguese India for permission to carry survey operations through this territory : this had been cordially granted. Every assistance was also given to Lieutenant Trotter by the Governor General and his Staff. Orders were issued to the Custom-house authorities all over the district to pass his baggage free, not only of custom-duties but of the usual annoyance of examination and search. Sepoys were also attached to his camp to aid in procuring supplies. No amount of assistance however could avail to remove the physical obstacles presented by the mountains and rivers which had to be traversed to get from one station to another. Hence, although but three stations, Bori, Salili and Agoada, had to be visited, and in no case had more than two angles to be measured at a station, the better part of a month was spent in getting through this small amount of work, in spite of the weather being exceptionally fine and clear.

The district of Goa is 62 miles long and 40 broad and has a population of 400,000 . It is a hilly country and intersected by numerous rivers which are generally navigable. In the days of its glory Goa was the chief entrepót of commerce between the east and the west. But with the downfall of the Portuguese Empire it lost its commercial importance, and its trade has now dwindled into insignificance.

Having completed his observations at the stations in Goa territory, Lieutenant Trotter tried to go straight across the Gháts to Dhárwár, but was unable to do so owing to the difficulty of procuring carriage. The road moreover was reported as being just then exceedingly unhealthy. Agoada, however, being on the sea coast, the party was able to embark on pattemárs immediately after closing work, and sailed for Kárwár (Kárvár) which was reached on the evening of the 3rd of February, and marching via the Arbail ghát, a very roundabout but good road, proceeded to Samtráni, 24 miles north of Yĕllápur. There carts were exchanged for bullocks and coolies, and the party diverged to Kánsěrudi, one of the west flank stations of the Ganigudd polygon, which was reached on the 16th of the same month. The centre and south-west flank stations of this polygon are in the dense Kánara forests, the best wooded in Western India.

Indúr station was reached at the end of March without any further check. In a letter on the subject of the best time of day for observing, Lieutenant Trotter writes:-"In Goa "the air was clear, and the weather on the whole very favorable, the morning heliotropes "being best and steadiest, a very unusual occurrence as far as my experience goes, but "caused, I imagine, by the sea breeze which at that time of the year used not to set in till "evening, continuing till late at night, causing wonderfully clear mornings and a very "steady atmosphere. As the sun got up mists gradually rose, and by 10 or 11 o'clock the "air would be very thick and becoming, later in the day, impenetrable by rays from either "afternoon heliotropes or lamps, which latter would generally be good signals early in the
" morning. Above the Gháts, when I took up the series, the weather was somewhat the "same, in that, before the sun rose the air used to be very clear, but the moment the sun "got above the horizon mists rose with it, and what was a few minutes before a verdant "landscape, became almost miraculously transformed into an apparently foaming sea, with " the tops of the highest hills, like green and rocky islands, towering above the general level, " the moving clouds having the appearance of rolling billows; altogether a most magnificent "spectacle, not unimproved by the brilliant flashes of the heliotropes seen over this sea of " clouds. This appearance is not lasting, however, for the mists soon rise, enveloping every"thing, and not generally dispersing till 9 or $10 \mathrm{~A} . \mathrm{m}$.
"These phenomena occurred early in the season, and of course observations to morn"ing heliotropes were rarely if ever attainable. The afternoons were generally thickish, but " used to clear towards sunset, and the air purified by the sea breeze was generally good for "lamps. Later in the season however these mists, instead of rising about sunrise, used gene"rally to begin to form about 8 or 9 o'clock in the evening, when, just as we had fairly com" menced working to lamps, then bright and clear, first one lamp and then another would sud"denly disappear, not to show again till the next evening, while the mists would at last rise " and surround the observatory tent. These mists never cleared off in time for morning "heliotropes, and consequently for the greater part of the season nearly the whole of the "observations were taken in the afternoon, when the signals were generally good. On one "occasion I took no less than fifty-seven single measures of angles working to afternoon " heliotropes. In April and May the work was very much interfered with by passing storms, "though these were so local, that sometimes I have gone on steadily working to capital "heliotrope signals, when perhaps the sun never shone on my own station the whole after" noon, and the hill seemed surrounded by storms."

In the Kánara district the smoke from the burning jungles greatly hindered Lieutenant Trotter's progress, especially when there was no wind. Every year towards the end of February the villagers begin to burn these jungles, and until the heavy rains set in they light the fires regularly every day at two or three o'clock in the afternoon. The stations in this district would have been avoided, if possible, at that particular season, but it was unfortunately the only time they could be visited with impunity from fever, the curse of the district. Mr. Christie, who was working in Kánara in January 1866, states that when he was marching, the coolies used, as a regular thing, to put down their loads for two or three hours in the middle of the day, have their bout of fever and then go on again.

Having taken the precaution of not entering these jungles till the healthy season, Lieutenant Trotter's party for a couple of months escaped with comparatively little illness; but after the first heavy rains had fallen in April, Mr. Christie's party which was in advance building stations, was the first to suffer, and at one time the whole of his camp was down with fever. The observations of the Bhedasgávegudda compound figure were finished at Chandragutti station on the 20th of May, closing the field season's operations. On the afternoon of that day Lieutenant Trotter, and on the following day his observatory assistant, Mr. Bond, were attacked with fever. All the signal parties and nearly the whole of the standing camp were suffering more or less. The fever was not of a malignant type, but its effects were
unfortunately more insidious than was thought, as is evident from the fact that although only one man actually died in the field, yet two died afterwards at Bangalore, and another while on his journey home on leave.

During the field season 13 principal triangles were completed, forming a hexagon and a compound figure, and extending a direct distance of 65 miles : the remaining 2 single triangles on the longitudinal series to Goa were also completed.

When Lieutenant Trotter commenced his operations in 1866, 165 miles of the Manga-

Season 1872-73.

Perbonnbl.

Major B. R. Branfill, Dy. Supt., 2nd Grade. Lt. J. R. McCullagh, R.E., Asst. Supt., 1st Grade. Mr. J. W. Mitchell, Asst. Surveyor, 1st " " O. V. Norris, " " \quad 3rd , C.D. Potter, " ", 3rd "
lore Meridional Series remained for completion, of which 65 miles had been accomplished by May 1867. The remaining portion was expected to prove exceptionally difficult; the country over which the principal triangulation was to pass, was hilly, wild and thinly populated; the climate was bad, and carriage was only to be procured with great difficalty. For five years no opportunity occurred of completing it, and it was not till the end of 1872 that the work was taken in hand. When the Survey party commenced operations at the beginning of the field season of 1872-73, they had before them an exceptionally large amount of work. In addition to the gap of 100 miles in the Mangalore Meridional Series, they had also to complete the Madras Longitudinal Series to the coast. Taking advantage of the first break of fine weather in the north-east monsoon rains, the party took the field at Bangalore on the 20th of October, and after a march of about 300 miles commenced operations, in the middle of November, on the terminal side Chandragutti-Halĕbail of Lieutenant Trotter's triangulation of 1866-67. Lieutenant McCullagh had charge of the main party and executed the final observations with Troughton and Simms' 24 -inch Theodolite No. 1, with Mr. Laseron as recorder and office assistant.

Major Branfill himself undertook the examination and completion of the approximate series. He at once decided to reject the stations selected by Mr. Mc Gill west of the Gháts, and to carry the series entirely east of them. Commencing work at Hukaligudda station, he visited in succession the stations of Hugadi, Siddeshvar, Kŏdashádri, Bisale, Hěbbe and Valkunji, and rejoined the main party at Ságar on the 3rd of January. Between many of the stations there were no roads, and the party on several occasions was obliged to leave its camp and baggage for periods of a week or two: on one occasion the main party was for three weeks separated from its camp and supplies. During the season final observations were completed at 16 hill stations forming a compound figure, a quadrilateral and a hexagon. Two sets of azimuth observations were taken this season, but in order to push on the triangulation to the utmost and ensure its completion they were postponed to the last. Lieutenant McCullagh took one set at Koramúr finishing on the 27th of March, and Major Branfill observed the other at Mangalore, a station now appertaining to the Madras Longitudinal Series. By the 15th of April the party had returned to Bangalore, and the Mangalore Meridional Series had been completed.

The country traversed during the last season is one of great beauty and interest. Superficially it consists of forest-clad hills and valleys of no great height or depth, diversified
by open grassy glades and downs, many streams and rivers, precipitous cliffs and prominent peaks. The prime feature of the country is the irregular ridge line of the Western Ghats, running generally N.N.W. and S.S.E., at a distance of 10 to 30 miles from the western coast, and rising from a height of 1,500 feet in Sunda to 3,500 feet in Manjarabad. This part of the country is called the "Malnád" (lit. rain-district) from the excessive amount of rain which falls here. On the western slopes and summits of the Ghats the rainfall from May to October is very heary, from 150 , to perhaps 300 inches or more falling in a single season; and this combined with frequent dense fogs and clouds, night and morning when there is no rain, and also with the moisture wafted in from the west by the sea-breeze during the hot months from February to May, produces and reproduces such a vigorous growth of plants and trees, that the people can hardly keep their clearings free from jungle. Numerous peaks rise 500 to 1,000 feet above the average height of the range, but few of them exceed $\mathbf{3 , 6 0 0}$ feet above the sea; Chandragutti $(2,800)$, Kŏdashádri $(4,400)$ and Kudurèmukha $(6,200)$ stand out very conspicuously above all the rest, and are only equalled by Meruti in the Tungabhadra Doab, and surpassed only by the Chandra-drona, now also commonly called the Bababudan from the name of a Muhammadan Pír who died about 1850, and who is reported to have first introduced the coffee plant into Mysore (Maisúr).

The passes over the mountains are numerous, being on the average only 10 miles apart; and though mostly disused and impracticable now, attest the fact that there was formerly much traffic between Mysore and the west coast. The population of the Malnád has greatly diminished from what it was in former times. The large towns which once existed, and particularly the city of Nagar, named Haidar Nagar by Haidar Ali, are almost abandoned; and, judging from the frequency of the deserted rice-fields, the rural population has also probably decreased in recent times.

Slavery, or rather domestic serfdom, was once general in this part of the country, but is now disappearing. The introduction of coffee is supposed to be the main cause of its decline. The coffee planters require labourers and offer high wages, and in order to obtain them, pay largely in advance, a temptation that serfs, who had been accustomed to receive only their food and clothing, were unable to withstand.

In the general reduction of the Southern Trigon, the portions of the errors, which fell to the share of the Mangalore Meridional Series and were dispersed throughout it, were as follows :-

In	Latitude	- $0^{\prime \prime} \cdot 036$
"	Longitude	+0.231
"	Azimuth	-	-••	- 0.665
In side	Logarithm giving			- $0 \cdot 000$ an inch p

Secondary Triangulation.

A large amount of secondary triangulation was carried out by Captain Haig in the field-season of 1865-66; numerous points such as mosques, forts and temples were fixed, not only in the area embraced by the principal series, but also for considerable distances from its flanks; and the positions of the two cantonment stations of Belgaum and Dhárwár were determined. In the following year, whilst waiting for the unhealthy season in Kánara to pass, Lieutenant Trotter executed some minor triangulation in the neighbourhood of Indápur. Major Francis, the Survey and Settlement Commissioner, Northern Division, Bombay Presidency, was anxious to get some of his revenue boundary marks laid down carefully by trigonometrical observations, as a test of the accuracy of the work of his own assistants, and for the purpose of having accurate data for the construction of his own maps. The first thing to be ascertained before commencing the work, was the state of the secondary stations of the Great Trigonometrical Survey, the operations of which had passed through a portion of the district. On examination none of the secondary points were to be found, with one single exception, although the names were in existence in the records, and their latitudes, longitudes, azimuths and heights had been accurately determined. Apparently in many instances these stations had originally consisted of a single stone imbedded, perhaps, in the centre of a large flat field on the top of a high piece of ground, with no means whatever of identifying it. These marks were useless without the most minute and accurate description of their whereabouts, as the ground is either so wildly undulating, that search might be made for hours before the highest point in the neighbourhood could be found, or else it consists of high, flat table-lands extending from one fourth of a mile to several miles in length, and generally covered with stones large and small. These table-lands are so flat, that if three or four different men were sent at different times, it is probable that no two of them would select the same spot as the highest. Unless, therefore, very careful descriptions of these stations were forthcoming, it was almost useless making search for them. Unfortunately no descriptions of any sort were to be found, and hence only one station was discovered. As it was therefore impossible to make use of any former secondary work, Lieutenant Trotter determined to break up the principal triangulation afresh, and to cover the whole of the district to be surveyed with a net-work of triangles having sides from three to five miles in length. The new stations were built with great care, and an accurate description of each recorded.

In the field season of 1872-73, the positions and heights of a number of secondary stations and 53 unvisited points were fixed: some stations of Colonel Lambton's triangulation were found, with mark-stones in position, and connected : and other points of the old survey were also connected, but as no station marks were found, their identification was not exact.

Prepared for Press, May 1885.
Passed through Press, September 1886. $\}$
s. C. BURRARD.

MANGALORE MBRIDIONAL SERIRS.

PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.

2-D.
MANGALORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.

MANGALORE MERIDIONAL SERIES.

DESCRIPTION OF PRINCIPAL STATIONS.

All the Principal Stations hereafter described are situated on hills. With the exception of Station II which is denoted simply by a mark-stone imbedded on the summit of a temple, each consists of a circular and isolated pillar of masonry either perforated or solid, 3 to $3 \frac{1}{3}$ feet in diameter and generally about 5 feet in height, though in certain cases the heights vary from 1 to 8 feet. In the centre and upper surface of the pillar is embedded a stone on which is engraved a mark (circle and dot) in the normal of one or more similar marks below, the lowermost mark being in some instances cut on the rock in sitú. Around the pillar and level with its uppei surface a platform of stones, or of stones and earth- 16 feet in diameter or from 12 to 16 feet square-is built for the accommodation of the observatory tent: in a few cases the platform had to be supported by logs of wood. In the northern portion of the Series, down to station XL, all the pillars are of the perforated kind, access to the ground level or lower mark at these stations being obtained by an aperture through the platform and pillar. At the remaining stations the pillars are of the solid kind.

All the stations except XVII of the Bombay Longitudinal Series and XXVIII, XXX, XXXI and XXXIII of this Series have their upper marks protected by small pillars of masonry in the form of a frustum of a pyramid, 28 inches square at base, 20 inches at top and $3 \frac{1}{8}$ feet in height. These protecting pillars carry sufficiently accurate marks on their upper surfaces for Topographical and Revenue Survey purposes as shewn at page 74 of Volume II of the Account of the Operations \&c.

The following descriptions have been compiled from those given by the Officers who executed the Series and others who visited certain of the stations subsequently, supplemented in the majority of cases, as regards adjacent villages and places from the 'Topographical Survey Maps of the country traversed, and corrected, so far as the local sub-divisions in which the several stations are situated, from the latest Annual Heports furnished ly the District Officers to whose charge the stations were committed.

The orthography is based on the official lists published under the orders of the Government of India, except that the long e^{e} is unaccented as in all previous volumes of this series, and the short e is shewn thus, e; the same remarks apply to o. Final vowels and those in well-known terminals are unaccented. When the popular spelling of a name has been accepted by Government, its correct trausliteration is given in parenthesis where the name occurs for the first time.
XVII.-(Of the Bombay Longitudinal Series). Kem Hill Station, lat. $18^{\circ} 11^{\prime}$, long. $75^{\circ} 21^{\prime}$-observed at in 1838, 1863 and 1805 -is situated on a low flat-topped hill. There are two knolls nearly of the same height as the station, each distant about 2 miles, the one to the W. and the other to the N.W., the former being crowned by a temple. The station lies about 2 miles E. by N. of the Railway station of Kem on the G.I.P. Line. It is in the lands of the village of Kem, taluka Karmála, district Sholápur (Solápur).

The station of 1838 consisted of the usual circle and dot mark cut on a large stone at the level of the ground. When visited in 1863, the mark was found in position : over this a circular, perforated and isolated pillar of masonry 4.8 feet high was builf, carrying a mark-stone in its upper surface. The pillar is enclosed in a platiorn of loose stones, through which and the central pillar an aperture was constructed giving access to the lower mark. In 1865 the station was found in yood order. When visited in 1870 for Latitude Observations and in 1878-79 by the Levelling Party, the upper mark-stone was found intact. The directions and distances of the circumjacent villages are:-Bhagevadi E.S.E., mile $\frac{3}{4}$; Pathurti N., miles $2 \frac{1}{4}$; Jakhla E.S.E., miles 2; Kem W.S.W., miles 2; and Malori W.N.W., miles 3at.
XIX.-(Of the Bombay Longitudinal Series). Alsunda Hill Station, lat. $18^{\circ} 27^{\prime}$, long. $75^{\circ} 3^{\prime}$-observed at in 1837 and 1863 -is situated on the highest part near the western brow on the summit of a flat-topped hill
which extends nearly a mile from S.E. to N.W. with a breadth of about 300 yards; it lies $3 \frac{1}{8}$ miles N. by W. of Korti on the road from Pomalvádi to Karmála and $1 \frac{1}{4}$ miles W. of the road from Korti to the village of Alsunda. The station is in the lands of the village of Alsunda, taluka Karjat, district Ahmednagar (Ahmadnagar).

The station of 1837 consisted of a platform with the usual mark on top and another cut on a large stone $5 \cdot 69$ feet below at the level of the ground. When visited in 1863, the lower mark was found in position: over this a circular, perforated and isolated pillar of masonry $\mathbf{5}$ feet high was built carrying a mark-stone in its upper surface. The pillar is enclosed in a platform of earth and stones 16 feet in diameter, through which and the central pillar an aperture was constructed giving access to the lower mark. When visited in 1881-82 by the Levelling Party, the station was found protected by a rectangular pillar of masonry 2 feet high built over the circular pillar, the whole covered over by a large mound of earth and stones. The directions and distances of the circumjacent villages are:-Alsunda N.E. by N., miles 2 ; Banauri N.W. by N., miles 3 ${ }^{3}$; Chilavadi S.W., miles 3; and Malungi E., miles 5.
XXII.-(Of the Bombay Longitudinal Series). Bori Hill Station, lat. $18^{\circ} 25^{\prime}$, long. $74^{\circ} 40^{\prime}$ —observed at in 1838, 1863 and 1865 -is situated near the northern extremity of an extensive plateau rising about 250 feet above the G. I. P. Railway line, which runs through the Bhima valley north of the station. It lies about 1 mile S.W. of the Railway station of Boribyal. The station is in the lands of the village of Boribyal, taluka Bhimthadi, district Poona (Puna).

The station of 1838 consisted of a platform with the usual mark on top and another $5 \cdot 1$ feet below at the level of the ground. When visited in 1863, the lower mark was found in position : over this a circular, perforated and isolated pillar of masonry $\mathbf{5} \cdot \mathbf{1}$ feet high was built, carrying a mark-stone in its upper surface. The pillar is enclosed in a platform of earth and stones 16 feet in diameter through which and the central pillar an aperture was constructed giving access to the lower mark. In 1865 the station was found in good order. When visited in 1878-79 and 1881 by the Levelling Party, the station was found protected by a rectangular masonry pillar 31 inches high built over the circular pillar, a cylindrical stone with dot and circle eugraved on it was fouid fitted loosely into this rectangular pillar, the whole enclosed in a large mound of earth and stoues. The directions and distances of the circumjacent villagex are :- Bori S.E. by E., miles $1 \frac{3}{4}$; Alegaon N.E. by N., miles $2 \frac{1}{4}$; Khorauri N.N.W., miles $2 \frac{1}{2}$; and Mallad (on the road from Pátas to Kumblıárgaon) S.W. by S., miles 3 a ${ }^{4}$.
I. Kalas Hill Station, lat. $18^{\circ} 9^{\prime}$, long. $74^{\circ} 52^{\prime}$-observed at in 1837, 1863 and 1865 -is situated on a wide plateau of sandstone formation rising about 100 feet above the plain, about $2 \frac{1}{8}$ miles E.S.E. of the village of Kalas, 1 mile N.E. of the village road between Kalas and Shelspaon, and $5 \frac{1}{4}$ miles N.N.E. of the village of Haturneh on the road from Barámati to Nimbgaon. The station is situated in the lands of the village of Rui, taluka Indápur, district Poona.

The station of 1837 consisted of a platform about 9 feet high having a mark in its upper surface and another 1.58 below. In 1863 the station was rebuilt consisting of a platform of earth and stones enclosing a perforated pillar of masonry $7 \cdot 1$ feet ligh, the upper portion of which is circular and isolated. There are two mark-stones, one in the upper surface of the pillar and the other helow; an aperture gives access to the latter. No change appears to have been made in 1865 . When visited in 1879 by the Levelling Party, the station was found intact. The directions and distances of the circumjacent villages are :-Rui N.E. by E., miles 2t; Vehali S.E. by E., miles 4 ; Shelgaon S. by E., miles $3 \frac{1}{2}$; Barna S.W., miles $2 \frac{1}{2}$; and Nhavi E.N.E., miles $3 \frac{1}{2}$.
II. Sulki Hill Station, lat. $17^{\circ} 46^{\prime}$, long. $74^{\circ} 56^{\prime}-$ observed at in 1865 -is on the summit of a small Hindu Temple, built on a high conical hill, $2 \frac{1}{4}$ miles S.S.E. of Berad village on the road from Málsiras to Mhasvad. It is identical with an old station of the same name of the BombayLongitudinal Series, fixed in 1837. The station is in the lands of the village of Garvad, taluka Málsiras, district Sholápur.

The station is denoted by a mark-stone imberdded on the summit of the temple. The directions and distances of the circumjacent villages are :-Julbhavi W. by S., miles $2 \frac{3}{4}$; Mándki W.N.W., miles $3 \frac{1}{\frac{1}{2}}$; and Tarangphal E.N.E., miles $2 \frac{1}{2}$.
III. Palvan Hill Station, lat. $17^{\circ} 50^{\prime}$, long. $74^{\circ} 29^{\prime}$-observed at in 1865 -is situated on the highest of a number of flat-topped hills, $1 \frac{1}{2}$ miles E.N.E. of the village of Palvan, $10 \frac{1}{2}$ miles S . of the town of Phaltan and $3 \frac{1}{2}$ miles S . by W. of Girvi village. The station is in the lands of the village of Palvan, taluka Mán, district Sátára.

The station consists of a platform of stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other at the ground level; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Ghora E., mile 1; Gaidhara S.W. by S., miles $1 \ddagger$; Bhayka W.N.W., miles $2 \frac{1}{4}$; and Bhorka N.N.W., miles $2 \frac{1}{2}$.
IV. Páchvad Hill Station, lat. $17^{\circ} 31^{\prime}$, long. $74^{\circ} 42^{\prime}$-observed at in 1865 -is situated on a flattopped hill, the highest point of the range, $2 \frac{1}{4}$ miles S.S.E. of the village of Kukudvad, 11 $\frac{1}{2}$ miles S.W. of the town of Mhasvad on the road from Sátára to Pandharpur. The station is in the lands of the village of Kukudvad, taluka Mán, district Sátára.

The station consists of a platform of stones enclosing a circular, perforated and isolated pillar of masonry $\mathbf{5} \cdot \mathbf{l}$ feet high, .which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. 'The directions and distances of the circumjacent villages are:-Katera S., mile 1; Mana W. by N., mile 1; Pokra N. by E., mile 1 ; aud Valai E.N.E., miles 3.
V. Katphal Hill Station, lat. $17^{\circ} 33^{\prime}$, long. $75^{\circ} 4^{\prime}$-observed at in 1865 -is on a conical shaped hill rising about 200 feet above the surrounding country, and lies $5 \frac{3}{4}$ miles S.W. by W. of the village of Mahud on the road from Khánápur to Pandharpur, and $1 \frac{1}{4}$ miles S.E. of Katphal village on the same road. The station is in the lands of the village of Katphal, taluka Sángola, district Sholápur.

The station consists of a platform of stones enclosing a circular, perforated and isolated pillar of masonry about 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other at the ground level; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Chikk Mahad N.E., miles 3t; Achakdani S:E., miles $2 \frac{1}{\frac{5}{2}}$; Umbargaon W. by S., miles $4 \frac{1}{2}$; and Bangad N.E. by N., miles 14 .
VI. Aundh Hill Station, lat. $17^{\circ} 33^{\prime}$, long. $74^{\circ} 24^{\prime}$-observed at in 1865 -is situated on the centre of a flat portion rising 20 feet abruptly above the summit of the flat-topped hill, 2 miles N.E. of the large village of Aundh, 11 miles E . by S. of the town of Rahimatpur on the road to Sátara. The station is in the lands of the village of Aundh, thána Aundh, Sátára Agency.

The station consists of a platform of stones enclosing a circular, perforated and isolated pillar of masonry $5: 1$ feet high, which contains two mark-stones, one in the upper surface of the pillar and the other at the ground level; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are:-Gusavi S.E. by E., mile $\frac{3}{4}$; Varúr N.N.E., miles $1 \frac{9}{4}$; Kumta E.N.E., miles 23 ${ }^{\frac{3}{4}}$; and Gopuj S.E. by E., miles 3. When visited in $1878-79$ by the Levelling Party the station was found intact.
VII. Palsi Hill Station, lat. $17^{\circ} 13^{\prime}$, long. $74^{\circ} 53^{\prime}$-observed at in 1865 -is situated on a ridge rising abruptly from the hill to a height of about 20 feet, and lies $1 \frac{1}{2}$ miles E.S.E. of the village of Palsi which is about $\frac{1}{\frac{1}{a}}$ a mile N . of the road from Karád to Bijápur. The station is in the lands of the village of Kusavdi, taluka 'Iásgaon, district Sátára.

The station consists of a platform of stones enclosing a circular, perforated and isolated pillar of masonry about 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other at the ground level; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are:-Baúr N.E. by E., miles $\mathbf{8}$; Pácheguon E. by S., miles 3年; Jarandi S., miles 2 ; and Hivra W. by N., miles 34 .
VIII. Kundal Hill Station, lat. $17^{\circ} 8^{\prime}$, long. $74^{\circ} 27^{\prime}$-observed at in 1865 -is situated on a high flat-topped hill, about 1 mile $\mathrm{N} . \mathrm{W}$. of the village of Kundal which lies about $\frac{1}{8}$ a mile off the road from Karad to Tásgaon. The station is in the lands of the village of Kundal, thána Kundal, Sátára Agency.

The station consists of a platform of rubble stones enclosing a circular; perforated and isolated pillar of masonry $5 \cdot 1$ feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Kumbhargaon N.E. by N., mile l; Dudhondi S.W. by S., miles 2 ; Devarashta N. by W., miles $2 \frac{3}{4}$; and Bálavdi N.E. by E., miles $4 \frac{1}{2}$.
'IX. Dandoba Dongar Hill Station, lat. $16^{\circ} 55^{\prime}$, long. $74^{\circ} 47^{\prime}$-observed at in 1865 -is situated on the highest part of a flat-topped range of hills on the boundary of the villages of Bhosa, Kharsang, Khandrajuri and Málgaon, and lies about 9 miles N.E. of the town of Miraj on the road from Kolhápur to Athni. The hill is named after the large Hindu temple which stands on it at a distance of $\frac{1}{2}$ a mile N.N.E., of the station. It is in the lands of the village of Malgaon, pargana and state of Miraj, Southern Maratha Agency.

The station consists of a platform of rubble stones enclosing a circular, perforated and isolated pillar of masonry $5 \cdot 2$ feet high, which contains two mark-stones, one in the upper surface of the pillar and the other at the ground level; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Kharsang N.E., miles $3 \frac{1}{\frac{1}{2}}$; Khandrajuri S.E. by E., miles $\mathbf{3 4}$; Bhosa N.W., miles 2亲; and Malgaon S.s.W., miles 44.
X. Daphlápur Hill Station, lat. $17^{\circ} 2^{\prime}$, long. $75^{\circ} 10^{\prime}$-observed at in 1865 -is situated on a low hill, about $3 \frac{1}{\frac{3}{3}}$ miles N.E. by E. of the village of Daphlápur and 7 miles W. by S., of the town of Jath on the road from Karád to Bijápur. The station is in the lands of the village of Daphlápur, Daphlápur State, Sátára Agency.

The station consists of a platform of rubble stones enclosing a circular, perforated and isolated pillar of masonry $4 \cdot 8$ feet high, which contains two mark-stones, one in the upper surface of the pillar and the other at the ground level; an aperture gives access to the lower mark. The directions aud distances of the circumjacent villages are:-Khalati S.E. by S., miles $1 \frac{1}{2}$; Vashan E.N.E., miles 24 ; Kanti N.E. by N., miles $2 \frac{3}{4}$; and Belunki W. by N., miles $2 \frac{3}{4}$.
XI. Athni Hill Station, lat. $16^{\circ} 43^{\prime}$, long. $75^{\circ} 9^{\prime}$-observed at in 1865 -is situated on a plateau having its surface slightly undulating, about $2 \frac{1}{2}$ miles S. of the road from Miraj to Bijápur, and the same distance E.S.E. of Athni. The station is in the lands of the village of Athni, taluka Athni, district Belgaum (Belgaon).

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjacent villages are :-Barchi E.N.E., miles 4; Katkeri E.S.E., miles 2; Ratnapur S.E. by S., miles $2 \frac{1}{\frac{1}{2}}$; and Sukanhati W.S.W., miles 4.
XII. Majala Hill Station, lat. $16^{\circ} 47^{\prime}$, long. $74^{\circ} 29^{\prime}$-observed at in 1865 -is situated on a flat-topped hill, about $\frac{3}{4}$ of a mile N.N.E. of the small village of Majala which lies $\frac{2}{3}$ of a mile N. of the high road from Kolhápur to Shirol. The station is in the lands of the village of Majala, taluka Alta, Kolhápur Agency.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in the upper surface of the pillar and the other 5 feet below; an aperture gives access to the lower mark. When visited in 187% for Latitude Observations the station was found intact. The directions and distances of the circumjacent villages are :-Álta W. by S., miles 3; Nejh N.W., miles 1 g ; and Kumbhoj N. by W., miles 3.
XIII. Mávinhúnda Hill Station, lat. $16^{\circ} 25^{\prime}$, long. $74^{\circ} 50^{\prime}$-observed at in 1865 -is situated on the western brow of a flat-topped hill, about 14 miles E. of the town of Chikodi, and 17 miles N. of the town of Gokak a mile S.W. of the high road between Hukeri aud Manoli. The station is in the lands of the village of Mávinhúnda, taluka Shirol, Kolhápur Agency.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below ; an aperture gives access to the lower mark. When visited in 1872 for Latitude Olsservations the station was found intact. The approximate directions and distances of the circumjacent villages are :-Hubarhalli N.W., miles $2 \frac{1}{2}$; Budihal W. by N., miles $2 \frac{1}{\frac{1}{2}}$; Mávinhúnda S. by W., miles $1 \frac{1}{4}$; and Baikud E. by N., miles 3.
XIV. Hatarvat Hill Station, lat. $16^{\circ} 21^{\prime}$, long. $74^{\circ} 32^{\prime}$-observed at in 1865 -is situated on an elevation rising some 20 feet above the hill on which the village of Hatarvat is. The station lies $7 \frac{1}{8}$ miles E.S.E. of the town of Nipani, and $6 \frac{1}{2}$ miles N. of that of Sankeshvar on the high road to Belgaum. The station is in the lands of the village of Hatarvat, taluka Chikodi, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. 'The approximate directions and distances of the circumjacent villages are :-Nari N.W. by N., miles $2 \frac{1}{\frac{1}{2} \text {; Bidarhalli }}$ E. by N., miles $2 \frac{1}{2}$; and Bhar S.S.W., miles $2 \frac{1}{2}$.
XV. Karabgati Hill Station, lat. $16^{\circ} 8^{\prime}$, long. $74^{\circ} 50^{\prime}$-observed at in 1865 -is situated on a slight elevation on a very elevated table-land, about a mile S. of the Márkándeya river, a branch of the Gliatprabha, and 3 miles S.W. by S. of Gokák near the road from Hukeri to Saundatti (Sanvadatti). The station is in the lands of the village of Gokák, taluka Gokák, district Belgaum.

[^6]XVI. Manikeri Hill Station, lat. $16^{\circ} 9^{\prime}$, long. $75^{\circ} 7^{\prime}$ —observed at in 1865 -is situated on a slight elevation (about 10 feet high) on a flat-topped hill at the foot of which lies the village of Manikeri ; it is $9 \frac{1}{8}$ miles S.W. by W. of Yádvád on the road from Gokák to Kaládgi. The station is in the lands of the village of Manikeri, taluka Gokák, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives-access to the lower mark. The approximate directions and distances of the circumjacent villages are:-Kaligudi N.E., miles 2 ; Kaujalgi N. by W., miles $3 \frac{1}{2}$; Baghalla W. by S., miles 4 ; and Melikeri S.S.W., miles 2.
XVII. Karigudd Hill Station, lat. $16^{\circ} 6^{\prime}$, long. $74^{\circ} 29^{\prime}$-observed at in 1866 -is situated on a conical hill about $5 \frac{1}{2}$ miles W. by S. of the town Yamkanmardi near the high road from Sankeshvar to Belgaum, and 4 miles N . of the Ghatprabha river. The station is in the lands of the village of Bidarvadi, taluka Chikodi, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet
high, which contained two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. The upper mark-stone was removed by some villagers shortly after the observations were completed. The approximate directions and distances of the circumjacent villages are :-Bugarkatti N., mile 1; Kot S.W., miles 2 ; and Bidarhalli S. miles $1 \frac{1}{2}$.
XVIII. Kathárigad Hill Station, lat. $15^{\circ} 54^{\prime}$, long. $75^{\circ} 1^{\prime}$-observed at in 1866 -is situated on a bastion of the ruined hill fort of Kathárigad about 3 miles S . of the high road from Belgaum to Kaládgi, and 3 $\frac{1}{3}$ miles E.N.E. of Murgod. The station is in the lands of the village of Murgod, taluka Parasgad, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in the upper surface of the pillar and the otler 4.9 feet below; an aperture gives access to the lower mark. The approxinate directions and distances of the circumjacent villages are:-Halki W.N.W., miles 4 ; Romapur S.W. by W., miles 14; and Samapur S.E. by S., miles 1 군.
XIX. Kolanhatti Hill Station, lat. $15^{\circ} 55^{\prime}$, long. $74^{\circ} 45^{\prime}$-observed at in 1866 -is situated on a range of flat-topped hills running from \mathbf{E}. to \mathbf{W}. and lying about 2 miles \mathbf{W}. of the village of Deshnúr and the same distance N. of the high road from Belgaum to Kaladgi. The station is in the lands of the village of Deshnúr, taluka Sampgaon, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, oue in the upper surface of the pillar and the other 5 feet below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjaceut villages are :-Kolanhatti S.E. by E., mile 1; Kardigudi S.W. by S., miles 3 ; and Nelseri E., miles 4.
XX. Chikk Nandihalliggudd Hill Station, lat. $15^{\circ} 38^{\prime}$, long. $74^{\circ} 51^{\prime}$-observed at in 1866 -is situated on a small hill lying immediately E. of the high road from Kittúr to Bailhongal, and about $2 \frac{1}{\frac{1}{2}}$ miles N.E. of the former town. The station is in the lands of the village of Chikk Nandihalli, taluka Sampgaon, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjacent villages are:-Chikk Nandihalli N.N.W., miles it; Ouradi S., mile 1 ; Dimati W.N.W., miles 2 ; and Sigihalli E., miles 3.
XXI. Hirěkummígudd Hill Station, lat. $15^{\circ} 44^{\prime}$, long. $75^{\circ} 15^{\prime}$-observed at in 1866 -is situated on a flat-topped hill locally called Fakir Sahib, at the foot of which lies the village of Hirěkummi. There are three mosques on the hill, one called Bara Imám is 30 yards N.E. of the station, and the other two 100 yards to the W. The station is 10 miles S.E. by S. of the town of Manoli, and 6 miles E.S.E. of that of Saundatti. The station is in the lands of the village of Hirěkummi, taluka Parasgad, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry $5 \cdot 1$ feet high, which contains one mark-stone (the lower); an aperture gives access to it. The approximate directions and distances of the circumjucent villages are :-Chikk Kummi E.N.E., mile 1 ; Dubal N. by E., mile $\frac{1}{2}$; Hirèkummi S.S.W., mile $\frac{3}{4}$; and Harlapur N.W. by N., miles $2 \frac{1}{2}$.
XXII. Yalúr Hill Station, lat. $15^{\circ} 45^{\prime}$, long. $74^{\circ} 344^{\prime}$-observed at in 1866 -is situated near the S.W. corner of the ramparts of the hill fort of Yalúr lying 2 miles E . of the high road from Belgaum to Haliyal, and about 7 miles S . of the cantonment of Belgaum. The station is in Kurundvád State, Southern Maratha Agency.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in the upper surface of the pillar and the other 6 feet below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjacent villages are :-Yalúr N. by W., miles 2 ; Sulge N.W. by N., mile 1 ; Desúr W.S.W., miles $1 \frac{1}{4}$; and Nagaulatti S.E. by S., miles $1 \frac{1}{1}$.
XXIII. Samshergad Hill Station, lat. $15^{\circ} 34^{\prime}$, long. $74^{\circ} 34^{\prime}$-observed at in 1866 -is situated on the highest of the three conical shaped hills, about $3 \frac{1}{4}$ miles W. by S. of the village of Nandgad, and $5 \frac{1}{\frac{1}{2}}$ miles S. by E. of the town of Khánápur on the high road from Belgaum to Nandgad. The station is in the lands of the village of Nandgad, taluka Khánápur, district Belgaum.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjaceut villages are:-Naikol S.W. by W., miles $\} \frac{1}{2}$; Sawargali N.W. by N., mile 1; and Hirěbhalke S.W., miles 2.

MANGALORE MERIDIONAL SERIES.

XXIV. Navalúr Hill Station, lat. $15^{\circ} \mathbf{2 6}$, long. $75^{\circ} 6^{\prime}$-observed at in 1866 and 1867 -is situated on a small hill about a mile N . of the high road from Hubli (Hubballi) to Dhárwár (Dhárvád), and 4 miles S.E. by E. of the cantonment of Dhárwár. The station is in the lands of the village of Navalúr, taluka and district Dhárwár.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5.1 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives access to the lower mark. When visited in 1867, it is presumed from the absence of any remarks in the original records that the station was found in good order and that no alteration was made in its construction. In 1872 it was visited for Latitude Observations when the station was found intact. The approximate directions and distances of the circumjaceut villages are :-Navalúr W.N.W., mile 1 ; Satúr S.W. by S., miles $1 \frac{1}{2}$; and Rayapur S.E., miles 1 곤.
XXV. Kalkera Hill Station, lat. $15^{\circ} 25^{\prime}$, long. $74^{\circ} 55^{\prime}$-observed at in 1866 and 1867 -is situated on a hill lying immediately S. of the high road from Dhárwár to Huliyal, and about 9 miles N.E. by E. of the latter place. The station is in the lands of the village of Kalkera, taluka and district Dhárwár.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in the upper surface of the pillar and the other $4 \frac{1}{2}$ feet below, (the lower mark being cut on a large mass of stone buried flush with the ground); an aperture gives access to the lower mark. When visited in 1867, it is presumed from the absence of any remarks in the original records that the station was found in good order and that no alteration was made in its construction. The approximate directions and distances of the circumjacent villages are:-Kaikera N.E. by N., mile $\frac{1}{\frac{1}{2}}$; Honapur N.W. by W., miles $2 \frac{1}{2}$; and Devgiri E.S.E., miles $1 \frac{1}{2}$.
XXVI. Ganigudd Hill Station, lat. $15^{\circ} 15^{\prime}$, long. $74^{\circ} 57^{\prime}-$ observed at in 1867 -is situated on a sacred hill known by the name of Ganigudd, about 61 miles N.W. of the large village of Kalghatgi on the road between Haliyal and Taras, and 6 miles W. of the road from Dhárwar to Kalghatgi. The station is in the lands of the village of Galginkatti, taluka Kalghatgi, district Dhárwár.

The station consists of a platform 4 feet high, enclosing a circular, perforated and isolated pillur of masonry, which contains two marks, one in its upper surface and the other below; an aperture, gives access to the lower mark. The approximate directions and distances of the circumjacent villages are :-Guladk $\check{\text { p }}$ N.W. by N., miles $1 \frac{1}{2}$; Kudalgi S.W., miles 4; and Hasambi E.N.E., miles $2 \frac{1}{2}$.
XXVII. Kundgol Hill Station, lat. $15^{\circ} 15^{\prime}$, long. $75^{\circ} 17^{\prime}$-observed at in 1867 -is situated on an elevated piece of ground on the S. side of the fort of Kundgol on the high road from Hubli to Ránebennúr and about 9 miles E.S.E. of the former place. The station is close to a Mulammadan Idgah. It is in the lands of the village of Kundgol, taluka Kundgol, district Dhárwár.

The station consists of a platform 10 feet high, enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in its upper surface and the other below; an aperture gives access to the lower mark. When visited in 1871-72 for Latitude Observations and in 1873-74 by the Levelling Party, the station was found in good preservation. The approximate directions and distances of the circumjacent villages are:-Sirúr S.E., miles $2 \frac{1}{2}$; Bedebal S. by E., miles 2; and Benkahalli N.E. by E., miles $3 \frac{1}{2}$.
XXVIII. Kánsěrudi Hill Station, lat. $15^{\circ} 12^{\prime}$, long. $74^{\circ} 40^{\prime}$-observed at in 1867 -is situated on à flat-topped hill about 2 miles S. of the Káli river, and 9 miles S.E. by E. of the large village of Supa. It is probably within about 15 feet of the point occupied by "Kanusirudy" of Colonel Lambton's triangulation. The station is in the lands of the village of Sambrani, taluka Supa, district North Kánara (Kánada).

The station consists of a platform of stones (supported by logs of wood) enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in its upper surface and the other $5 \cdot 67$ feet below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjacent villages are:-Kánsěrudi N.E., miles 2; Kulagi S. by E., miles 3; and Manhai S.W. by W., miles $3 \frac{1}{2}$.
XXIX. Indúr Hill Station, lat. $15^{\circ} 1^{\prime}$, long. $75^{\circ} 5^{\prime}$-observed at in 1867 -is situated on a moderately high hill about 1 mile E. of the village of the same name, and 2 miles N.E. of the road between the large villages of Bammigatti and Mundgod, and $5 \frac{1}{2}$ miles S.E. of the former. It is probably within about 20 feet of the point occupied by "Indoor" of Colonel Lambton's triangulation. The station is in the lands of the village of Indúr, taluka Yellápur, district North Kánara.

The station consists of a platform 5 feet high, enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in its upper surface and the other below; an aperture gives access to the lower mark. The approximate directions and distances of the circumjacent villages are:-Mafikeri E. by S., miles $1 \frac{8}{4}$; Nandikatta W. by N., miles $3 \frac{1}{2}$; and Harshanagiri N.E. by N., miles 2.
XXX. Rámankŏp Hill Station, lat. $15^{\circ} 0^{\prime}$, long. $74^{\circ} 49^{\prime}$-observed at in 1867 -is situated on a hill lying about a mile N. of the road from Yellápur to Mundgod and $4 \frac{1}{2}$ miles E.N.E. of the former place, which is on the high road from Dhárwár to Yellápur. It is probably within about 35 feet of the point occupied by "Oolakerra" of Colonel Lambton's triangulation. The station is in the lands of the village of Sahasrahalli, tuluka Yellápur, district North Kánara.

The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in its upper surface and the other below ; an aperture gives access to the lower mark. The approximate directions and distances of the circumjacent villages are:-Ittinbail N.W. by N., miles l \downarrow; Samgoli W.S.W.,

XXXI. Bhedasgávegudda Hill Station, lat. $14^{\circ} 47^{\prime}$, long. $74^{\circ} 58^{\prime}$-observed at in 1867 -is situated on a hill sloping up so gradually from the \mathbb{S}. that it is practicable for carts almost to its top. It is on the road from Hisalúr to Mundgod, and about 9 miles E.N.E. of Sonda. It is probably within about 45 feet of the point occupied by "Bairdusigaon" of Colonel Lambton's triangulation. The station is in the lands of the village of Bhedasgaon, taluka Sirsi, district North Kánara.

The station consists of a platform of logs of wood (covered over with earth) enclosing a circular, perforated and isolated pillar of masonry, which is 8 feet in height above the second mark-stone. The approximate directions and distances of the circumjaceut villages are :-Bhedusgávegudda S., miles 2; Togarhalli S.E. by S., miles $1 \frac{1}{2}$; and Hamalagarh N., miles $2 \frac{1}{2}$.
XXXII. Karěkyatanhalli Hill Station, lat. $14^{\circ} 40^{\prime}$, long. $75^{\circ} 17^{\prime}$ —observed at in 1867 -is situated on a rather high isolated hill at the foot of which is the village of the same name: it lies 3 miles N.N.E. of the village of Tiluvali on the high road from Sirsi to Harihar, and $4 \frac{1}{4}$ miles N.E. of Mudi on the right bank of the Varda river. The station is in the lands of the village of Karěkyatanhalli, taluka Hángal, district Dhárwár.

The station consists of the usual platform enclosing a circular, perforated and isolated pillar of masonry, which contains three mark-stones, one in the upper surface of the pillar and the other two 5.00 and 5.88 feet respectively below it. The upper portion of the pillar, down to the second mark-stone is perforated. The directions and distances of the circumjacent villages are :-Betnalla W.S.W., miles 2; Guddada Malapur S.S.E., miles 5 ; Kusmur on the banks of the Varda river, E.N.E., miles 3 ; Malápur E.S.E., mile 1; and Honkana S.W. by W., miles $3 \frac{1}{2}$.
XXXIII. Menshigudda Hill Station, lat. $14^{\circ} 45^{\prime}$, long. $74^{\circ} 43^{\prime}$-observed at in 1867 -is situated on the southern end of a very high hill which forms one of a lofty range running N. and S ., about 9 miles \mathbf{W}. of the large village of Sonda, and 5 miles S. of the Gangavali river. It is probably within about 30 feet of the point occupied by "Mainsi" of Colonel Lambton's triangulation. The station is in the lands of the village of Menshi, taluka Sirsi, district North Kánara.

The station consists of the usual platform enclosing a circular, perforated and isolated pillar of masonry, which contains three mark-stones, one in its upper surface and the others at 5 and 5.67 feet respectively below it; an aperture gives access to the second mark. The approximate directions and distances of the circumjacent villages are:-Halligudda S.W. by S., miles 4; Negse S.E., miles $5 \frac{1}{\frac{1}{2}}$; and Maviukëre W. by S., miles $5 \frac{1}{2}$.
XXXIV. Chandragutti Hill Station, lat. $14^{\circ} 26^{\prime}$, long. $74^{\circ} 59^{\prime}$-observed at in 1867 and 1872 -is situated near the N.W. corner of a small temple on the highest point of a very high hill $1 \frac{1}{4}$ miles N.W. by W. of the village of Chandragutti. The hill, on which are the ruins of a very large fort, slopes up gradually from the village on the S . and falls rather abruptly about 700 feet on the N . side. It is probably within about 40 feet of the point occupied by "Chandergooty" of Colonel Lambton's triangulation. The station is in the lands of the village of Chandragutti, taluka Sơrab, district Shimŏga (Shivamŏgga).

The station consists of a platform enclosing a circular, perforated and isolated pillar of masonry, which contains three mark-stones, one in its upper surface and the others at 5.04 and $5 \cdot 67$ feet respectively below it ; an aperture gives access to the second mark. When visited in $18 \pi 2$ the station was found intact. The directions and distances of the circumjacent villages are :-Baragvali N.N.W., mile 1; Kodambi W. by N., miles 2 $\frac{1}{2}$; Katavai S. by E., miles 2; aud Yedgøppa E. by N., miles] 군.
XXXV. Halĕbail Hill Station, lat. $14^{\circ} 30^{\prime}$, long. $74^{\circ} 42^{\prime}$-observed at in 1867 and 1872 -is situated on a hill 3 miles S. of the head of the Devimanighát on the road from Sirsi to Kumta, about $14 \frac{1}{2}$ miles from the former town. The hill is locally known as Bairágigudda: it rises about 500 feet above the general level of the adjoining country to the N.E.; to the S. and W. it slopes off gradually to the low country on the coast. It is probably within a few feet of the point occupied by "Byrachidonghur", of Colonel Lambton's triangulation. The station is in the lands of the village of Halëbail, taluka Siddápur, district North Kánara.

The station consists of a platform enclosing a circular, perforated and isolated pillar of masonry, which contains three mark-stones, one in its upper surface and the other two 5 and 5.71 feet respectively below it ; an aperture gives access to the second
mark. When visited in 1872 , the upper mark-stone was found apparently intact. The azimuths and estimated distances of the circumjacent villages are :-Bandla 173°, miles 3 ; Hoskera 196°, miles $4 \frac{1}{2}$; Tallakera 194°, mile 1 ; and Kesirkuni 170°, mile $\frac{3}{4}$.
XXXVI. Hukaligudda Hill Station, lat. $14^{\circ} 17^{\prime}$, long. $74^{\circ} 48^{\prime}$-observed at in 1872 -is situated on the highest point of a range of hills skirting the north bank of the Shiravati river, about $5 \frac{1}{2}$ miles N.W. of the Gersŏppa falls, and $\frac{1}{3}$ a mile N. of the road from Gersŏppa (Gerusǒppa) to the above named falls; It is probably within about 10 feet of the point occupied by "Hoklee Heeragooda" of Colonel Lambton's triangulation. The station is in the lands of the village of Alhalli, taluka Siddápur, district North Kánara.

Abstract

The station consists of a platform of stones enclosing a circular, perforated and isolated pillar of masonry, which contains three mark-stones, one in its upper surface, the second 4.75 feet below and the third below the second; an aperture gives access to the second mark. The azimuths and estimated distances of the circumjacent places are :-Itige (spire of temple) 198°, miles 4; Kanhalli 230°, mile $\frac{3}{4}$; Bongiri 233°, miles 7 ; and Bailhalli 233°, miles 3.

XXXVII. Kaltigudda Hill Station, lat. $14^{\circ} 22^{\prime}$, long. $74^{\circ} 35^{\prime}$ —observed at in 1872 -is situated on the highest point of a group of hills rising about 2200 feet above the village of Salakoru, from which there is a commanding view all round, about 3 miles S. of the road from Siddápur to Kunta on the sea coast, and 10 miles N.E. of the town of Honávar. The station is probably within about 20 feet of the point occupied by "Kulteegooda" of Colonel Lambton's triangulation. It is in the lands of the village of Hodke, taluka Hionávar, district North Kánara.

The station consists of a platform of earth and stones enclosing a circular, perforated and isolated pillar of masonry, which contains two mark-stones, one in its upper surface and the other 5 feet below it ; an aperture gives access to the lower mark. The approximate directions and distances of the following villuges (though noue are visible from the station) are:-Chandávar W.N.W., miles $4 \frac{3}{4}$; Dávali N., miles $3 \frac{1}{2}$; and Kundbálla S., miles $4 \frac{1}{2}$.
XXXVIII. Dinděmane Hill Station, lat. $14^{\circ} 8^{\prime}$, long. $74^{\circ} 43^{\prime}$-observed at in 1873-(also called Chikkadhalligudda) is on a peak of the Western Ghats which closely overlooks the low country and the coast line to the west. The station is easily approached from the village of Kanúr near the head of the Govardhangiri pass, and lies about $6 \frac{1}{2}$ miles S. of the ruins of Gersocppa on the Shirávati river. It is identical with "Dindimunnee" station of Colonel Lambton's triangulation, the mark of which was found engraved on the rock and adopted for the lower mark of the present station. The station is in the lands of the village of Kanúr, taluka Ságar, district Shimŏga.

The station consists of a platform of earth and stones about 12 feet square, enclosing a circular, perforated and isolated pillar of masonry 5 feet high aud 3 feet in dianeter, which contains two marks, one on a stone embedded in the upper surface of the pillar and the other engraved on the rock at the ground level; an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are:-Govardhangiri Drug N.N.W., miles 34; Kanúr N.E. by E., miles 1年; Samane W.N.W., miles $1 \frac{1}{2}$; Chikkadhalli S., miles $1 \frac{1}{2}$; and Huralgal N., miles $1 \frac{1}{2}$.
XXXIX. Koramúr Hill Station, lat. $14^{\circ} 8^{\prime}$, long. $75^{\circ} 1^{\prime}$-observed at in 1873-(locally known as Koramúr Kota) is situated on a somewhat isolated peak rising about 500 feet above its base, to wards the eastern part of the Talguppe-Ikkeri range. It is $4 \frac{1}{3}$ miles W.S.W. of the town of Ságar, and $2 \frac{3}{4}$ miles S.W. by S. of Kugavi village on the road from Talguppe to Ságar. The station is identical with "Koramoorgooda" station of Colonel Lambton's triangulation, the mark of which was found engraved on the rock and adopted as the lower mark of the present station. The station is in the lands of the village of Nijagar Khandaka, taluka Ságar, district Shimŏga.

The station consists of a platform of earth and stones about 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter and 3 feet high; there are two marks, one on a stone imbedded in the upper surface of the pillar and the other below it engraved on the rock in situ. Tine directions and estimated distances of the circumjacent villages are:Tumbi S.S.W., mile f; Dombe N. by E., miles $1 \frac{3}{3}$; Shervanti (on the road from Talguppe to Ságar) N. by W., miles 3; and Bálehalli E. by S., mile 1.
XL. Hŏnnavalli Hill Station, lat. $14^{\circ} 17^{\prime}$, long. $75^{\circ} 13^{\prime}$ —observed at in 1872 and 1873-is situated on the western point of a short ridge forming part of a chain of hills running almost parallel to and at a distance of nearly 2 miles S.E. of the road from Ságar to Sirálkŏppa, and about $4 \frac{1}{2}$ miles E. of the large village of Ulavi at the junction of the above mentioned road with one from the town of Sorab. It is identical with the station of "Hoonavully or Gootygooda" of Colonel Lambton's triangulation, the mark of which was found engraved on the rock and adopted as the lower mark of the present station. The station is in the lands of the village of Hŏnnavalli, taluka Sŏrab, district Shimŏga.

The station consists of a platform of earth aud stones enclosing a solid, circular and isolated pillar of masonry ; there
are three marks, the first on a stone imbedded in the upper surface of the pillar, the second 1.46 feet below it and the third on the rock $3 \cdot 17$ feet below the second. The directions and distances of the circumjacent villages are :-Kanhalli W. by S., miles 24 ; Kanúr N.W. by W., miles $1 \frac{1}{\frac{1}{2}}$; Hønnavalli N.W. by N., mile 1; Hठsúr N.N.W., miles $1 \frac{7}{4}$; Indvalli N.E. by N., miles $1 \frac{8}{4}$; and Guttanhalli S.E., miles 2.
XLI. Hugadi Hill Station, lat. $13^{\circ} 54^{\prime}$, long. $75^{\circ} 14^{\prime}$-observed at in 1873 -is situated on the highest and south-easternmost point of a hill rising about 800 feet above its base, $3 \frac{1}{2}$ miles N.W. by W. of Humchikatte on the road from Tirthahalli to Shimŏga, and 3 miles S.E. by E. of Kodúr. It is identical with the station of "Hoogadeegooda" of Colonel Lambton's triangulation, the mark of which was found and adopted as the lower mark of the present station. The station is in the lands of the village of Hugadi, taluka Nagar, district Shimöga.

The station consists of a platform of earth and stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{8}$ feet in diameter, which contains three marks, one in the upper surface of the pillar and the other two at 1.67 and 3.84 feet respectively below it. The directions and distances of the circumjacent villages are:-Mallalikðppa E.S.E., miles $1 \frac{1}{8}$; Kargarsu N.N.E., miles $1 \frac{1}{2}$; Hugadi E. by S., miles $1 \frac{1}{4}$; Kadeshakvalli N.W. by W., mile 1 ; and Mallúr S.W. by W., miles $1 \frac{1}{4}$.
XLII. Kŏdashádri Hill Station, lat. $13^{\circ} 51^{\prime}$, long. $74^{\circ} 55^{\prime}$-observed at in 1873 -is situated on the Shikhara or head of the great hill of this name of the Western Gháts, on the boundary of South Canara (Kánada) and Mysore (Maisúr), $3 \frac{2}{3}$ miles S.S.E. of the traveller's bungalow at Nágodi on the high road from the Koblurghát to Kolúrkatte. The station is $13 \cdot 7$ feet N. of the north wall of the Shikhara temple (a stone building occupying the centre of the peak), and about 25 feet E.N.E. of the centre of an old platform and pile of earth and stones supposed to be the site of the station of "Kodaichee Puwudum" of Colonel Lambton's triangulation; this old platform has been removed and a rough stone mark set in mortar has been erected in its place. The station is in the lands of the village of Vallurmane, taluka Ságar, district Shimŏga.

The station consists of a platform of earth and stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{8}$ feet in diameter, which contains two mark-stones, one imbedded in the upper surface of the pillar and the other set in the laterite rock $2 \cdot 54$ feet below it. The directions and distances of the circumjacent villages are :-Walúr N., miles 1 ? ; Bilikal S.E. by S., miles 24 ; and Bacheri N.W. by N., miles 2.
XLIII. Siddeshvar Hill Station, lat. $13^{\circ} 41^{\prime}$, long. $75^{\circ} 16^{\prime}$-observed at in 1873 -is situated on the highest part of a rocky hill rising about 400 feet above its base, about a mile W. of the town of Tirthahalli on the high road from Mangalore (Mangalúr) to Shimŏga. The station is 431 feet E.N.E. of the small dilapidated temple near the western end of the summit. No trace of Colonel Lambton's station "Sidaeshwaragooda" was found. The station is in the lands of the village of Surali Balëbail, taluka Kavaledurga, district Shimŏga.

The station consists of a platform of earth and stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 2-27 feet below it at the ground level. The directions and distances of the circumjacent villages are :-Malbagal W.S.W., miles 2 ; Tumadi S., mile 1; Bintalla W., miles $1 \frac{1}{2}$; and Surali W.N.W., mile $\frac{1}{2}$.
XLIV. Bisale Hill Station, lat. $13^{\circ} 35^{\prime}$, long. $75^{\circ} 5^{\prime}$-observed at in 1873 -is situated on the summit of a bare hill of the Western Ghats immediately overlooking the country and the sea coast to the west, about 6 miles N.W. by W. of the travellers' bungalow at Agumbe (Águmbi) on the high road from Mangalore to Shimŏga, and 16 miles S.W. by W. of the town of Tirthahalli on the same road. It is identical with the station of "Bisslygooda" of Colonel Lambton's triangulation, the mark-stone of which was found and adopted as the lower mark of the present station. The station is in the lands of the village of Hŏsúr, taluka Kavaledurga, district Shimŏga.

The station consists of a platform of earth and stones 16 feet square, enclosing a soiid, circular and isolated pillar of masonry $3 \frac{1}{8}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 1.94 feet below it. The directions and distances of the circumjacent villages are (though none are visible from the station):-Kaivakikere S.E. by S., miles $4 \frac{1}{2}$; Yelemane E. by N., miles 5 ; and Malki N.E., miles $4 \frac{1}{2}$.
XLV. Hirĕgudda Hill Station, lat. $13^{\circ} 24^{\prime}$, long. $75^{\circ} 27^{\prime}$-observed at in 1873 -is situated on the southernmost and highest point of a range of hills running northwards from the Sita stream, about 2 miles E . of the travellers' bungalow at Sulibĕle on the road between Balĕhŏnnúr and Hariharpur, and 5 miles S.E. by E. of Baggunji. The station is 16 feet S.E. of the highest rock on the summit. It is in the lands of the village of Hirěgudda, taluka Kŏppa, district Kadúr.

The station consists of a platform of earth and stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other $1 \cdot 9$ feet below it. The directions and distances of the circumjacent villages are:-Hirěgudda E. by S., mile $\frac{?}{4}$; Álageshvara W.N.W., miles $1 \frac{1}{2}$; and Sunkargudda S., mile 1.
XLVI. Hěbbe Hill Station, lat. $13^{\circ} 32^{\prime}$, long. $75^{\circ} 38^{\prime}$-observed at in 1873 -is situated on the extreme western peak of the northern bend of the horse shoe formed by the Chandradrona (commonly called the Bábá Budan) range of hills. It lies 2 miles E. by N. of the travellers' bungalow at.Hĕbbe on the high road from Yědĕhalli to Chikmagalúr. The station is in the lands of the village of Hěbbe, taluka Lakvalli, district Kadúr.

The station consists of a platform of earth and stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\mathrm{y}}$ feet in diameter, which contains two marks, one engraved on the rock in sith and the other 0.98 of a foot above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Kargal S . by E., miles $1 \frac{1}{2}$; Hippala S.E., miles 2 ; Karivaui E., miles $3 \frac{1}{4}$; and Kármati N.W. by W., miles $2 \frac{1}{2}$.
XLVII. Valkunji Hill Station, lat. $13^{\circ} 21^{\prime}$, long. $75^{\circ} 7^{\prime}$-observed at in 1873 -is situated on the conspicuous peak immediately above the Andár pass, about 9 miles S.W. by W. of Kigga, and 13 miles W.S.W. of the large village of Sringeri. The station is in the lands of the village of Vurvani, taluka Köppa, district Kadúr.

The station consists of a platform of earth and stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry 3 f feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 1.42 feet below it at the ground level. The directions and distances of the circumjacent villages are:-Araue S.E. by E., miles 2t; Kěre E. by S., miles $4 \frac{1}{2}$; and Karuchar E., miles $3 \frac{1}{2}$.
III.-(Of the Madras Longitudinal Series). Kudurĕmukha Hill Station, lat. $13^{\circ} 8^{\prime}$, long. $75^{\circ} 18^{\prime}$ observed at in 1872 and 1873-is situated on the highest point of the lofty group of peaks, which stands out prominently from the Western Ghats; the peak on which the principal station is fixed is called "Funk Point" by the district officers and the residents of Mangalore, the former of whom have built a bungalow about a mile E.N.E., some 20 minutes' walk from the station. Another peak $\frac{3}{4}$ of a mile to the E. by S. of the present station, called "Mukh Head", was originally adopted as a station and built upon but was abandoned as being unsuitable for connecting the Mangalore Meridional and the Madras Longitudinal Series. The peak called Pándukal by the Natives and "Midge Point" by the Europeans, is a mile W. by N. and has been fixed as a secondary station and marked by a circle and dot engraved on the rock. These three peaks are on the ridge or watershed of the mountain which is the boundary between South Canara and Mysore. The station is most easily reached from the town of Bellat Angadi by a cart road 7 $7 \frac{1}{2}$ miles to Nágúr at the E.S.E. foot of the mountain, whence the ascent, about 5,600 feet, is made by a well traced bridle path of $12 \frac{1}{2}$ miles to the bungalow above mentioned. The station is in the lands of the village of Samse, taluka Vastára, district Kadúr.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 1.21 feet below it. When again visited in 1873, it is presumed from the absence of any remarks in the original records that the station was found in good order and no alteration in its construction was made. The directions and distances of the circumjacent villages are :-Allat Angádi S.S.W., miles $6 \frac{1}{2}$; Bangavádi E.S.E., miles $7 \frac{1}{4}$; Jamalabad S. by E., miles $7 \frac{1}{\frac{1}{2}}$; and Bangár E. by N., miles 2
VI.-(Of the Madras Longitudinal Series). Ánír or Rangaswámigiri Hill Station, lat. $13^{\circ}{ }^{19}{ }^{\prime}$, long. $75^{\circ} 42^{\prime}$-observed at in 1872 and 1873 -is situated on the southernmost peak of the Madlakal group of hills, 2 or 3 miles W.N.W., of Ánúr on the road from Múdagěre to Yëděhalli, 8 miles W. of the town of Chikmagalúr, and $4 \frac{8}{4}$ miles N.W. of Vastára. A cart road from Chikmagalúr and Vastára runs to Ánúr, whence the ascent to the station of about 3,000 feet is made by a foot and bridle path through the Basgodu Coffee estate. The station is in the lands of the village of Hanucharvalli, taluka Chikmagalúr, district Kadúr.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry 3f feet in diameter, which contains two marks, one engraved on the rock in situ and the other $2 \cdot 23$ feet aljove it on a stone imbedded in the upper surface of the pillar. When revisited in 1873, the station was found in a good state of preservation and no alteration in its construction appears to have been made. The directions and distances of the circumjacent villages are:Kashige W. by S., miles $1 \frac{1}{2}$; Koligunhalli S.E., mile $\frac{3}{4}$; Mávinguri S.S.W., mile $\frac{3}{4}$; aud Baigúr W. by N., miles $1 \frac{1}{8}$.

$$
\text { April, } 1888
$$

M. W. ROAERS,

$\because: \because: 口$

MANGALORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

At XVII (Kem)

*February and March 1863; and †February 1865; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Note.-Stations XVII (Kem) and XIX (Alsunda) appertain to the Bombay Longitudinal Series.

March 1863; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.		
Angle between	Circle readings, telescope being set on XVII (Kem) $\begin{array}{lllllllll}139^{\circ} 18^{\prime} & 319^{\circ} 18^{\prime} & 176^{\circ} & 30^{\prime} & 366^{\circ} 31^{\prime} & 219^{\circ} 42^{\prime} & 39^{\circ} 42^{\prime} & 262^{\circ} 54^{\prime} & 82^{\circ} 55^{\prime} \\ 800^{\circ} 6^{\prime} & 1280^{\circ} 6\end{array}$	$\begin{aligned} & \boldsymbol{M}=\text { Moan of Groupr } \\ & { }_{c}^{w}=\text { Roontived Weight } \\ & \text { Concludea } \Delta \text { nglo } \end{aligned}$
$\begin{aligned} & \text { XVII (Kem) } \\ & \text { and } \\ & \text { I (Kalas) } \end{aligned}$	 	$\begin{aligned} & M=3^{\prime \prime} \cdot 8 \mathbf{2} \\ & w=5 \cdot 10 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=77^{\circ} 21^{\prime} 3^{\prime \prime} \cdot 82 \end{aligned}$
	$\begin{array}{lllllllllll}39 \cdot 74 & 38 \cdot 17 & 39 \cdot 30 & 41 \cdot 20 & 36 \cdot 99 & 37 \cdot 41 & 38 \cdot 28 & 39 \cdot 31 & 37 \cdot 82 & 40 \cdot 01\end{array}$	
$\begin{aligned} & \text { I (Kalas) } \\ & \text { and } \\ & \text { XXII (Bori) } \end{aligned}$	 	$\begin{aligned} & M=59^{\prime \prime} \cdot 5 \mathbf{1} \\ & w=10 \cdot 70 \\ & \frac{1}{w}=\circ \cdot 93 \\ & C=54^{\circ} 4^{\prime} 59^{\prime \prime} \cdot 5^{1} \end{aligned}$
At XXII (Bori) *April 1863; and †February 1865; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.		
Angle between	Circle readings, telescope being set on XIX (Alsunda) 	
$\begin{gathered} \text { XIX (Alsunda) } \\ \text { and } \\ \text { I (Kalas) } \end{gathered}$		$\begin{aligned} & M=24^{\prime \prime} \cdot 05 \\ & w=23 \cdot 41 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=58^{\circ} 53^{\prime} 24^{\prime \prime} \cdot 05 \end{aligned}$
	$\begin{array}{llllllllll}23.95 & 23.65 & 24.35 & 24.05 & 25.36 & 23.73 & 23.23 & 23.56 & 24.65 & 24.01\end{array}$	
$\begin{gathered} \stackrel{\dagger}{+} \\ \mathrm{I} \text { (Kalas) } \\ \text { and } \\ \text { III (Palvan) } \end{gathered}$	Circle readings, telescope being set on I (Kalas) 	$\begin{aligned} & M=19^{\prime \prime} \cdot 13 \\ & w=6 \cdot 40 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=52^{\circ} 51^{\prime} 19^{\prime \prime \prime} \cdot 13 \end{aligned}$
	$\begin{array}{llllllllll}19.13 & 16.91 & 20.95 & 18.97 & 20.46 & 19.21 & 18.54 & 18.50 & 18.57 & 20.03\end{array}$	

Norr.-Stations XVII (Kem), XIX (Alsunda) and XXII (Bori) appertain to the Bombay Longitudinal Series.

Nore.-Stations XVII (Kem), X[X (Alsunda) and XXII (Bori) appertain to the Bombay Longitudinal Series.

Note.-Stations XVII (Kem) and XXII (Bori) appertain to the Bombay Longitudinal Series.

At III (Palvan) - (Continued).											
Angle between	Circle readings, telescope being set on XXII (Bori)										$M=$ Mean of Groups $w_{0}=$ Relative Weight C $=$ Concluded Angle
$\begin{aligned} & \text { IV (Páchvad) } \\ & \text { and } \\ & \text { VI (Aundh) } \end{aligned}$	 										$\begin{aligned} & M=31^{\prime \prime} \cdot 61 \\ & w=16 \cdot 60 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=48^{\circ} 57^{\prime} 31^{\prime \prime \prime} \cdot 61 \end{aligned}$
	$30 \cdot 9$	31'13	$33 \cdot 08$	31•87	31•37	3155	$30 \cdot 64$	3r:03	32.22	32.27	

At IV (Páchrad)

March 1865; observed by Captain C. T'. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$0^{\circ} 0^{\prime} \quad 1800^{\circ} 0^{\prime}$	$43^{\circ} 13^{\prime}$	Circle read $223^{\circ} 13^{\prime}$	dings, te $86^{\circ} 24^{\prime}$	lescope $266^{\circ} 2 t^{\prime}$	being set $129^{\circ} 36^{\prime}$	$\begin{gathered} \text { t on R. } \\ 309^{\circ} 36^{\prime} \end{gathered}$. $172^{\circ} 48^{\prime}$	$352^{\circ} 48^{\prime}$	$M=$ Menn $^{\prime}$ of Groups $w^{0}=$ Relative Weight C $=$ Concluded Angle
R. M.andVII (Palsi)										$\begin{aligned} & M=43^{\prime \prime} \cdot 10 \\ & w=12 \cdot 80 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=1^{\circ} 8^{\prime} 43^{\prime \prime \cdot} \cdot 10 \end{aligned}$
	$43 \cdot 80 \quad 42 \cdot 62$	$43 \cdot 65$	42•66	$43^{\circ} 42$	$43 \cdot 25$	$43 \cdot 63$	44*05	+2.58	4'34	
$\begin{gathered} \text { VII (Palsi) } \\ \text { and } \\ \text { VIII (Kundal) } \end{gathered}$	 									$\begin{aligned} & M=48^{\prime \prime} \cdot 48 \\ & w=6 \cdot 80 \\ & \frac{\mathrm{~J}}{w}=0 \cdot 15 \\ & C=61^{\circ} 26^{\prime} 48^{\prime \prime} \cdot 48 \end{aligned}$
	47\%71 $50 \cdot 15$	$46 \cdot 68$	47-86	48•79	$48 \cdot 90$	$47 \cdot 24$	48*00	49*59	$49 \cdot 83$	
$\begin{gathered} \text { VIII (Kundal) } \\ \text { and } \\ \text { VI (Aundh) } \end{gathered}$	 									$\begin{aligned} & M=26^{\prime \prime} \cdot 65 \\ & w=11 \cdot 20 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=64^{\circ} 49^{\prime} 26^{\prime \prime} \cdot 65 \end{aligned}$
	$27 \cdot 15 \quad 25 \cdot 13$	27`94	$27 \cdot 38$	27•12	26.42	26.49	27^{127}	$25^{\prime} 15$	26.48	
VI (Aundh) and III (Palvan)	 									$\begin{aligned} & M=41^{\prime \prime} \cdot 06 \\ & w=8 \cdot 10 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=49^{c} 28^{\prime} 41^{\prime \prime} \cdot 06 \end{aligned}$
	+2•04 41'5.5	40.08	39•80	40.04	$40 \cdot 89$	4 ${ }^{\prime} 43$	$39 \cdot 82$	42•10	$42 \cdot 87$	
III (Palvan) and II (Sulki)	 									$\begin{aligned} & M=3^{\prime \prime} \cdot 70 \\ & w=17 \cdot 00 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=74^{\circ} 5^{\prime} \quad 3^{\prime \prime} \cdot 70 \end{aligned}$
	3.04 3.91	$4 \cdot 67$	4•03	$3 \cdot 03$	$5 \cdot{ }_{4}$	$3 \cdot 50$	$3 \cdot 25$	$2 \cdot 78$	3.76	

Note.-Station XXII (Bori) appertains to the Bombay Longitudinal Series.
R. M. denotes Referring Mark.

Note.-R. M. denotes Referring Mark.

At VIII (Kundal)-(Continued). March 1865; and November 1865; observed by Captain C. T'. Haig, R.E., with Barrow's 24-inch I'heodolite No. 2.		
Angle between	Circle readings, telescope being set on VI (Aundh) $\begin{array}{lllllllllll}182^{\circ} & 26^{\prime} & 2^{\circ} 26^{\prime} & 225^{\circ} 38^{\prime} & 45^{\circ} 38^{\prime} & 268^{\circ} 50^{\prime} & 88^{\circ} 50^{\prime} & 819^{\circ} \mathbf{2}^{\prime} & 132^{\circ} \mathbf{2}^{\prime} & 355^{\circ} 13^{\prime} & 175^{\circ} \\ & 18^{\prime}\end{array}$	
$\begin{gathered} \text { VII (Palsi) } \\ \text { and } \\ \text { IX (Dandoba Dongar) } \end{gathered}$		$\begin{aligned} & M=49^{\prime \prime} \cdot 3^{2} \\ & w=13 \cdot 90 \\ & \frac{1}{w}=\circ \cdot \circ 7 \\ & C=43^{\circ} 7^{\prime} 49^{\prime \prime} \cdot 3^{2} \end{aligned}$
$\begin{gathered} \text { IX (Dandoba Dongar) } \\ \text { and } \\ \text { XII (Majala) } \end{gathered}$	 $\begin{array}{llllllllll}25.59 & 24.93 & 23.74 & 25.29 & 24.33 & 24.46 & 24.80 & 23.92 & 25.44 & 25.92\end{array}$	$\begin{aligned} & M=24^{\prime \prime} \cdot 84 \\ & w=17 \cdot 50 \\ & \frac{I}{w}=0 \cdot 06 \\ & C=50^{\circ} 44^{\prime} 24^{\prime \prime} \cdot 84 \end{aligned}$
At IX (Dandoba Dongar) December 1865 ; observed by Captain C. T. Haig, R.E., with Barrow's 24 -inch Theodolite No. 2.		
Angle between	Circle readings, telescope being set on VII (Palsi) $\begin{array}{llllllllll}0^{\circ} \sigma^{\prime} & 180^{\circ} 0^{\prime} & 48^{\circ} 13^{\prime} & 228^{\circ} 13^{\prime} & 86^{\circ} 24^{\prime} & 266^{\circ} 244^{\prime} & 1299^{\circ} 36^{\prime} & 300^{\circ} & 36^{\prime} & 172^{\circ} 48^{\prime}\end{array} \quad 352^{\circ} 48^{\prime}$	$\begin{aligned} & M=\text { Menn of Groups } \\ & w_{0}=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$
$\begin{gathered} \text { VII (Palsi) } \\ \text { and } \\ \text { X (Daphlápur) } \end{gathered}$		$\begin{aligned} & M=7^{\prime \prime} \cdot 21 \\ & w=8 \cdot 39 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=56^{\circ} 42^{\prime} 7^{\prime \prime} \cdot 20 \end{aligned}$
	$\begin{array}{llllllllll}7.25 & 6.83 & 9.12 & 8.48 & 6.37 & 8.15 & 6.45 & 7.08 & 6.00 & 6.37\end{array}$	
$\begin{gathered} \text { X (Daphlápur) } \\ \text { and } \\ \text { XI (Athni) } \end{gathered}$	 d 18.80 - -	$\begin{aligned} & M=19^{\prime \prime \prime} \cdot 18 \\ & w=4 \cdot 00 \\ & \frac{1}{w}=0 \cdot 25 \\ & C=46^{\circ} 55^{\prime} 19^{\prime \prime} \cdot 18 \end{aligned}$
	$\begin{array}{llllllllll}20.51 & 19.89 & 15.74 & 18.98 & 19.14 & 19.26 & 20.47 & 17.28 & 20.16 & 20.33\end{array}$	
$\begin{gathered} \text { XI (Athni) } \\ \text { and } \\ \text { XIII (Mávinhánda) } \end{gathered}$	 	$\begin{aligned} & M=4^{\prime \prime \prime} \cdot 3^{2} \\ & w=3 \cdot 75 \\ & \frac{1}{w}=0 \cdot 27 \\ & C=54^{\circ} 2^{\prime} 46^{\prime \prime} \cdot 3^{2} \end{aligned}$
	$\begin{array}{lllllllllll}44.57 & 44.44 & 48.26 & 46.23 & 46.06 & 47.91 & 46.01 & 48.51 & 47.05 & 4+19\end{array}$	

* The only measures taken of these two angles in March 1865 were those under zero $182^{\circ} 26^{\prime}$, the rest of the measures were completed in November 1865.

At IX (Dandoba Dongar)-(Continued).

Angle between											
```XIII (Mávinhánda) and XIV (Hatarvat)```		$\begin{array}{cc}\prime \prime \\ l & 1.96 \\ l & 2.24 \\ d & 0.47\end{array}$	$\begin{array}{ll} l & 2 \cdot 62 \\ l & 1 \cdot{ }_{2} \end{array}$	$\begin{array}{cc} 4 \\ l & 3 \cdot 66 \\ 2 & 3 \cdot 10 \end{array}$	$\begin{array}{lc}  & n \\ l & 2 \cdot 72 \\ l & 2.26 \\ d & 2.80 \\ d & 1.80 \\ d & 1.40 \end{array}$	$\prime \prime$    $l$ $1 \times 28$   $l$ 1   $d$ 08		$\begin{array}{ll}  & \prime \prime \\ h & 3.50 \\ h & 2.46 \\ d & 2.55 \\ d & 2.75 \end{array}$	$\begin{array}{cc} \prime \prime \\ l & 3.40 \\ l & 3.06 \end{array}$	$\begin{gathered} \prime \prime \\ l \\ l \\ l \end{gathered}{ }_{5}^{\prime \prime} .80$	$\begin{aligned} & M=3^{\prime \prime} \cdot 02 \\ & w=5 \cdot 07 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=28^{\circ} 54^{\prime} 3^{\prime \prime} \cdot 01 \end{aligned}$
	$4^{\circ} 2$	$1 \cdot 56$	$2 \cdot 04$	3•38	$2 \cdot 05$	$1 \cdot 04$	$4 \cdot 87$	$2 \cdot 82$	$3 \cdot 23$	$4 * 99$	
$\begin{aligned} & \text { XIV (Hatarvat) } \\ & \text { and } \\ & \text { XII (Majala) } \end{aligned}$											$\begin{aligned} & M=44^{\prime \prime} \cdot 77 \\ & w=12 \cdot 70 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=40^{\circ} 41^{\prime} 44^{\prime \prime} \cdot 79 \end{aligned}$
	$44^{\circ}$	$45^{\circ} 06$	$44 \cdot 23$	45\% 51	$45^{\circ} 83$	$45 \cdot 64$	$44^{\circ} 5^{8}$	$45 ` 35$	$43 \cdot 57$	$43 \cdot 87$	
$\begin{aligned} & \text { XII (Majala) } \\ & \text { and } \\ & \text { VIII (Kundal) } \end{aligned}$											$\begin{aligned} & M=17^{\prime \prime} \cdot 10 \\ & w=5 \cdot 82 \\ & \frac{1}{w}=0 \cdot 17 \\ & C=57^{\circ} 27^{\prime} 17^{\prime \prime} \cdot 09 \end{aligned}$
	$17 \times 4$	$16 \cdot 59$	$19 \cdot 64$	16•66	17•32	16•18	$17 \cdot 28$	15\%09	18.44	$16 \cdot 35$	

## At $\mathbf{X}$ (Daphlápur)

November 1865; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$237^{\circ} 24$		Circle re $280^{\circ} 37^{\prime}$	$\begin{aligned} & \text { adings, te } \\ & 100^{\circ} 37^{\prime} \end{aligned}$	$\begin{aligned} & \text { elescope } \\ & 323^{\circ} 48^{\prime} \end{aligned}$	being s   $143^{\circ} 48^{\prime}$	$\begin{aligned} & t \text { on XI } \\ & 7^{\circ} 1^{\prime} \end{aligned}$	(Athni) $187^{\circ} 1^{\prime}$	$50^{\circ} 12^{\prime}$	$230^{\circ} 12^{\prime}$	M = Mean of Groups   $\infty^{\infty}=$ Relative Weight   C = Ooncluded Angle
```XI (Athni) and IX (Dandoba Dongar)```	 										$\begin{aligned} & M=43^{\prime \prime} \cdot 16 \\ & w=9 \cdot 10 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=71^{\circ} 52^{\prime} 43^{n \cdot 16} \end{aligned}$
	42'29	44*08	$43 \cdot 62$	41*44	$43^{\circ} 82$	44*36	44*00	$43^{\circ} 00$	42•16	$42 \cdot 83$	
```IX (Dandoba Dongar). and VII (Palsi)```	$\begin{array}{lll} l & 6 \cdot 46 & k \\ l & 6 \cdot 64 \\ 6.88 & k & 6 \cdot 68 \end{array}$		$h$   $l$	$h 6.46$ $h 6.66$	$\begin{aligned} & l \\ & l \\ & l \\ & 5 \cdot 38 \end{aligned}$	$\begin{array}{ll} l & 4.58 \\ l & 6.06 \end{array}$	$\begin{array}{ll} l \\ 6 & 9.48 \\ 8.00 \end{array}$	$\begin{array}{ll} l 7 \cdot 80 \\ l \\ 7 \cdot 00 \end{array}$	$\begin{aligned} & l 8.30 \\ & l 7.82 \end{aligned}$	$\begin{array}{ll} l & 6.88 \\ l & 6.80 \end{array}$	$\begin{aligned} & M=6^{\prime \prime} \cdot 77 \\ & w=8 \cdot 10 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=50^{\circ} 43^{\prime} 6^{\prime \prime} \cdot 77 \end{aligned}$
	$6 \cdot 67$	$6 \cdot 66$	5.81	$6 \cdot 56$	5.63	$5 \cdot 32$	8•74	$7 \cdot 40$	8-06	$6 \cdot 84$	



## At XII (Majala)

December 1865; observed by Captain C. T. Haig, R.E., with Barrow's 21-inch Theodolite No. 2.



At XIV (Hatarvat)-( Continued).											
Angle between	Circle readings, telescope being set on XII (Majala)  										$\mathbf{M}=$ Mean of Groups   $s_{0}=$ Relative Weight   C = Concluded $\Delta$ ngle
IX (Dandoba Dongar) and XIII (Mávinhánda)	 										$\begin{aligned} & M=43^{N} \cdot 09 \\ & w=29 \cdot 40 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=53^{\circ} 41^{\prime} 43^{\prime \prime} \cdot 09 \end{aligned}$
	$43 \cdot 7$	43*94	42.56	$43^{112}$	42•78	42•32	$43^{121}$	$42 \cdot 98$	$43 \cdot 30$	$42 \cdot 89$	
```XIII (Mávinhónda) and XV (Karabgati)```											$\begin{aligned} M & =4^{N \cdot 03} \\ w & =10 \cdot 30 \\ \frac{1}{w 0} & =0 \cdot 10 \\ C & =49^{\circ} 36^{\prime} \quad 4^{N} \cdot 03 \end{aligned}$
	2•8	3-29	$3 \cdot 64$	$4 \% 1$	$4 * 85$	$3 \cdot 65$	2•96	$4 \cdot 25$	$5 \cdot 23$	$5 \cdot 64$	
$\begin{gathered} \text { XV (Karabgati) } \\ \text { and } \\ \text { XVII (Karigudd) } \end{gathered}$	 										$\begin{aligned} & M=29^{\prime \prime} \cdot 71 \\ & w=10 \cdot 80 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=62^{\circ} 9^{\prime} 29^{\prime \prime} \cdot 71 \end{aligned}$
	30.6	29*97	29.71	$28 \cdot 40$	29•59	$27 \cdot 87$	$30 \cdot 93$	30-02	30'19	29.73	

At XV (Karabgati)

December 1865; observed by Captain C. T. Haig, R.E., with Barrow's 24 -inch Theodolite No. 2.

Angle between	$0^{\circ}{ }^{\circ}$	$180^{\circ}{ }^{\prime}$	$43^{\circ} 1 z^{\prime}$	$\begin{aligned} & \text { Circle rea } \\ & 223^{\circ} 12^{\prime} \end{aligned}$		-lescope $266^{\circ} 24^{\prime}$	being se $129^{\circ} 36^{\prime}$	$\begin{gathered} t \text { on } R .1 \\ 309^{\circ} 36^{\prime} \end{gathered}$	$172^{\circ} 48^{\prime}$	$352^{\circ} 48^{\prime}$	$\boldsymbol{M}=$ Mean of Groupe $w_{0}=$ Relative Weight C $=$ Concluded Anglo
R. M. and XIII (Mávinhánda)											$\begin{aligned} M & =47^{\prime \prime} \cdot 72 \\ w & =16 \cdot 16 \\ \frac{1}{w w} & =0 \cdot 06 \\ C & =30^{\circ} 18^{\prime} 47^{\prime \prime} \cdot 72 \end{aligned}$
	48•57	$47 \cdot 83$	48•49	48•73	47 53	$47^{\prime} 42$	46•49	$47^{\prime 2}$	48.02	46•81	
```XIII (Mávinhánda) and XVI (Manikeri)```	 										$\begin{aligned} M & =34^{\prime \prime} \cdot 16 \\ w & =11 \cdot 80 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =85^{\circ} 36^{\prime} 34^{\prime \prime \prime} \cdot 16 \end{aligned}$
	33*71	$33^{115}$	34*52	32.93	34*57	$35^{\circ} 75$	$34 * 42$	34*50	$33^{2} 23$	34*82	
```XVI (Manikeri) and XVIII (Kathárigad)```	 										$\begin{aligned} M & =41^{N} \cdot 31 \\ w & =15 \cdot 20 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =57^{\circ} \quad 7^{\prime} 41^{\prime \prime} \cdot 31 \end{aligned}$
	42•37	41*63	40•96	42.29	40*44	41 57	41•16	40*27	41•95	40*44	

Notr.-R. M. denotes Referring Mark.

At XV (Karabgati)-(Continued).											
Angle between	Circle readings, telescope being set on R. M. $0^{\circ} 0^{\prime} \quad 180^{\circ} 0^{\prime} \quad 43^{\circ} 12^{\prime} \quad 223^{\circ} 12^{\prime} \quad 86^{\circ} 24^{\prime} \quad 266^{\circ} 24^{\prime} \quad 129^{\circ} 36^{\prime} \quad 309^{\circ} 36^{\prime} \quad 172^{\circ} 48^{\prime} \quad 352^{\circ} 48^{\prime}$										$M=$ Mean of Groups $v_{0}=$ Relative Weight C = Concluded Angle
XVIII (Kathárigad) and XIX (Kolanhatti)	 										$\begin{aligned} M & =12^{\prime \prime} \cdot 61 \\ w & =17 \cdot 90 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =58^{\circ} 13^{\prime} 12^{\prime \prime \prime} \cdot 61 \end{aligned}$
	11.	13.31	11.60	13.08	12.45°	12.23	13.00	13.04	13.08	13.04	
$\begin{aligned} & \text { XIX (Kolanhatti) } \\ & \text { and } \\ & \text { XVII (Karigudd) } \end{aligned}$	 										$\begin{aligned} M & =10^{\prime \prime \prime} \cdot 10 \\ w & =21 \cdot 30 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =66^{\circ} 9^{\prime} 10^{\prime \prime} \cdot 10 \end{aligned}$
	$10 \cdot 3$	$9 \cdot 82$	10•68	9*09	$10 \cdot 09$	$9^{\circ} 72$	10. 28	11 26	$9 \cdot 63$	10'16	
$\begin{aligned} & \text { XVII (Karigudd) } \\ & \text { and } \\ & \text { XIV (Hatarvat) } \end{aligned}$	 ${ }^{\prime}{ }_{45}{ }^{\circ} 96$										$\begin{aligned} M & =45^{\prime \prime} \cdot 55 \\ w & =13 \cdot 94 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =40^{\circ} 34^{\prime} 45^{\prime \prime} \cdot 55 \end{aligned}$
	$44 \cdot 8$	$45 \cdot 17$	$45 * 39$	$45 \cdot 79$	47111	$45^{\circ} \mathrm{OI}$	45*94	$46 \cdot 40$	$45 \cdot 65$	44*25	

At XVI (Manikeri)

December 1865; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$0^{\circ} 0$	$\begin{aligned} & \text { Circl } \\ & 180^{\circ} 0^{\prime} \end{aligned}$	reading $43^{\circ} 12^{\prime}$, telesco $223^{\circ} 12^{\prime}$	pe bein $86^{\circ} 24^{\prime}$	set on $266^{\circ} 24^{\prime}$	$129^{\circ} \mathbf{3 6}{ }^{\prime}$	Kathárig $809^{\circ} 36^{\prime}$	gad) $172^{\circ} 48^{\prime}$	$852^{\circ} 48^{\prime}$	$M=$ Mean of Groups ${ }^{20}=$ Relative Weight O = Concluded Δ ngle
```XVIII (Kathárigad) and XV (Karabgati)```	${ }^{h} 56.96$ ${ }^{6} 56$	$\left\{\begin{array}{l} 54.34 \\ 55^{\circ} 00 \end{array}\right.$	$356 \cdot 54$ h $55^{\circ} 3^{8}$	57•34 $55^{\circ} 96$	$\begin{aligned} & 54^{\circ} 44 \\ & 54^{\prime} 92 \end{aligned}$	$\begin{aligned} & h_{57} 56 \\ & h_{56} \cdot 86 \end{aligned}$	$\begin{gathered} " \\ h \\ h \\ 57 \times 76 \\ 56 \cdot 92 \end{gathered}$	$\prime \prime$   57.48      58	$\begin{gathered} \prime \prime \\ h \\ l \\ l \\ 55^{\circ} \cdot 84 \\ \hline \end{gathered}$	$\begin{array}{r} \prime \prime \\ l \\ l \\ l \\ l 55^{\circ} 70 \\ 56.60 \end{array}$	$\begin{aligned} & M=56^{\prime \prime} \cdot 3^{8} \\ & w=8 \cdot 10 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=64^{\circ} 4^{\prime} 56^{\prime \prime} \cdot 3^{8} \end{aligned}$
	56.8	54.67	55*96	$56 \cdot 65$	54*68	$57^{\circ 21}$	57*34	$57 \times 83$	56•49	56.15	
$\begin{gathered} \text { XV (Karabgati) } \\ \text { and } \\ \text { XIII (Mávinhúnda) } \end{gathered}$	 										$\begin{aligned} & M=51^{\prime \prime} \cdot 55 \\ & w=8 \cdot 30 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=49^{\circ} 18^{\prime} 51^{\prime \prime} \cdot 55 \end{aligned}$
	51*4	53.45	50.26	51•8I	52•99	51:04	51*00	$50 \cdot 48$	51:22	51*81	

Notr.-R. M. denotes Referring Mark.

January 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.			
Angle between	Circle readings, telescope being set on XIV (Hatarrat)  	$\begin{aligned} & M=\text { Moan of Groupe } \\ & \text { Ro }=\text { Relative Weight } \\ & C=\text { Concluded } \Delta \text { ngle } \end{aligned}$	
$\begin{aligned} & \text { XIV (Hatarvat) } \\ & \quad \text { and } \\ & \text { XV Karabgati } \end{aligned}$	 	$\begin{aligned} & M=46^{\prime \prime} \cdot 02 \\ & w=12 \cdot 20 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=77^{\circ} 15^{\prime} 4^{\prime \prime} \cdot 02 \end{aligned}$	
$\begin{gathered} \text { XV (Karabgati) } \\ \text { and } \\ \text { XIX (Kolanhatti) } \end{gathered}$	$h_{3} 7 \cdot 88 h_{36} \cdot 86 h_{39} \cdot 02 h_{37} \cdot 98 h_{35} \cdot 88 h_{39} \cdot 68 l_{37} \cdot 04 l_{37} \cdot 04 l_{37} \cdot 60 l_{38} \cdot 70$  	$\begin{aligned} & M=37^{\prime \prime} \cdot 73 \\ & w=9 \cdot \infty \\ & \frac{1}{w}=0 \cdot 11 \\ & C=40^{\circ} 46^{\prime} 37^{\prime \prime} \cdot 73 \end{aligned}$	
	$\begin{array}{llllllllll}37 \cdot 20 & 36 \cdot 52 & 38 \cdot 84 & 38.09 & 36 \cdot 50 & 39 \cdot 42 & 36 \cdot 97 & 37 \cdot 05 & 38 \cdot 00 & 38 \cdot 73\end{array}$		
January 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.			
Angle between	Circle readings, telescope being set on XXI (Hirrkummígudd)   $\begin{array}{lllllllll}107^{\circ} & 29^{\prime} & 287^{\circ} & 29^{\prime} & 150^{\circ} 48^{\prime} & 330^{\circ} 42^{\prime} & 193^{\circ} 53^{\prime} & 13^{\circ} 53^{\prime} & 237^{\circ} 5^{\prime} \\ 57^{\circ} 5^{\prime} & 280^{\circ} 17^{\prime} & 100^{\circ} 17^{\prime}\end{array}$	$M=$ Mean of Groups   ${ }^{*} C=$ Relative Weight   C = Concluded Anglo	
$\begin{gathered} \text { XXI (Hirغkummígudd) } \\ \text { and } \\ \text { XX (Chikk Nandihalligudd) } \end{gathered}$	   $h_{22} \cdot 5^{6} l 20 \cdot 78 \quad l 20 \cdot 14 l 20 \cdot 58 l 22 \cdot 00 h_{22} \cdot 28 h_{19} \cdot 92 h_{21} \cdot 86 h_{21} \cdot 18 h_{20} \cdot 30$	$\begin{aligned} & \boldsymbol{M}=21^{\prime \prime} \cdot 3^{\circ} \\ & w=6 \cdot 80 \\ & \frac{1}{w}=0 \cdot 15 \\ & \boldsymbol{C}=82^{\circ} 27^{\prime} 21^{\prime \prime} \cdot 30 \end{aligned}$	
	$\begin{array}{lllllllllll}23 \cdot 11 & 21 \cdot 15 & 19 \cdot 26 & 20 \cdot 72 & 21 \cdot 65 & 22 \cdot 62 & 20 \cdot 57 & 22 \cdot 52 & 21 \cdot 01 & 20 \cdot 37\end{array}$		
$\left\lvert\, \begin{gathered} \text { XX (Chikt Nandihalligudd) } \\ \text { and } \\ \text { XIX (Kolanhatti) } \end{gathered}\right.$	    	$\begin{aligned} & M=61^{\prime \prime} \cdot \infty \\ & w=12 \cdot 10 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=61^{\circ} 4^{\prime} 1^{n} \cdot 00 \end{aligned}$	
	$\begin{array}{llllllllll}59.43 & 61.73 & 60.41 & 60 \cdot 84 & 61 \cdot 09 & 60 \cdot 09 & 62 \cdot 28 & 61.49 & 60 \cdot 97 & 61.62\end{array}$		
$\begin{gathered} \text { XIX (Kolanhatti) } \\ \quad \text { and } \\ \text { XV (Karabgati) } \end{gathered}$	 	$\begin{aligned} & M=10^{\prime \prime} \cdot 83 \\ & w=8 \cdot 40 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=50^{\circ} 12^{\prime} 10^{\prime \prime} \cdot 83 \end{aligned}$	
	10.48 10.62 12.71 11.46 11.81 10.33 10.44 10.95 10.81   15		
$\begin{gathered} \text { XV (Karabgati) } \\ \text { and } \\ \text { XVI (Manikeri) } \end{gathered}$	$h_{23} \cdot 98 l_{24} \cdot 00 l_{23} \cdot 26 l_{24} \cdot 30 l 23 \cdot 10 h_{23} \cdot 06 h_{22} \cdot 30 h_{23} \cdot 52 h_{25} \cdot 26 h_{26} \cdot \circ 0$	$\begin{aligned} & \hline M=23^{\prime \prime} \cdot 92 \\ & w=7 \cdot 90 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=58^{\circ} 47^{\prime} 23^{\prime \prime} \cdot 92 \end{aligned}$	
	$\begin{array}{lllllllllll}24.49 & 24 \cdot 10 & 23 \cdot 63 & 24 \cdot 21 & 22 \cdot 92 & 22 \cdot 79 & 22 \cdot 50 & 23 \cdot 38 & 25 \cdot 08 & 26 \cdot 06\end{array}$		

## At XIX (Kolanhatti)

January 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XVII (Karigudd)										$M=$ Mean of Groups   ${ }^{2} 0$ - Relative Weight   C = Comeluded Angle
$\begin{gathered} \text { XVII (Karigudd) } \\ \text { and } \\ \text { XV (Karabgati) } \end{gathered}$	h15.50 h $15 \cdot 66$	$\begin{aligned} & k 14 \cdot 22 \\ & l 14 \cdot 78 \end{aligned}$	$\begin{aligned} & 15 \cdot 08 \\ & 15 \cdot 32 \end{aligned}$	$\begin{array}{lll} l & 15 \cdot 16 \\ l & 14 \cdot 38 \end{array}$		h 13.74   h 13.66	$\begin{aligned} & h_{13} \cdot 62 \\ & h_{1}+\circ 08 \\ & l_{13} .04 \end{aligned}$	h $16 \cdot 24$   h 15 ' 54	l12.74   l13•12	$\begin{aligned} & 13 \cdot 86 \\ & 14 \cdot 08 \end{aligned}$	$\begin{aligned} & M=14^{\prime \prime} \cdot 5^{6} \\ & w=9 \cdot 62 \\ & \frac{1}{w}=0 \cdot 10 \\ & \boldsymbol{C}=73^{\circ} 4^{\prime} 14^{\prime \prime} \cdot 5^{6} \end{aligned}$
	15.58	14.50	15*20	14*77	15.51	$13^{\circ} 70$	13.58	$15 * 89$	12.93	13*9	
$\begin{gathered} \text { XV (Karabgati) } \\ \text { and } \\ \text { XVIII (Kathárigad) } \end{gathered}$	$\begin{aligned} & h 37 \cdot 38 \\ & h_{38 \cdot 22} \end{aligned}$	$\begin{aligned} & h 38 \cdot 50 \\ & l \\ & l \end{aligned}{ }_{3} \cdot{ }_{46}$	$\begin{aligned} & 36 \cdot 34 l \\ & 636 \cdot 34 l \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l \\ & 37.90 \\ & 37 \end{aligned}$	$\begin{aligned} & h_{38 \cdot 16} \\ & h_{3} 8 \cdot 20 \end{aligned}$	$\begin{aligned} & h 39 \cdot 98 \\ & h 39 \cdot 44 \end{aligned}$	$\begin{aligned} & h 39 \cdot 84 \\ & h 37 \cdot 80 \\ & l+0 \cdot 34 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & h_{3} 38 \cdot 02 \\ & h 38 \cdot 48 \end{aligned}$	$\begin{aligned} & l 39 \cdot 26 \\ & 637.50 \end{aligned}$	$\begin{aligned} & 37 \cdot 68 \\ & 38 \cdot 14 \end{aligned}$	$\begin{aligned} & M=38^{\prime \prime} \cdot 18 \\ & w=9 \cdot 87 \\ & \frac{\mathbf{I}}{w}=0 \cdot 10 \\ & \boldsymbol{C}=71^{\circ} 34^{\prime} 38^{\prime \prime} \cdot 19 \end{aligned}$
	37-80	$38 \cdot 48$	36•34	$37 \cdot 45$	38•18	39*71	39²9	$38 \cdot 25$	38•38	37*91	
XVIII (Kathárigad)andXX (Chikk Nandihallígudd)	h II•54 h $10 \cdot 24$ h 11 I 54	$\begin{aligned} & k \\ & l \\ & 9.70 \\ & 9.80 \end{aligned}$	$\begin{array}{cc} l & 9.14 \\ l & 10.06 \\ l & 8.58 \end{array}$	$\begin{array}{ll} l & 8 \cdot 60 \\ l & 9 \\ l & 8 \\ l & 70 \end{array}$	$\begin{aligned} & h_{11} \cdot 10 \\ & h_{10} \cdot 24 \\ & h_{10} \cdot 26 \end{aligned}$	$\begin{array}{ll} h & 9 \cdot 64 \\ h & 10.72 \\ h & 10 \cdot 38 \end{array}$	$\begin{array}{lll} h & 10 \cdot 16 \\ l & 8 . & 16 \\ l & 10.96 \end{array}$	h $10 \cdot 20$ $h 10 \cdot 60$ h 9.26	$\begin{array}{cc} l & 9 \cdot 68 \\ l & 9.3 \\ l & 10 \\ l & 0.3 \\ 3 \end{array}$	$\begin{array}{r} 10.54 \\ 11.80 \\ 9.86 \end{array}$	$\begin{aligned} & M=10^{\prime \prime} \cdot 07 \\ & w=20 \cdot 40 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=68^{\circ} 55^{\prime} 10^{\prime \prime} \cdot 07 \end{aligned}$
	II'II	9•79	9*26	9*01	10•53	$10 \cdot 25$	9•85	10:02	$10 \cdot 45$	10'47	
$\left\lvert\, \begin{gathered} \text { XX (Chikk Nandihallígudd) } \\ \text { and } \\ \text { XXII (Yalúr) } \end{gathered}\right.$	    										$\begin{aligned} & M=32^{\prime \prime} \cdot 05 \\ & w=14 \cdot 90 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=69^{\circ} 33^{\prime} 32^{\prime \prime} \cdot 05 \end{aligned}$
	31*44	32-02	$33^{\circ} 00$	$33^{\circ} 54$	31-07	3:66	32.33.	$31 \cdot 85$	31-28	32.34	

## At XX (Chikk Nandihallígudd)

January 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXV (Kalkera)										$M=$ Mean of Groups   $\infty$ = Relative Weight   $C=$ Concluded Angle
$\begin{gathered} \text { XXV (Kalkera) } \\ \text { and } \\ \text { XXIII (Shamshergad) } \end{gathered}$	h 34.96   h $35 \cdot 32$   $l 34^{\circ} 50$	$\begin{aligned} & 33.80 \\ & 33.68 \\ & 33.34 \\ & 33.90 \end{aligned}$	$\begin{aligned} & 33 \cdot 80 \\ & 35 \cdot 12 \\ & 35 \cdot 08 \end{aligned}$	$\begin{aligned} & 36 \cdot 58 \\ & 35 \cdot 60 \\ & 35 \cdot 90 \end{aligned}$	$\begin{aligned} & 34 \cdot 26 \\ & 32 \cdot 98 \\ & 33 \cdot 50 \end{aligned}$		$\begin{aligned} & 34.50 \\ & 35.58 \\ & 35 \cdot 14 \end{aligned}$	$\begin{aligned} & 35.34 \\ & 36.76 \\ & 36.44 \end{aligned}$	$\begin{array}{lll} l & 33^{\circ}-44 \\ l & 33^{\circ} 06 \\ l & 33^{\circ} 24 \end{array}$	$\begin{aligned} & l 34.06 \\ & l \\ & l \\ & 33^{\circ} \cdot 40 \\ & 34.74 \end{aligned}$	$\begin{aligned} & M=34^{\prime \prime} \cdot 63 \\ & w=9 \cdot 36 \\ & \frac{I}{w}=0 \cdot 11 \\ & C=90^{\circ} 35^{\prime} 34^{\prime \prime} \cdot 63 \end{aligned}$
	34*93	33.68	$34 \cdot 67$	36•03	$33 \cdot 58$	$34 \cdot 85$	$35^{\circ} 07$	36•18	33.25	34.07	


At XX (Chikk Nandihalligudd)-(Continued).											
Angle between	Circle readings, telescope being set on XXV (Kalkera)										$M=$ Mean of Groups   $w^{*}=$ Relative Weight   $C=$ Concluded $\Delta$ aglo
XXIII (Shamshergad)   and   XXII (Yalár)	      d 49 '92   d 49.32   d 47 .94   d $47 \cdot 70$   d48.17										$\begin{aligned} & M=47^{\prime \prime} \cdot 99 \\ & w=9 \cdot 37 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=37^{\circ} 35^{\prime} 47^{\prime \prime} \cdot 99 \end{aligned}$
	$47 \cdot 66$	49•70	48•75	46•92	49 ${ }^{17}$	48-08	$46 \cdot 65$	47-09	$47 \cdot 84$	48•01	
XXII (Yalár) and											$\begin{aligned} & M=44^{\prime \prime} \cdot 30 \\ & w=6 \cdot 82 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=46^{\circ} 52^{\prime} 44^{\prime \prime} \cdot 30 \end{aligned}$
	44•18	$43 \cdot 97$	43.43	44*73	42•74	$43^{\circ} 61$	$44^{\prime 8}$	$43 \cdot 38$	46•81	$45^{\prime 3}$	
$\begin{aligned} & \text { XIX (Kolanhatti) } \\ & \text { and } \\ & \text { XVIII (Kathárigad) } \end{aligned}$											$\begin{aligned} & \boldsymbol{M}=50^{\prime \prime} \cdot 79 \\ & \boldsymbol{w}=9 \cdot 04 \\ & \frac{1}{w}=0 \cdot 11 \\ & \boldsymbol{C}=50^{\circ} 0^{\prime} 50^{\prime \prime} \cdot 79 \end{aligned}$
	50.86	$50 \cdot 49$	50•70	50.27	51.64	52•60	51•28	51334	49*75	48-98	
XVIII (Kathárigad)   and   XXI (Hirěkummígudd)											$\begin{aligned} & M=46^{\prime \prime} \cdot 76 \\ & w=14 \cdot 85 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=44^{\circ} 52^{\prime} 46^{\prime \prime} \cdot 77 \end{aligned}$
	$45 \cdot 87$	$47 \times 41$	47 10	46:61	$47 \times 57$	45*96	46•29	46.55	46•17	48-02	
```XXI (Hirěkummígudd) and XXIV (Navalúr)```	      d $53^{\prime} 12 \mathrm{~h} 53^{\prime} 34$   d 53.60   d 53.59   $d$   $\mathbf{5 3}$										$\begin{aligned} & M=53^{\prime \prime} \cdot 28 \\ & w=15 \cdot 35 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=56^{\circ} 26^{\prime} 53^{\prime \prime} \cdot 26 \end{aligned}$
	$54 * 47$	52.91	52•37	52•89	$53 \cdot 69$	53'52	54*03	$52 \cdot 89$	$53 \cdot 75$	52:28	

At XXI (Hirěkummígudd)

January 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXIV (Navalúr)										$\boldsymbol{M}=$ Mean of Groups ${ }^{2}$ - Relative Weight $\boldsymbol{C}=$ Concluded Angle
XXIV (Navalúr) and	 										$\begin{aligned} & M=56^{\prime \prime} \cdot 42 \\ & w=19 \cdot 60 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=49^{\circ} 43^{\prime} 56^{\prime \prime} \cdot 42 \end{aligned}$
	56•30	$55 * 89$	56•59	57^{131}	$55^{\circ} \mathrm{I}$	55*73	56•52	56•85	$55 \cdot 83$	57×55	
$\left\lvert\, \begin{gathered} \text { XX (Chikk Nandihallígudd) } \\ \text { and } \\ \text { XVIII (Kathárigad) } \end{gathered}\right.$	 										$\begin{aligned} & M=54^{\prime \prime} \cdot 26 \\ & w=13 \cdot 70 \\ & \frac{\mathbf{I}}{w}=0 \cdot 07 \\ & C=52^{\circ} 39^{\prime} 54^{\prime \prime} \cdot 26 \end{aligned}$
	54.54	$55^{\prime} 36$	$53 \cdot 82$	$54 \cdot 63$	55*30	54*57	$53 \cdot 65$	$52 \cdot 75$	54.35	53.66	

At XXII (Yalúr)

February 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$0^{\circ} 0^{\prime}$	$\begin{aligned} & \text { Circl } \\ & 180^{\circ} 0^{\prime} \end{aligned}$	e readin $43^{\circ} 13^{\prime}$		ope bei $86^{\circ} 24^{\prime}$	ing set on $266^{\circ} 24^{\prime}$	$\begin{gathered} \text { n XIX } \\ 129^{〔} 36^{\prime} \end{gathered}$	Kolanhat $\mathbf{3 0 9}^{\circ} 36^{\prime}$	ti) $172^{\circ} 48^{\prime}$	$352^{\circ} 48^{\prime}$	M = Mean of Groups $w^{2}=$ Relative Weight C $=$ Concluded Angle
```XIX (Kolanhatti)```											$\begin{aligned} & M=45^{\prime \prime} \cdot 78 \\ & w=10 \cdot 02 \\ & \frac{\mathbf{l}}{\boldsymbol{w}}=0 \cdot 10 \\ & \boldsymbol{C}=63^{\circ} 33^{\prime} 45^{\prime \prime} \cdot 78 \end{aligned}$
	46•37	47*39	$44 \cdot 37$	$44 \cdot 86$	44*36	46•36	$45 \cdot 89$	$45 \cdot 83$	$45 \cdot 89$	$46 \cdot 43$	
$\left\lvert\, \begin{gathered} \text { XX (Chikk Nandihallígudd) } \\ \text { and } \\ \text { XXIII (Samshergad) } \end{gathered}\right.$	    										$\begin{aligned} M & =35^{\prime \prime} \cdot 59 \\ w & =8 \cdot 20 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =66^{\circ}{ }_{11} 1^{\prime} 35^{\prime \prime} \cdot 59 \end{aligned}$
	35*57	35*34	$34 \cdot 46$	34*91	$37 \cdot 58$	$37 \cdot 44$	$34 \cdot 89$	$35 \cdot 67$	$34 \cdot 82$	35*19	



## At XXIV (Navalúr)-(Continued).

Angle between	Circle readings, telescope being set on XXV (Kalkera)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}=$ Relative Weight   $\boldsymbol{C}=$ Concluded Angle
	$238{ }^{\circ} 87^{\prime}$	$58^{\circ} 36^{\prime}$	$281^{\circ} 49^{\prime}$	$101^{\circ} 49^{\prime}$	$325^{\circ} 0^{\prime}$	$145^{\circ}{ }^{\circ}$	$8^{\circ} 13^{\prime}$	$188^{\circ} 13^{\prime}$	$51^{\circ} 24^{\prime}$	$231^{\circ} 24^{\prime}$	
$\left\lvert\, \begin{gathered} \text { XX (Chikk Nandihallígudd) } \\ \text { and } \quad . \\ \text { XXI (Hirěkummígudd) } \end{gathered}\right.$											$\begin{aligned} M & =13^{\prime \prime} \cdot 5 \mathrm{I} \\ w & =25 \cdot 00 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =73^{\circ} 49^{\prime} 13^{\prime \prime} \cdot 5^{1} \end{aligned}$
	13.96	14*19	$13 * 37$	12:77	14.05	12.48	13.72	13.40	13.26	13.85	

## At XXV (Kalkera)

$\ddagger$ January 1866; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2. § February 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$0^{\circ} 0^{\prime}$	Circle   $180^{\circ} 0^{\prime}$	reading $43^{\circ} 13^{\prime}$	s, telesco   $223^{\circ} 12^{\prime}$	pe being $86^{\circ} 24^{\prime}$	set on $\bar{X}$ $266^{\circ} 24^{\prime}$	$\begin{gathered} \text { XXIII (§ } \\ 129^{\circ} 36^{\prime} \end{gathered}$	Samsherg $309^{\circ} 36^{\prime}$	(ad) $172^{\circ} 48^{\prime}$	$352^{\circ} 48^{\prime}$	$\boldsymbol{M}=$ Mean of Groups   20 = Relative Weight   $\boldsymbol{C}=$ Concluded Angle
$\begin{gathered} \text { XXIII (Samshergad) } \\ \text { and } \\ \text { XX (Chikk Nandihallígudd) } \end{gathered}$											$\begin{aligned} & M=15^{\prime \prime} \cdot 27 \\ & w=7 \cdot 61 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=5^{\circ} 5^{\prime} 15^{\prime \prime} \cdot 27 \end{aligned}$
	16.51	14.89	15.58	14.88	15•76	16•69	13.15	14*10	$14 * 87$	$16 \cdot 26$	
XX (Chikk $\stackrel{\ddagger}{\text { Nandihallígudd })}$   and XXIV (Navalúr)	    										$\begin{aligned} & M=20^{\prime \prime} \cdot 77 \\ & w=10 \cdot 70 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=98^{\circ} 50^{\prime} 20^{\prime \prime} \cdot 77 \end{aligned}$
	20•37	20'79	$19^{\prime 3}$	20*95	21772	19*59	21.44	22.29	$20 \cdot 36$	20'91	
$\begin{gathered} \text { XXIV (Navalúr) } \\ \text { and } \\ \text { XXVI (Ganigudd) } \end{gathered}$	Circle readings, telescope being set on XXIV (Navalúr)										$\begin{aligned} & M=49^{\prime \prime \cdot} \cdot 73 \\ & w=5 \cdot 88 \\ & \frac{1}{w}=0 \cdot 17 \\ & C=82^{\circ} 57^{\prime} 49^{\prime \prime} \cdot 72 \end{aligned}$
	        $h{ }^{49}{ }^{\circ} \mathrm{O} 4$   $h_{47}{ }^{52}$										
	50'13	48•77	$49^{\circ} 00$	50.07	52.05	51'15	48.55	50'18	48.58	48•82	
$\begin{aligned} & \text { XXVI (Ğanigudd) } \\ & \text { and } \\ & \text { XXVIII (Kánsěrudi) } \end{aligned}$											$\begin{aligned} & M=7^{\prime \prime} \cdot 84 \\ & w=6 \cdot 92 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=62^{\circ} 4^{\prime} 7^{\prime \prime} \cdot 84 \end{aligned}$
	8.48	$8 \cdot 82$		6•87		731	8•79	7’53		$8 \cdot 50$	

## At XXVI (Ganigudd)

March 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XXV (Kalkera)   $\begin{array}{llllllllll} & 859^{\circ} & 59^{\prime} & 179^{\circ} & 59^{\prime} & 79^{\circ} 9^{\prime} & 259^{\circ} 9^{\prime} & 158^{\circ} 21^{\prime} & 338^{\circ} 21^{\prime} & 237^{\circ} 37^{\prime} \\ 57^{\circ} 36^{\prime} & 316^{\circ} 48^{\prime} & 136^{\circ} 48^{\prime}\end{array}$	  ${ }_{c}=$ Concluded $A n g{ }^{\circ}$
$\begin{gathered} \text { XXV (Kalkera) } \\ \text { and } \\ \text { XXIV (Navalur) } \end{gathered}$	    	$\begin{aligned} & M=37^{\prime \prime} \cdot 29 \\ & w=15 \cdot 27 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=49^{\circ} 8^{\prime} 37^{\prime \prime} \cdot 28 \end{aligned}$
	$\begin{array}{llllllllllll}37 \cdot 20 & 36 \cdot 43 & 37 \cdot 73 & 37 \cdot 41 & 36 \cdot 14 & 38 \cdot 71 & 37 \cdot 85 & 37 \cdot 35 & 37 \cdot 47 & 36 \cdot 65\end{array}$	
$\begin{aligned} & \text { XXIV (Navalúr) } \\ & \text { and } \\ & \text { XXVII (Kundgol) } \end{aligned}$	$h_{41} \cdot 82 l 40 \cdot 02 h_{41} \cdot 98 l_{41} \cdot 34 h_{42} \cdot 7^{8} h_{3} 8 \cdot \cdot 88 l l_{41} \cdot 20 h_{40} \cdot 08 \quad l l_{3} \cdot 8_{4} h_{41} \cdot 86$  	$\begin{aligned} & M=41^{\prime \prime} \cdot 15 \\ & w=7 \cdot 50 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=51^{\circ} 22^{\prime} 41^{\prime \prime} \cdot 13 \end{aligned}$
$\begin{gathered} \text { XXVII (Kundgol) } \\ \quad \text { and } \\ \text { XXIX (Indúr) } \end{gathered}$	    	$\begin{aligned} & M=49^{\prime \prime} \cdot 65 \\ & w=11 \cdot 12 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=62^{\circ} 37^{\prime} 49^{\prime \prime} \cdot 65 \end{aligned}$
$\begin{gathered} \text { XXIX (Indúr) } \\ \text { and } \\ \text { XXX (Rámankŏp) } \end{gathered}$	        $h_{46} .46$	$\begin{aligned} & M=47^{\prime \prime} \cdot 17 \\ & w=12 \cdot 66 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=58^{\circ} 40^{\prime} 47^{\prime \prime} \cdot 18 \end{aligned}$
	$\begin{array}{lllllllllll}46 \cdot 92 & 46 \cdot 63 & 46 \cdot 73 & 47^{\prime} 17 & 47 \cdot 00 & 47^{\prime 25} & 47 \cdot 50 & 47 \cdot 31 & 46 \cdot 13 & 49\end{array}$	
$\begin{aligned} & \text { XXX (Rámankŏp) } \\ & \quad \text { and } \\ & \text { XXVIII Kánsĕrudi) } \end{aligned}$	    	$\begin{aligned} & M=41^{\prime \prime} \cdot 25 \\ & w=12 \cdot 08 \\ & \frac{1}{w}=\circ \cdot 08 \\ & C=52^{\circ} 13^{\prime} 41^{\prime \prime} \cdot 24 \end{aligned}$
	$\begin{array}{lllllllll}40 \cdot 84 & 40 \cdot 40 & 42 \cdot 01 & 41 \cdot 50 & 42 \cdot 53 & 41 \cdot 65 & 40 \cdot 16 & 40 \cdot 50 & 41 \cdot 83\end{array}$	



At XXVIII (Kánsěrudi)-(Continued).		
Angle between	Circle readings, telescope being set on XXV (Kalkera)   $\begin{array}{llllllllll}0^{\circ} 0^{\prime} & 179^{\circ} 59^{\prime} & 79^{\circ} 4^{\prime} & 259^{\circ} 4^{\prime} & 158^{\circ} 22^{\prime} & 338^{\circ} 22^{\prime} & 237^{\circ} 36^{\prime} & 57^{\circ} 36^{\prime} & 316^{\circ} 47^{\prime} & 136^{\circ} 47^{\prime}\end{array}$	$\boldsymbol{M}=$ Mean of Groups   ${ }_{0}^{\infty}=$ Relative Weight   C = Concluded Anglo
$\begin{aligned} & \text { XXVI (Ganigudd) } \\ & \text { and } \\ & \text { XXX (Rámankǒp) } \end{aligned}$	    	$\begin{aligned} & M=47^{\prime \prime} \cdot 37 \\ & w=6 \cdot 79 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=64^{\circ} 10^{\prime} 47^{\prime \prime} \cdot 3^{6} \end{aligned}$
March and April 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch Theodolite No. 2.		
Angle between	Circle readings, telescope being set on XXXII (Karǎkyatanhalli)   $\begin{array}{lllllllllll}0^{\circ} 2^{\prime} & 180^{\circ} 1^{\prime} & 79^{\circ} 10^{\prime} & 259^{\circ} 10^{\prime} & 158^{\circ} 23^{\prime} & 338^{\circ} 23^{\prime} & 237^{\circ} 36^{\prime} & 57^{\circ} 36^{\prime} & 316^{\circ} & 46^{\prime} & 136^{\circ}\end{array} 6_{6}^{\prime \prime}$	$\boldsymbol{M}=$ Mean of Groups   vo = Relative Weight   $\boldsymbol{C}=$ Concluded Angle
XXXII (Karěkyatanhalli)   and   XXXI (Bhedasgávegudda)	      h 31 1. 20 h 3 1'92 h $33^{\circ} 00$	$\begin{aligned} & M=29^{\prime \prime} \cdot 74 \\ & w=9 \cdot 03 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=53^{\circ} 2^{\prime} 29^{\prime \prime \prime} \cdot 76 \end{aligned}$
	$\begin{array}{llllllllll}30.27 & 29.38 & 28.45 & 28.85 & 28.75 & 30.33 & 30.59 & 29.87 & 30.47 & 30.45\end{array}$	
$\left\lvert\, \begin{gathered} \text { XXXI (Bhedasgávegudda) } \\ \text { and } \\ \text { XXX (Rámankŏp) } \end{gathered}\right.$	      $h 22 \cdot 46$   h $24^{\circ} 04$ h $20^{\circ} 00$   h 24.32   h 23.48	$\begin{aligned} M & =23^{\prime \prime} \cdot 26 \\ w & =13 \cdot 5^{8} \\ \frac{I}{w} & =0 \cdot 07 \\ C & =59^{\circ} 13^{\prime} 23^{\prime \prime} \cdot 27 \end{aligned}$
	$\begin{array}{lllllllllll}24.25 & 23.67 & 23.74 & 23.56 & 22.67 & 22.31 & 22.67 & 23.15 & 23.00 & 23.61\end{array}$	
```XXX (Rámankŏp) and XXVI (Ganigudd)```	      h $35 \cdot 76$ h $36 \cdot 10$   h $36 \cdot 34$   h $35 \cdot 36$	$\begin{aligned} & M=35^{\prime \prime} \cdot 4 \mathrm{I} \\ & w=12 \cdot 76 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=67^{\circ} 15^{\prime} 35^{\prime \prime} \cdot 41 \end{aligned}$
	$\begin{array}{llllllllll}33 \cdot 72 & 35 \cdot 70 & 35 \cdot 40 & 35 \cdot 38 & 35 \cdot 09 & 34.95 & 36 \cdot 59 & 35 \cdot 87 & 36 \cdot 12 & 35 \cdot 25\end{array}$	

At XXIX (Indúr)-(Continued).

At XXX (Rámankŏp)

March 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch Theodolite No. 2.

At XXXI (Bhedasgávegudda)-(Continued).

Angle between	$0^{\circ} 0^{\prime}$	Circle r $180^{\circ} 0^{\prime}$	eadings, $79^{\circ} 12^{\prime}$	telescope $259^{\circ} 12^{\prime}$	e being $158^{\circ} 25^{\prime}$	set on X $338^{\circ} 25^{\prime}$	XXXIV (C $237^{\circ} 35^{\prime}$	Chandra $57^{\circ} 35^{\prime}$	gutti) $316^{\circ} 47^{\prime}$	$136^{\circ} 47^{\prime}$	$M=$ Mean of Groups $w^{2}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
```XXX (Rámankŏp) and XXIX (Indúr)```	      h 36 •16   h $33 \cdot 34$										$\begin{aligned} & M=34^{\prime \prime} \cdot 37 \\ & w=20 \cdot 50 \\ & \frac{\mathbf{1}}{w}=0 \cdot 05 \\ & \boldsymbol{C}=61^{\circ} 55^{\prime} 34^{\prime \prime} \cdot 36 \end{aligned}$
	$33 \cdot 89$	34.78	34•91	34-98	34*43	34*15	$33 \cdot 93$	34*99	$33 \cdot 80$	$33 \cdot 88$	
XXIX (Indúr) and XXXII (Karĕkyatanhalli)	      d26.28   $h 25^{\circ} 44$ $\mathrm{~d} 25^{-88}$   d. $25 \cdot 88$										$\begin{aligned} & M=25^{\prime \prime} \cdot 86 \\ & w=9 \cdot 3^{6} \\ & \frac{1}{w}=0 \cdot 11 \\ & C=88^{\circ} 16^{\prime} 25^{\prime \prime} \cdot 86 \end{aligned}$
	$25^{\circ} 61$	24*25	24*99	$25 \cdot 65$	$25 \cdot 37$	26-82	26.31	25:67	$26 \cdot 67$	27•25	
XXXII (Karěkyatanhalli)   and   XXXIV (Chandragutti)	       										$\begin{aligned} M & =42^{\prime \prime} \cdot 10 \\ w & =7 \cdot 48 \\ \frac{1}{w} & =0 \cdot 13 \\ C & =65^{\circ} 49^{\prime} 42^{\prime \prime} \cdot 09 \end{aligned}$
	$42 \cdot 82$	44•16	$42 \cdot 89$	42*09	41•36	40*97	41•68	42•20	41'13	41'73	

## At XXXII (Karěkyatanhalli)

April 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24 -inch Theodolite No. 2.


At XXXII (Karěkyatanhalli)-(Continued).											
Angle between											
XXXI (Bhedasgávegudda)   and XXIX (Indúr)	$\begin{array}{ll}  & \prime \prime \\ h & 9 \cdot \\ h & 9 \\ h & 8 \cdot 9 \\ h & 5 \\ h & 4 \\ h & 6 \cdot 4 \\ h & 6 \\ d & 2 \\ d & 7 \end{array}$	$\begin{array}{ll} \\ h & \prime \prime \\ h & 5 \cdot 70 \\ h & 5 \\ h & 52 \\ h \cdot 20\end{array}$	$\begin{array}{lc}  & \prime \prime \\ l & 5.50 \\ l & 4.06 \\ l & 4.86 \\ l & 6.64 \end{array}$	$\begin{array}{ll}  & \prime \prime \\ l & 6 \cdot 12 \\ l & 5 \cdot 56 \\ l & 4 \cdot 96 \end{array}$	h. $7 \cdot 10$   h $5 \cdot 76$   h 5 •08	$\begin{array}{ll} h & 7 \cdot 06 \\ h & 7 \cdot 34 \\ h & 8 \cdot 00 \end{array}$	$\begin{array}{ll} h & 6 \cdot 06 \\ h & 5 \cdot 0 \\ l & 7 \cdot 28 \end{array}$	$\begin{array}{ll} h & 7.02 \\ h & 6 \cdot 12 \\ d & 6.75 \end{array}$	h $5 \cdot 22$   h 5.02   l 7 112	$\begin{array}{ll} h & 7 \\ h & 7 \cdot 28 \\ h & 7 \cdot 52 \\ h & 8 \cdot 08 \end{array}$	$\begin{aligned} M & =6^{\prime \prime} \cdot 42 \\ w & =11 \cdot 78 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =3^{\circ}{ }^{\circ} \mathbf{1 1}^{\prime} 6^{\prime \prime \prime} \cdot 43 \end{aligned}$
	7-26	$5 \cdot 81$	5•77	5.55	5988	$7 \cdot 47$	$6 \cdot 27$	$6 \cdot 63$	5•79	$7 \cdot 63$	

## At XXXIII (Menshigudda)

April and May 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$0^{\circ} \sigma^{\sigma}$	Circle readings, telescope being set on $\mathbf{X X X}$ (Rámankŏp)									$\boldsymbol{M}=$ Mean of Groups   ${ }^{*}=$ Relative Weight   $C=$ Concluded Angle
$\begin{gathered} \text { XXX (Rámankǒp) } \\ \text { and } \\ \text { XXXI (Bhedasgávegudda) } \end{gathered}$	$h_{51} \cdot 62$   $h_{50} \cdot 98$   h 50 '90				$\begin{gathered} \prime \prime \\ h_{53 \cdot 24} \\ h_{52} 520 \\ h_{51} \cdot{ }_{16} \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{50 \cdot 82} \\ h_{51} \cdot 64 \\ d 49 \cdot 78 \end{gathered}$	$\begin{gathered} \prime \prime \\ h_{49} \cdot 82 \\ h_{50} \cdot 42 \\ h_{49} \cdot 02 \end{gathered}$	$\begin{gathered} \prime \prime \\ 49 \cdot 94 \\ 49 \cdot 78 \\ 5 \mathrm{~F} \cdot 16 \end{gathered}$	h 49.68   $h 50 \cdot 44$   $h_{54-18}$   h $47 \cdot 88$   ${ }^{\boldsymbol{h}} 49$ - 84	$\begin{gathered} \prime \prime \\ h_{49}{ }^{\circ}+40 \\ h_{51} \cdot 32 \\ h_{51} \cdot 56 \end{gathered}$	$\begin{aligned} & M=51^{\prime \prime} \cdot 01 \\ & w=10 \cdot 24 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=60^{\circ} 22^{\prime} 51^{\prime \prime} \cdot 02 \end{aligned}$
	51•17	$51 \cdot 65$	51*23	51*78	52•30	50•75	49•75	50•29	$50 \cdot 40$	50•76	
XXXI (Bhedasgávegudda) and XXXIV (Chandragutti)	           $h_{14} \cdot 16$										$\begin{aligned} M & =14^{\prime \prime} \cdot 90 \\ w & =8 \cdot 05 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =59^{\circ} 27^{\prime} 14^{N} \cdot 88 \end{aligned}$
	14.60	$13 \cdot 19$	14.85	14.70	13.62	$16 \cdot 36$	$15 \cdot 58$	14.52	15.71	$15 \cdot 82$	
```XXXIV (Chandragutti) and XXXV (Halěbail)```	    										$\begin{aligned} & M=17^{\prime \prime} \cdot 69 \\ & w=11 \cdot 50 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=43^{\circ} 35^{\prime} 17^{\prime \prime} \cdot 69 \end{aligned}$
	18.99	17•90	$18 \cdot 77$	16.71	$18 \cdot 29$	$16 \cdot 69$	16.65	$18 \cdot 31$	$17^{1} 17$	17×46	

At XXXV (Halĕbail)

\ddagger May 1867; observed by Lieutenant H. Trotter, R.E., with Barrow's 24-inch Theodolite No. 2. § November and December 1872; observed by Lieutenant J. R. McCullagh, R. E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 1^{\prime}$	$\begin{aligned} & \text { Circle } \\ & 180^{\circ} 1^{\prime} \end{aligned}$	readings, $79^{\circ} 12^{\prime}$	telescop $259^{\circ} 11^{\prime}$	e being $158^{\circ} 25^{\prime}$	$\begin{aligned} & \text { set on } X \\ & 338^{\circ} 25^{\prime} \end{aligned}$	$\begin{aligned} & \text { XXIIII } \\ & 237^{\circ} 36^{\prime} \end{aligned}$	(Menshi $57^{\circ} 36^{\prime}$	gudda) $316^{\circ} 25^{\prime}$		$\boldsymbol{M}=$ Mean of Groups $v=$ Relntive Weight $C=$ Concluded Angle
$\stackrel{\ddagger}{\ddagger}$XXXIII (Menshigudda)andXXXI (Bhedasgávegudda)	 										$\begin{aligned} M & =57^{\prime \prime} \cdot 21 \\ w & =15 \cdot 20 \\ \frac{\mathrm{I}}{w} & =0 \cdot 07 \\ C & =38^{\circ} 3^{\prime} 57^{\prime \prime} \cdot 21 \end{aligned}$
	56.23	57*49	57*55	56•93	58•15	56.91	56•75	58'12	56.22	57*73	
$\begin{gathered} \ddagger \\ \text { XXXI (Bhedasgávegudda) } \\ \text { and } \\ \text { XXXIV (Chandragutti) } \end{gathered}$	 h 9.54										$\begin{aligned} M & =10^{\prime \prime \prime} \cdot 46 \\ w & =11 \cdot 55 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =59^{\circ} 27^{\prime} 10^{\prime \prime} \cdot 45 \end{aligned}$
	12009	9•86	10. 28	9•91	10'13	$10 \cdot 68$	10.81	8:96	$10 \cdot 83$	II*OI	
\SXXXIV (Chandragutti)andXXXVI (Hukaligudda)	Circle readings, telescope being set on XXXIV (Chandragutti) $120^{\circ} 6^{\prime} \quad 300^{\circ} 6^{\prime} \quad 199^{\circ} 19^{\prime} \quad 19^{\circ} 19^{\prime} \quad 278^{\circ} 30^{\prime} \quad 98^{\circ} 30^{\prime} \quad 357^{\circ} 42^{\prime} \quad 177^{\circ} 42^{\prime} \quad 76^{\circ} 54^{\prime} \quad 256^{\circ} 54^{\prime}$										$\begin{aligned} M & =25^{\prime \prime} \cdot 5^{8} \\ w & =24 \cdot 40 \\ \frac{I}{w} & =0 \cdot 04 \\ C & =56^{\circ} 42^{\prime} 25^{\prime \prime} \cdot 58 \end{aligned}$
	26•18	25•16	25*54	24*95	25*98	$25 \cdot 15$	$26 \cdot 49$	25.83	$24 \cdot 84$	$25 \cdot 68$	
\SXXXVI (Hukaligudda)andXXXVII (Kaltigudda)											$\begin{aligned} M & =13^{\prime \prime} \cdot 93 \\ w & =11 \cdot 24 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =63^{\circ} 22^{\prime} 13^{\prime \prime} \cdot 93 \end{aligned}$
	${ }^{13} 88$	$12 \cdot 96$	13.12	13.57	13.47	12•97	14*13	14*94	14*92	15*31	

At XXXVI (Hukaligudda) December 1872; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24-inch T'heodolite No. 1.											
Angle between	Circle readings, telescope being set on XXXIV (Chandragutti)										$M=$ Mean of Groups ${ }^{20}$ = Relative Weight C = Concluded Angle
$\begin{gathered} \text { XXXIV (Chandragutti) } \\ \text { and } \\ \text { XXXIX (Koramúr) } \end{gathered}$		$43 \cdot 83$ $45 \cdot 44$ $44 \cdot 36$	44.91 44.55 45.19			$\prime \prime$ $h_{45} \cdot 85$ $h_{44} \cdot 72$ $h_{45} \cdot 64$		$\prime \prime$ 4.25 3.79 5 '18	$\prime \prime$ $45 \cdot 86$ 43.15 43.44 44.24	$\prime \prime$ h $45 \cdot 06$ l 44.50 $h 44$	$\begin{aligned} M & =44^{\prime \prime} \cdot 79 \\ w & =23 \cdot 53 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =74^{\circ} 27^{\prime} 44^{\prime \prime} \cdot 78 \end{aligned}$
	44*81	44*54	44*88	44*25	45*96	$45 * 40$	$44 \cdot 81$	44*41	44*17	$44 \cdot 68$	
$\begin{gathered} \text { XXXIX (Koramúr) } \\ \text { and } \\ \text { XXXVIII (Dinděmane) } \end{gathered}$	 h 57×34										$\begin{aligned} & M=57^{\prime \prime} \cdot 34 \\ & w=42 \cdot 29 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=82^{\circ} 41^{\prime} 57^{\prime \prime} \cdot 34 \end{aligned}$
	$57 \cdot 36$	57-18	57×46	56•95	56•79	$57 \cdot 29$	57*92	57×23	57*92	57•35	
XXXVIII (Dinděmane) and XXXVII (Kaltigudda)	 l $39^{\circ} 71140$ (33 $l 39^{\circ} 23$ h $40 \cdot 44$										$\begin{aligned} M & =39^{\prime \prime} \cdot 86 \\ w & =13 \cdot 10 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =87^{\circ} 18^{\prime} 39^{\prime \prime} \cdot 87 \end{aligned}$
	39*99	. $40 \cdot 46$	40'52	$40 \cdot 87$	$38 \cdot 87$	$38 \cdot 89$	$39^{\circ} 40$	$39 \cdot 03$	40.24	40*33	
$\begin{gathered} \text { XXXVII (Kaltigudda) } \\ \text { and } \\ \text { XXXV (Halěbail) } \end{gathered}$											$\begin{aligned} M & =47^{\prime \prime} \cdot 59 \\ w & =24 \cdot 30 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =43^{\circ} 44^{\prime} 47^{\prime \prime} \cdot 58 \end{aligned}$
	47*15	47•64	47*33	47 11	$47 \cdot 66$	$48 \cdot 37$	$47 \cdot 80$	$48 \cdot 48$	$46 \cdot 87$	47* 5^{1}	
$\begin{gathered} \text { XXXV (Halěbail) } \\ \text { and } \\ \text { XXXIV (Chandragutti) } \end{gathered}$	 										$\begin{aligned} M & =50^{\prime \prime} \cdot 11 \\ w & =35 \cdot 70 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =71^{\circ} 46^{\prime} 50^{\prime \prime} \cdot 11 \end{aligned}$
	$50 \cdot 36$	49*36	49'51	$50 \cdot 09$	50'22	50•60	$50 \cdot 09$	$50 \cdot 67$	49*98	50.21	
At XXXVII (Kaltigudda) eutenant J. R. Mc Cullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	$0^{\circ} 2^{\prime} \quad 180^{\circ} 1^{\prime} \quad 709^{\circ} 13^{\prime} \quad 259^{\circ} 13^{\prime} \quad 158^{\circ} 25^{\prime}$										$M=$ Mean of Groups $w_{0}=$ Relative Weight C $=$ Concluded Angle
$X X$											$\begin{aligned} M & =60^{\prime \prime} \cdot 32 \\ w & =17 \cdot 74 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =72^{\circ} 53^{\prime} \quad 0^{\prime \prime} \cdot 33 \end{aligned}$
	$\begin{array}{llllllllll}60 \cdot 65 & 60 \cdot 86 & 60 \cdot 26 & 59 \cdot 63 & 60 \cdot 09 & 60 \cdot 85 & 61 \cdot 34 & 59 \cdot 37 & 59 \cdot 87 & 60 \cdot 27\end{array}$										

- This value should be $47 \cdot 18$: the error was not detected until after completion of the calculations.

At XXXVII (Kaltigudda)-(Continued).											
Angle between	Circle readings, telescope being set on XXXV (Halěbail) 										$M=$ Mean of Groups wo Relative Weight $C=$ Concluded Angle
```XXXVI (Hukaligudda) and XXXVIII (Dindəmane)```											$\begin{aligned} M & =17^{\prime \prime} \cdot 80 \\ w & =24 \cdot 59 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =38^{\circ} 33^{\prime} 17^{\prime \prime} \cdot 79 \end{aligned}$
	$17^{\circ} 4$	18.72	17*05	18.02	18.15	$17 \cdot 08$	$17 \cdot 84$	1751	1795	18.23	

## At XXXVIII (Dinděmane)

January 1873; observed by Lieutenant J. R. Mc Cullagh, R.E., woith Troughton and Simms'
24-inch Theodolite No. 1.


## At XXXIX (Koramúr)

## January 1873; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24 -inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XL (Hŏnnavalli)										$M=$ Mean of Groups   $w_{0}=$ Relative Weight   $C=$ Concluded Angle
$\begin{aligned} & \mathrm{XL} \text { (Hŏnnavalli) } \\ & \text { and } \\ & \mathrm{XLI} \text { (Hugadi) } \end{aligned}$	$\begin{array}{ll} h 17 \cdot 64 \\ h 17.96 \\ l & 16 \cdot 33 \end{array}$	$\begin{gathered} " \\ h 17 \cdot 71 \\ h 18 \cdot 02 \\ h 17.30 \end{gathered}$	$\begin{aligned} & 18 \cdot 63 \\ & 18 \cdot 13 \\ & 17.09 \end{aligned}$				$\prime \prime$ $h 16.82$ $h 16.74$ $l$ 16.09			$\begin{array}{cc} \prime \prime \\ l & 16.94 \\ l & 16 \cdot 51 \\ l & 16 \cdot 31 \end{array}$	$\begin{aligned} & M=17^{\prime \prime} \cdot 13 \\ & w=22 \cdot 3^{6} \\ & \frac{1}{w}=0 \cdot 04 \\ & C=81^{\circ} 35^{\prime} 17^{\prime \prime} \cdot 13 \end{aligned}$
	17.31	$17 \cdot 68$	1795	16.81	16.92	17.57	$16 \cdot 55$	$16 \cdot 25$	17.66	16.59	
$\begin{gathered} \text { XLI (Hugadi) } \\ \text { and } \\ \text { XLII (Kŏdashádri) } \end{gathered}$	    										$\begin{aligned} & M=11^{\prime \prime} \cdot 11 \\ & w=29 \cdot 40 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=63^{\circ} 11^{\prime} 1 I^{\prime \prime} \cdot 11 \end{aligned}$
	10*75	12•10	11*06	10•38	11•16	10.55	II'48	10’90	11*34	11•37	
```XLII (Ködashádri) and XXXVIII (Dind`mane)```											$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 77 \\ & w=10 \cdot 45 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=69^{\circ} 17^{\prime} 32^{\prime \prime \prime} \cdot 77 \end{aligned}$
	32-60	31*38	33*03	$33 \cdot 27$	33*56	34*31	32*57	33*19	31'74	32•04	
XXXVIII (Dindłmane) and XXXVI (Hukaligudda)	 ${ }^{\boldsymbol{h}}{ }_{58}$-73										$\begin{aligned} M & =5^{\prime \prime} \cdot 24 \\ w & =12 \cdot 87 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =34^{\circ} 36^{\prime} 58^{\prime \prime} \cdot 23 \end{aligned}$
	57.51	$59 \cdot 27$	57.25	57•86	57•50	58*93	$59^{\circ} 47$	58.69	57-84	58•10	
$\begin{aligned} & \text { XXXVI (Hukaligudda) } \\ & \text { and } \\ & \text { XXXIV (Chandragatti) } \end{aligned}$	l l $5 \cdot 04 h$	$\begin{array}{ll}h & 4.49 \\ h & 5.84 \\ l & 3.86\end{array}$	l $5 \cdot 74$	l 4 4 4 4 4 4	$h 4.32$ h 4.59 h 4	$\begin{array}{ll}h & 3.06 \\ h & 2.89 \\ h & 4.89\end{array}$	$\begin{array}{lll}h & 3 & 77 \\ h & 3 & 41 \\ l & 4 \\ & 4 & 43\end{array}$	$\begin{array}{lll}l & 3 \cdot 1 \\ l & 3 & 1 \\ l & 18 \\ h & 4 & 58\end{array}$	l l 6.54	$\begin{array}{ll} l & 4 \cdot 19 \\ l & 4 \cdot 8 \\ h & 5 \cdot 67 \end{array}$	$\begin{aligned} & M=4^{\prime \prime} \cdot 66 \\ & w=13 \cdot 50 \\ & \frac{1}{w}=0 \cdot 07 \\ & \boldsymbol{C}=50^{\circ} 48^{\prime} 4^{\prime \prime} \cdot 66 \end{aligned}$
	5.55	4*73	5*55	4.45	$4 \cdot 63$	$3^{\cdot 61}$	$3 \cdot 87$	$3 \cdot 63$	5.71	4.89	
XXXIV (Chandragutti) and XL (Hǒnnavalli)	 										$\begin{aligned} M & =55^{\prime \prime} \cdot 57 \\ w & =8 \cdot 10 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =60^{\circ} 30^{\prime} 55^{\prime \prime} \cdot 57 \end{aligned}$
	54.61	54.28	$55 \cdot 65$	54*77	$55 \cdot 62$	$55 \cdot 30$	56•34	57•25	54*74	57•24	

At XL (Hŏnnavalli) December 1872 and January 1873 ; observed by Lieutenant J. R. Mc Cullagh, R.E., with Troughton and Simms' 24-inch T'heodolite No. 1.		
Angle between	Circle readings, telescope being set on XLI (Hugadi) $127^{\circ} 17^{\prime} \quad 307^{\circ} 16 \quad 206^{\circ} 28^{\prime} \quad 26^{\circ} 28^{\prime} \quad 285^{\circ} 41^{\prime} \quad 105^{\circ} 41^{\prime} \quad 4^{\circ} 53^{\prime} \quad 184^{\circ} 52^{\prime} \quad 84^{\circ} 4^{\prime} \quad 264^{\circ} 4^{\prime}$	$\begin{aligned} \boldsymbol{M} & =\text { Mean of Groups } \\ w & =\text { Relative Weight }\end{aligned}$ ${ }^{w} \mathbf{C}=\begin{gathered}\text { Relative Weight } \\ \text { Concluded Angle }\end{gathered}$
$\begin{gathered} \text { XLI (Hugadi) } \\ \text { and } \\ \text { XXXIX (Koramúr) } \end{gathered}$	 	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 28 \\ & w=50 \cdot 5^{6} \\ & \frac{1}{w}=0 \cdot 02 \\ & C=57^{\circ} 11^{\prime} 3^{\prime \prime \prime} \cdot 28 \end{aligned}$
	$\begin{array}{llllllllll}38 \cdot 16 & 37.58 & 38 \cdot 26 & 38 \cdot 44 & 38.45 & 38 \cdot 15 & 38 \cdot 29 & 38 \cdot 36 & 38.33 & 38.82\end{array}$	
$\begin{gathered} \text { XXXIX (Koramúr) } \\ \text { and } \\ \text { XXXIV (Chandragutti) } \end{gathered}$	 ${ }^{1} 38.95$	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 05 \\ & w=20 \cdot 08 \\ & \frac{1}{w}=\circ \cdot 05 \\ & C=70^{\circ} 3^{\prime} 3^{\prime \prime} \cdot 05 \end{aligned}$
	$\begin{array}{llllllllll}38.06 & 38.86 & 37.78 & 38.01 & 37.40 & 37.35 & 39.07 & 38.72 & 37.35 & 37.85\end{array}$	

At XLI (Hugadi)

January 1873; observed by Lieutenant J. R. Mc Cullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 1^{\prime}$	$\begin{array}{r} \text { Circ } \\ 180^{\circ} 1^{\prime} \end{array}$	$\begin{aligned} & \text { e readin } \\ & 79^{\circ} 13^{\prime} \end{aligned}$	gs, telesc $259^{\circ} 13^{\prime}$	ope bein $158^{\circ} 26^{\prime}$	g set on $338^{\circ} 5^{\prime}$	XLIII $237^{\circ} 38^{\prime}$	(Siddesh $57^{\circ} 37^{\prime}$	ar) $816^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	$\boldsymbol{M}=$ Mean of Groups $v=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
XLIII (Siddeshvar) and	$\begin{array}{lll} & \prime \prime \\ h & 2.03 \\ h & 2.77 \\ h & 2.73\end{array}$			$\begin{array}{cc} \\ l & \prime \prime \\ l & 2.16 \\ l & 2.59 \\ l & 2.85\end{array}$	$\begin{array}{lc} \\ l & \prime \prime \\ l & 2.74 \\ l & 3 \\ l & 3 \\ 2.57\end{array}$	$\begin{array}{cc}\prime \prime \\ l & 4.60 \\ l & 2.98 \\ l & 3.27\end{array}$	$\begin{array}{cc} & \prime \prime \\ h & .62 \\ h & 4 \\ 4 & 19 \\ h & 3.02\end{array}$		$\begin{array}{lc} & \prime \prime \\ l & 3 \cdot 22 \\ l & 3 \cdot 10 \\ l & 2 \cdot \\ l & \cdot 96 \end{array}$	$\begin{array}{ll} & \prime \prime \\ l & 2 \cdot 86 \\ l & 2 \cdot 9 \\ l & 2.92 \\ l & 2.49 \end{array}$	$\begin{aligned} M & =2^{\prime \prime} \cdot 89 \\ w & =34 \cdot 50 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =33^{\circ} 27^{\prime} \quad 2^{\prime \prime} \cdot 89 \end{aligned}$
	2.5	$2 \cdot 69$	$2 \cdot 36$	2.53	$2 \cdot 89$	$3 \cdot 62$	3*61	2.49	3*43	$2 \cdot 76$	
$\begin{gathered} \text { XLIV (Bisale) } \\ \text { and } \\ \text { XLII (Kŏdashádri) } \end{gathered}$	 										$\begin{aligned} M & =29^{\prime \prime} \cdot 65 \\ w & =26 \cdot 30 \\ \frac{\mathrm{I}}{w} & =0 \cdot 04 \\ C & =56^{\circ} 36^{\prime} 29^{\prime \prime} \cdot 65 \end{aligned}$
	$30 \cdot 0$	$30 \cdot 15$	30.00	29.67	$30 \cdot 42$	28•78	29*0	$29 \cdot 23$	$29^{1} 16$	$30 \cdot 05$	

At XLII (Kŏdashádri)-(Continued).		
Angle between	Circle readings, telescope being set on XXXVIII (Dinděmane) $\begin{array}{llllllll}0^{\circ} 1^{\prime} & 180^{\circ} 1^{\prime} & 79^{\circ} 14^{\prime} & 259^{\circ} 14^{\prime} & 158^{\circ} 6^{\prime} & 838^{\circ} 26^{\prime} & 237^{\circ} 37^{\prime} & 57^{\circ} 37^{\prime} \\ 816^{\circ} & 49^{\prime} & 136^{\circ} 48^{\prime}\end{array}$	$\begin{aligned} & M=\text { Men of Groupp } \\ & =\text { Relotive } \\ & C=\text { Coight } \\ & C \text { Concluded Angle } \end{aligned}$
$\begin{aligned} & \text { XLIIII (Siddeshvar) } \\ & \text { and } \\ & \text { XLIV (Bisale) } \end{aligned}$	 	$\begin{aligned} & M=12^{\prime \prime} \cdot 80 \\ & w=16 \cdot 51 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=33^{\circ} 40^{\prime} 12^{\prime \prime} \cdot 80 \end{aligned}$
	$\begin{array}{llllllllll}11.77 & 12.77 & 12.24 & 13.50 & 12.58 & 13.81 & 12.37 & 12 \cdot 30 & 13 \cdot 16 & 13.52\end{array}$	
At XLIII (Siddeshvar) January 1873; observed by Lieutenant J. R. Mc Cullagh, R.E., with Troughton and Simms' 24-inch I'heodolite No. 1.		
Angle between	Circle readings, telescope being set on XLVI (Hëbbe) $\begin{array}{llllllllll}288^{\circ} 44^{\prime} & 58^{\circ} 44^{\prime} & 317^{\circ} 57^{\prime} & 137^{\circ} 57^{\prime} & 37^{\circ} 9^{\prime} & 217^{\circ} 8^{\prime} & 116^{\circ} 21^{\prime} & 296^{\circ} 21^{\prime} & 195^{\circ} 32^{\prime} & 15^{\circ} 32^{\prime}\end{array}$	$\begin{aligned} & M=\text { Mean of Groupp } \\ & w=\text { Relative Weight } \\ & C=\text { Concluded } \Delta \text { ngle } \end{aligned}$
$\begin{gathered} \text { XLVI (Ȟ̌bbe) } \\ \text { and } \\ \text { XLV (Hirěgudda) } \end{gathered}$	 	$\begin{aligned} & M=30^{\prime \prime} \cdot 60 \\ & w=14 \cdot 30 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=35^{\circ} 32^{\prime} 30^{\prime \prime} \cdot 60 \end{aligned}$
	$\begin{array}{lllllllllll}30 \cdot 39 & 30 \cdot 78 & 31^{\circ} 85 & 31^{\circ} 04 & 30 \cdot 79 & 29^{\prime} 77 & 30 \cdot 91 & 29^{\prime 25} & 31^{\prime} 11 & 30 \cdot 12\end{array}$	
$\begin{gathered} \text { XLV (Hirğgudda) } \\ \text { and } \\ \text { XLIV (Bisale) } \end{gathered}$	 	$\begin{aligned} & M=21^{\prime \prime} \cdot 3_{2} \\ & w=13 \cdot 60 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=9 \circ^{\circ} 30^{\prime} 21^{\prime \prime} \cdot 3^{2} \end{aligned}$
	$\begin{array}{lllllllllll}22.35 & 21.82 & 20 \cdot 37 & 21.05 & 21.41 & 20 \cdot 84 & 20 \cdot 74 & 21.52 & 20 \cdot 51 & 22.54\end{array}$	
$\begin{gathered} \text { XLIV (Bisale) } \\ \text { and } \\ \text { XLII (Ǩ̌dashádri) } \end{gathered}$	 	$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 41 \\ & w=14 \cdot 94 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=56^{\circ} 49^{\prime} 56^{\prime \prime} \cdot 42 \end{aligned}$
	$\begin{array}{llllllllllll}56 \cdot 82 & 57 \cdot 01 & 56 \cdot 30 & 55 \cdot 66 & 56 \cdot 60 & 57 \cdot 54 & 56 \cdot 89 & 56 \cdot 13 & 55 \cdot 65 & 55.49\end{array}$	
$\begin{aligned} & \text { XLII (Kŏdashádri) } \\ & \text { and } \\ & \text { XLI (Hugadi) } \end{aligned}$	 	$\begin{aligned} & M=16^{\prime \prime \prime} \cdot 86 \\ & w=13 \cdot 50 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=55^{\circ} 50^{\prime} 16^{\prime \prime} \cdot 86 \end{aligned}$
	$\begin{array}{llllllllllll}17.12 & 16.88 & 17.11 & 17.36 & 17.00 & 16.07 & 15.09 & 16.84 & 17.45 & 17.68\end{array}$	

At XLIV (Bisale) February 1873; observed by Lieutenant J. R. Mc Cullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on XLII (Kŏdashádri) $200^{\circ} 51^{\prime} \quad 20^{\circ} 50^{\prime} \quad 280^{\circ} 3^{\prime} \quad 100^{\circ} 3^{\prime} \quad 359^{\circ} 15^{\prime} \quad 179^{\circ} 15^{\prime} \quad 78^{\circ} 26^{\prime} \quad 258^{\circ} 26^{\prime} \quad 157^{\circ} 39^{\prime} \quad 337^{\circ} 39^{\prime}$										$\begin{aligned} & M=\text { Mean of Groups } \\ & w=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$
$\begin{gathered} \text { XLII (Kŏdashádri) } \\ \text { and } \\ \text { XLI (Hugadi) } \end{gathered}$			$\prime \prime$ 7.26 7.47 7×73		$\prime \prime$ l 7 l 8 7 7 8.60	$\prime \prime$ l l l $7 \cdot 31$ l l $7 \cdot 65$ 7					$\begin{aligned} & M=8^{\prime \prime} \cdot 29 \\ & w=21 \cdot 08 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=55^{\circ} 37^{\prime} 8^{\prime \prime} \cdot 29 \end{aligned}$
	$8 \cdot 86$	$8 \cdot 55$	749	$8 \cdot 36$	8.78	7*97	7*61	$8 \cdot 65$	7•53	9`09	
$\begin{gathered} \text { XLI (Hugadi) } \\ \text { and } \\ \text { XLIII (Siddeshvar) } \end{gathered}$	 										$\begin{aligned} M & =44^{\prime \prime} \cdot 89 \\ w & =22 \cdot 78 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =33^{\circ} 52^{\prime} 44^{\prime \prime} \cdot 89 \end{aligned}$
	$44^{1} 16$	45*68	$44 \cdot 80$	44•06	$44 * 67$	45*32	$44 * 89$	44*73	$45^{\circ} 41$	$45 * 23$	
```XLIII (Siddeshvar) and XLV (Hirĕgudda)```											$\begin{aligned} M & =37^{\prime \prime} \cdot 42 \\ w & =22 \cdot 30 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =56^{\circ} 51^{\prime} 37^{\prime \prime} \cdot 40 \end{aligned}$
	$36 \cdot 61$	$38 \cdot 23$	3812	37'19	37•26	37 35	37*19	$37 \times 30$	$37 \cdot 89$	$37^{\circ} 03$	
$\begin{aligned} & \text { XLV (.Hirěgudda) } \\ & \text { • and } \\ & \text { XLVII (Valkunji) } \end{aligned}$	      $h 20 \cdot 06$										$\begin{aligned} & M=20^{\prime \prime} \cdot 32 \\ & w=16 \cdot 78 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=54^{\circ} 28^{\prime} 20^{\prime \prime \prime} \cdot 3^{2} \end{aligned}$
At XLV (Hirĕgudda)   February 1873 ; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on XLVI (Hěbbe)   $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 13^{\prime} \quad 259^{\circ} 13^{\prime} \quad 158^{\circ} 25^{\prime} \quad 338^{\circ} 25^{\prime} \quad 237^{\circ} 37^{\prime} \quad 57^{\circ} 37^{\prime} \quad 316^{\circ} 49^{\prime} \quad 136^{\circ} 49^{\prime}$										$\boldsymbol{M}=$ Mean of Groups   $v^{2}=$ Relative Weight   C = Concluded Angle
XLVI (Hěbbe)   and   VI (Ånúr)											$\begin{aligned} & M=45^{\prime \prime} \cdot 37 \\ & w=22 \cdot 5^{6} \\ & \frac{\mathbf{I}}{w}=0 \cdot 04 \\ & C=56^{\circ} 50^{\prime} 45^{\prime \prime} \cdot 3^{6} \end{aligned}$
	$45^{\circ} 42$	45*36	$45 \cdot 23$	$45^{\circ} 00$	45*95	46.51	44*88	45*34	$45 * 46$	44*51	

Note.-Station VI (Ánúr) appertains to the Madras Longitudinal Series.

At XLV (Hirěgudda)-(Continued).												
Angle between	Circle readings, telescope being set on XLVI (Hěbbe)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}=$ Relative Weight $C=$ Concluded Angle	
$\begin{gathered} \text { VI (Ãnúr) } \\ \text { and } \\ \text { III (Kudurěmukha) } \end{gathered}$	    										$\begin{aligned} & M=50^{\prime \prime} \cdot 54 \\ & w=13 \cdot 00 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=95^{\circ} 39^{\prime} 50^{\prime \prime} \cdot 54 \end{aligned}$	
	50 34	51.24	51.52	50'18	50.62	49'17	51*43	$49^{\prime} 51$	50'50	50:87		
$\begin{gathered} \text { III (Kudurermukha) } \\ \text { and } \\ \text { XLVII (Valkunji) } \end{gathered}$	    										$\begin{aligned} & M=54^{\prime \prime} \cdot 15 \\ & w=14 \cdot 84 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=52^{\circ} 3^{\prime} 8^{\prime} 54^{\prime \prime} \cdot 15 \end{aligned}$	
	54.27	54.20	$53 \cdot 39$	53.99	53.43	55.80	54.21	$53 \cdot 81$	$54 \cdot 11$	$54 \cdot 30$		
$\begin{gathered} \text { XLVII (Valkunji) } \\ \text { and } \\ \text { XLIV (Bisale) } \end{gathered}$											$\begin{aligned} & M=2^{\prime \prime} \cdot 47 \\ & w=27 \cdot 80 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=36^{\circ} 25^{\prime} \quad 2^{\prime \prime} \cdot 47 \end{aligned}$	
	$2 \cdot 69$	3.55	$2 \cdot 29$	$2 \cdot 75$	2.57	$2 \cdot 11$	$2 \cdot 13$	$1 \cdot 96$	2.49	2.18		
$\begin{gathered} \text { XLIV (Bisale) } \\ \text { and } \\ \text { XLIII (Siddeshvar) } \end{gathered}$											$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 43 \\ & w=11 \cdot 68 \\ & \frac{1}{w}=\circ \cdot 09 \\ & C=32^{\circ} 3^{8^{\prime}} 3^{\prime \prime \prime} \cdot 43 \end{aligned}$	
	$4 * 40$	$3 \cdot 39$	$2 \cdot 13$	2.57	$3 \cdot 35$	4.33	$2 \cdot 95$	$3 \cdot 68$	$2 \cdot 74$	4.75		
$\begin{gathered} \text { XLIII (Siddeshvar) } \\ \text { and } \\ \text { XLVI (Hëbbe) } \end{gathered}$	   $l_{23} \cdot 02 l 22 \cdot 79 l 24 \cdot 62 l 24 \cdot 56 l 24 \cdot 79 h 23 \cdot 02 h 25 \cdot 54 h 25 \cdot 83 h 24 \cdot 44 h 25 \cdot 00$										$\begin{aligned} & M=24^{\prime \prime \prime} \cdot 42 \\ & w=23 \cdot 80 \\ & \frac{\mathrm{I}}{w}=0 \cdot 04 \\ & C=85^{\circ} 47^{\prime} 24^{\prime \prime \prime} \cdot 42 \end{aligned}$	
	$\begin{array}{lllllllllll}23.78 & 24.45 & 24.74 & 24.59 & 24.87 & 24.04 & 23.90 & 24.57 & 24.21 & 25.02\end{array}$											
At XLVI (Hĕbbe)   March 1873; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24-inch I'heodolite No. 1.												
ggle between	Circle readings, telescope being set on VI (Ãnúr)  										$M=\begin{gathered}\text { Mean of Groups } \\ \text { Relative } \\ \text { Weight }\end{gathered}$   $\stackrel{w}{C}=$ Concluded Angle	
$\begin{gathered} \text { VI (Ānúr) } \\ \text { and } \\ \text { XLV (Hiregudda) } \end{gathered}$											$\begin{aligned} & M=18^{\prime \prime} \cdot 01 \\ & w=16 \cdot 70 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=68^{\circ} 5^{\prime} 18^{\prime \prime} \cdot 02 \end{aligned}$	
	$\begin{array}{lllllllllllll}17.96 & 17.25 & 18.33 & 1744 & 17.32 & 17 \times 43 & 18.44 & 18.79 & 19.03 & 18.08\end{array}$											

Note.—Stations III (Kudurěmukha) and VI (Ãnúr) appertain to the Madras Longitudinal Series.

			At XLVI (Hĕbbe)-(Continued).								
Angle between	Circle readings, telescope being set on VI (Ãnúr)										$\left.\boldsymbol{M}=\begin{array}{l}\text { Moen of Groups } \\ w\end{array}\right)$ $\boldsymbol{w}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
$\begin{gathered} \text { XLV (Hirěgudda) } \\ \text { and } \\ \text { XLIII (Siddeshvar) } \end{gathered}$											$\begin{aligned} & M=7^{\prime \prime} \cdot 35 \\ & w=17 \cdot 37 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=58^{\circ} 40^{\prime} 7^{\star} \cdot 35 \end{aligned}$
	8•19	7•36	6.61	7•06	7 ${ }^{17}$	8.58	7•10	$7 \cdot \infty$	6.81	7.60	
At XLVII (Valkunji).   February 1873; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on XLIV (Bisale)   $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 13^{\prime} \quad 259^{\circ} 13^{\prime} \quad 158^{\circ} 25^{\prime} \quad 338^{\circ} 25^{\prime} \quad 237^{\circ} 37^{\prime} \quad 57^{\circ} 37^{\prime} \quad 316^{\circ} 48^{\prime} \quad 136^{\circ} 48^{\prime}$										$\boldsymbol{M}=$ Mean of Groups   $w_{0}=$ Relative Weight   $C=$ Concluded Angle
XLIV (Bisale) and	    										$\begin{aligned} M & =40^{\prime \prime} \cdot 72 \\ w & =22 \cdot 42 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =89^{\circ} \quad 6^{\prime} 40^{\prime \prime} \cdot 72 \end{aligned}$
	40•31	40•72	41-30	40'51	40•81	$40^{\prime} 41$	41*48	40'11	41*45	40•13	
$\begin{gathered} \text { XLV (Hirěgudda) } \\ \text { and } \\ \text { III (Kudurěmukha) } \end{gathered}$	    										$\begin{aligned} & \boldsymbol{M}=14^{\prime \prime} \cdot 90 \\ & w=34 \cdot 50 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=60^{\circ} 18^{\prime} 14^{\prime \prime} \cdot 90 \end{aligned}$
	14.80	13.97	1519	$14 \cdot 61$	14.47	$15 \cdot 36$	14.76	$15 \cdot 43$	15.05	15*33	
At III (Kudurĕmukha)   ved by Lieutenant J. R. McCullagh, R.E., with Troughton and ms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on XLVII (Valkunji)  										$M=$ Mean of Groups   $w=$ Relutive Weight   C = Concluded Angle
```XLVII (Valkunji) and XLV (Hirěgudda)```	         $h_{51} 13$										$\begin{aligned} & \boldsymbol{M}=53^{\prime \prime} \cdot 10 \\ & w=15 \cdot 05 \\ & \frac{1}{w}=0 \cdot 07 \\ & \boldsymbol{C}=67^{\circ} 2^{\prime} 53^{\prime \prime} \cdot 09 \end{aligned}$
	$53 \cdot 32$	52.07	5171	52*43	53.62	53.94	$53 \cdot 74$	$53 \cdot 57$	53.39	$53 \cdot 18$	

Notr.-Stations III (Kudurèmukha) and VI (Anúr) appertain to the Madras Longitudinal Series.

Norr.-Stations III (Kudurěmukha) and VI (Ãnúr) appertain to the Madras Longitudinal Series.
J. B. N. HENNESSEY,

April 1882. In charge of Computing Offiou.

ADDENDUM.

The system of zero-setting adopted by the observer for the portion of the Series from its northern extremity down to Stations Navalúr and Kalkera, which was executed in 1863-66, differed from the system introduced in 1860 and explained at page 63 of Volume II of the Account of the Operations of the Great Trigonometrical Survey of India. The instrument employed having 5 microscopes, the zero-settings by the latter system should have been

$$
\frac{0^{\circ} 0^{\prime}}{180^{\circ} 0^{\prime}}, \frac{79^{\circ} 12^{\prime}}{259^{\circ} 12^{\prime}}, \frac{158^{\circ} 24^{\prime}}{338^{\circ} 24^{\prime}}, \frac{237^{\circ} 36^{\prime}}{57^{\circ} 36^{\prime}} \text { and } \frac{316^{\circ} 48^{\prime}}{136^{\circ} 48^{\prime}}
$$

but instead of these settings the following were actually adopted on the portion of the series above mentioned.

$$
\frac{0^{\circ} 0^{\prime}}{180^{\circ} 0^{\prime}}, \frac{43^{\circ} 12^{\prime}}{223^{\circ} 1 \mathscr{2}^{\prime}}, \frac{86^{\circ} 24^{\prime}}{266^{\circ} 24^{\prime}}, \frac{129^{\circ} 36^{\prime}}{309^{\circ} 36^{\prime}} \text { and } \frac{172^{\circ} 48^{\prime}}{352^{\circ} 48^{\prime}}
$$

2. When the station of observation is at the centre of a polygon, a round of intersections is incomplete unless the first station in the round is intersected again at the end of the round. Thus, suppose at the central station S, the objects are successively A B C D EF, to measure all the six angles, a round should give the readings of A BCDEFA, and not only of A B C D EF: in the latter case only five of the six angles required are actually measured. Incomplete rounds were measured at the stations of Kalas, Páchvad, Dandoba Dongar, Karabgati and Chikk Nandihallígudd.

In the calculations of the weights of the observed angles by the formula given in Section 4 of Chapter VII of Volume II and illustrated by an example in the foot note to page 342 of the same Volume, it is necessary to employ the squares of the apparent errors of observation and graduation. These data have been employed to ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m.s. of graduation and observation, of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instruments employed were Barrow's 24 -inch Theodolite No. 2, and Troughton and Simms' 24 -inch Theodolite No. 1. The azimuthal circles of both instruments were read by 5 microscopes, and observations were taken on 5 pairs of zeros (face right and face left) giving circle readings at $7^{\circ} 12^{\prime}$ apart.

The e.m.s. of observation of a single measure of an angle $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations - No. of angles } \times \text { No. of changes of zero }}}$
$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times \text { (No. of changes of zero }-1) .}}$

Group	Observer and Instrument			Number of				e. m. s. of observation of a single measure	e. m. s. of graduation and observation of a single zero
				Measures on each zero (average)	$\begin{aligned} & \stackrel{8}{00} \\ & \frac{0}{4} \end{aligned}$				
I	$\left\{\begin{array}{l} \text { Captain C. T. Haig, R.E., Bar- } \\ \text { row's 24-inch Theodolite No. 2. } \end{array}\right\}$	Hills,	${ }^{\circ} 12$	$2 \cdot 30$	92	2114	920	$\left\{\frac{446 \cdot 56}{2114-920}\right\}^{\frac{1}{2}}= \pm 0^{\prime \prime} \cdot 612$	$\left\{\frac{1031 \cdot 77}{920-92}\right\}^{\prime \prime}= \pm 1^{\prime \prime} \cdot 116$
II	$\left\{\begin{array}{l} \text { Lieutenant H. Trotter, R.E., } \\ \text { Barrow's 24-inch Theodolite } \end{array}\right\}$	"	712	$3 \cdot 31$	88	1257	380	$\left\{\frac{1015 \cdot 62}{1257-380}\right\}^{t}= \pm 1 \cdot 076$	$\left\{\frac{271 \cdot 54}{380-38}\right\}^{\frac{1}{2}}= \pm 0 \cdot 891$
III	$\left\{\begin{array}{l} \text { Lieutenant J. R. McCullagh, } \\ \text { R.H., Troughton and Simme } \\ \text { 24-inch Theodolite No. 1. } \end{array}\right\}$	"	712	$3 \cdot 11$	53	1647	530	$\left\{\frac{663 \cdot 78}{1647-530}\right\}^{\frac{1}{2}}= \pm 0 \cdot 771$	$\left\{\frac{186 \cdot 76}{530-53}\right\}^{\frac{3}{3}}= \pm 0 \cdot 626$

April 1882.
J. B. N. HENNESSEY,

In charge of Computing Office.

MANGALORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 29.

* In the tables of the equations between the factors the co-efficiente of the terms below the diagonal are omitted for convenience, the co-eflicient of the pth term in theigth_line being always the same as the coefflicient of the q th term in the p th line.

Figure No. 30.

Figure No. 31.

Figure No. 31-(Continued).

Figure No. 32.

Observed Angles											
No.	Value		\mathbf{x}_{3} \mathbf{x}_{6} \mathbf{x}_{9}	$\begin{array}{ll} x_{3} & +x_{4} \\ s_{6} & +x_{7} \\ x_{9} & +x_{10} \end{array}$	$\begin{aligned} & +x_{0} \\ & +x_{8} \\ & +x_{11} \end{aligned}$				$\begin{aligned} & =\mathrm{e} \\ & =\mathrm{e} \\ & =\mathrm{e} \end{aligned}$	$\begin{aligned} & =-1.303, \\ & =+0.142, \\ & =-0.131, \end{aligned}$	$\begin{aligned} & \lambda_{1} \\ & \lambda_{2} \\ & \lambda_{3} \end{aligned}$
6	$\begin{array}{lll}66 & 9 & 10 \cdot 10\end{array}$	$\cdot 05$	Equations between the Factors								
7 8	$\begin{array}{rrr} 40 & 46 & 37 \cdot 73 \\ 73 & 4 & 14 \cdot 56 \end{array}$	- 11	$\left\|\begin{array}{c} \text { No. of } \\ \mathrm{e} \end{array}\right\|$	Value of e	Co-efficients of						
10	$\begin{array}{lll}58 & 13 & 12 \cdot 61 \\ 71 & 34 & 38 \cdot 19\end{array}$	-06			λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{6}	λ_{6}	λ_{7}
	$50.12 \quad 10.83$	$\cdot 12$	1	-1.303	+0.24	$+0.26$	$\begin{gathered} \ldots \\ \ldots \\ +0 \cdot 28 \end{gathered}$	$+0.32$...	$\begin{aligned} & +0.07-0.59 \\ & +0.05-2.05 \\ & +0.06+1.34 \\ & +0.07-0.49 \\ & +0.08+2.46 \\ & +0.51-1.40 \\ & +330.39 \end{aligned}$	
12	$\begin{array}{llll}57 & 7 & 41 \cdot 31\end{array}$	$\cdot 07$	2	+0.142							
13	$\begin{array}{llll}58 & 47 & 23.92\end{array}$. 13	3	-0.131					...		
14	$\begin{array}{llll}64 & 4 & 56 \cdot 38\end{array}$	$\cdot 12$	4	-0.433							
15	$\begin{array}{llll}85 & 36 & 34 \cdot 16\end{array}$	- 08		-0.910			*		$+0.42$		
	$\begin{array}{llll}49 & 18 & 51.55\end{array}$			-0.882							
	$\begin{array}{llll}45 & 4 & 35 & 85\end{array}$	$\cdot 22$									
Values of the Factors			Angular errors in seconds								
$\begin{aligned} & \lambda_{1}=-5.2892 \\ & \lambda_{2}=+0.5710 \\ & \lambda_{3}=-0.2941 \\ & \lambda_{4}=-1.2448 \\ & \lambda_{5}=-1.9949 \\ & \lambda_{6}=-0.5705 \\ & \lambda_{7}=-0.0108 \end{aligned}$			$x_{1}=+0.050$ $x_{7}=+0.092$ $x_{13}=-0.14$ $x_{8}=+0.038$ $x_{8}=+0.050$ $x_{14}=-0.162$ $x_{3}=-0.410$ $x_{9}=-0.052$ $x_{16}=-0.205$ $x_{4}=-0.465$ $x_{10}=-0.022$ $x_{16}=-0.216$ $x_{6}=-0.428$ $x_{11}=-0.057$ $x_{17}=-0.489$ $x_{6}=0.000$ $x_{18}=-0.127$ $\left[\mathrm{mx}^{8}\right]=9.93$								

Figure No. 33.

Figure No. 34.

Figure No. 35.

Figure No. 36.

Figure No. 36-(Continued).

Equations between the Factors														
$\begin{gathered} \text { No. of } \\ \mathrm{e} \end{gathered}$	Value of e	Co-efficients of												
		λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}	λ_{9}	λ_{10}	λ_{11}	λ_{12}	λ_{13}
1	$+0.826$	+0.13	\ldots	\therefore	\cdots	\cdots	+0.03	...	- 0.50	...
2	+0.760		+0.19	\ldots	\ldots	...	\cdots	\ldots	+0.04	\cdots	- 0.57	. ${ }^{\prime}$
3	- 1.262			+0.15	+0.08	...	- 0.63	...
4	+ 0.550				+0.14	...	\ldots	\ldots	+0.02	+0.08	$+1.96$	$+0.40$
5	- 1-353					+0.14	...	\ldots	\ldots	...	+0.04	+0.0	- 0.77	-0.18
6	$+0.407$						+0.19	\cdots	+0.10	\ldots	-0.10
7	+ 1.068							+0.10	\ldots	\ldots	...	+0.03	...	+.0.01
8	-0.304								+0.08	\ldots	...	+0.04	...	-0.20
9	$+0.480$									+0.20	...	+0.12	...	$+0.14$
10	-0.32										+0.21	$+0.20$
11	-0.53											+0.4	+ 1.21	$\because \cdot$
12	$-53 \cdot 1$												$+176 \cdot 79$	$-10 \cdot 72$
13	$+45^{-8}$													$+70 \cdot 99$
Values of the Factors					Angular errors in seconds									
$\begin{aligned} & \lambda_{1}=+4.0957 \\ & \lambda_{2}=+2.1593 \\ & \lambda_{3}=-11.6108 \\ & \lambda_{4}=+9.6460 \\ & \lambda_{5}=-10.9007 \\ & \lambda_{6}=+3.7186 \\ & \lambda_{7}=+11.3851 \\ & \lambda_{8}=-1.3351 \\ & \lambda_{9}=+3.5686 \\ & \lambda_{10}=+2.6004 \\ & \lambda_{11}=-2.5118 \\ & \lambda_{12}=-0.4311 \\ & \lambda_{18}=+0.4836 \end{aligned}$						$\begin{aligned} & =+ \\ & =+ \\ & =+ \\ & =+ \\ & =- \\ & =- \\ & =+ \\ & =- \end{aligned}$	- 201 .685 -. 060 - 190 .621 $\cdot 051$ - 721 -.001 $\cdot 542$		$\begin{aligned} & x_{10}=+ \\ & x_{11}=+ \\ & x_{12}=- \\ & x_{18}=- \\ & x_{14}=- \\ & x_{16}=- \\ & x_{16}=+ \\ & x_{17}=- \\ & x_{18}=+ \\ & {\left[w x^{2}\right]=} \end{aligned}$	$\begin{aligned} & +0.226 \\ & +0.788 \\ & -0.464 \\ & -0.216 \\ & -0.426 \\ & -0.711 \\ & +0.121 \\ & -0.153 \\ & +0.439 \\ & = \\ & \hline \end{aligned}$		$\begin{aligned} & x_{19}= \\ & x_{20}= \\ & x_{21}= \\ & x_{28}= \\ & x_{23}= \\ & x_{24}= \\ & x_{26}= \\ & x_{26}= \\ & x_{27}= \end{aligned}$	$\begin{aligned} & +0.266 \\ & +0.243 \\ & +0.559 \\ & -0.154 \\ & -0.259 \\ & +0.109 \\ & +0.127 \\ & -0.015 \\ & +0.368 \end{aligned}$	

Figure No. 37.

Figure No. 38.

April, 1887.
W. H. COLE,

In charge of Computing Office.

MANGALORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.

Notze.-1. The values of the sides are given in the same lines with the opposite angles.
2. Stutions XVII (Kem), XIX (Alsunda) and XXII (Bori) appertain to the Bombay Longitudinal Series.

PRINCIPAL TRIANGULATION. TRIANGLES.
67- .

Notr--Stations III (Kudurexnukha) and VI (Xnúr) appertain to the Madrae Longitudinal Series.

May, 1887.

W. H. COLE,

In charge of Computing Office.

MANGALORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

Station A				Side AB			Station B
Oircuit No.	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feot	Azimuth at B	Number and Name of Station
\%	$\begin{gathered} \text { XVII (Kem) } \\ " \quad " \\ " \quad " \\ \text { XIX (Alsunda) } \end{gathered}$	$\bigcirc 1$	- ' "	$\begin{array}{ccc} \circ & \prime \prime \\ 133 & 23 & 30^{\prime} 68 \end{array}$	5.1509951,9	$\left\|\begin{array}{ccc} \circ & 1 & " \\ 313 & 17 & 54 \cdot 83 \end{array}\right\|$	XIX (Alsunda)
		18 10 48.90	$75 \quad 3051 \cdot 10$				
			"	865721.92	5.2207263,3	2664825110	I (Kalas)
		"	"	$433^{8} 59 \cdot 87$	5.3217655,4	223311753	II (Sulki)
		$18 \quad 2652 \cdot 37$	$\left\|\begin{array}{ccc} 75 & 3 & 2.29 \\ \# \end{array}\right\|$	$852833 \cdot 33$	5'1206308,7	2652121.08	XXII (Bori)
		"		303933.51	50914777,2	21036849	I (Kalas)
	XXII (Bori)	$18 \quad 25 \quad 776$	$744015 \cdot 27$	3241445112	5.0713018,9	1441829.20	
		"	$745^{\prime \prime} 9.41$	$\begin{array}{llll}17 & 6 & 4.28\end{array}$	5.3430952,5	$\left.\begin{array}{rrr} 197 & 2 & 35^{\circ} 55 \\ 171 & 26 & 9 \circ \end{array} \right\rvert\,$	III (Palvan)
23	1 (Kalas)	$18 \quad 919.24$		$35125 \quad 0.21$	5.1599447,6		II (Sulki)
"	II (Sulki)	$\begin{array}{ll} 17 & 45 \\ \hline \end{array} 4_{2} \cdot 31$	$7455{ }^{\prime \prime} 52 \cdot 63$	$\begin{array}{r} 492132.63 \\ 1001558.33 \end{array}$	$\begin{aligned} & 5 \cdot 2462345,8 \\ & 5 \cdot 1982699,1 \end{aligned}$	229142473	III (Palvan)
						$280 \quad 746 \cdot 72$	" "
	" "	"	"	$415140 \cdot 77$	5.0760998,9	2214731.76	IV (Páchvad)
	" "	"	"	3265356.74	4.9470693,8	1465628.34	V (Katphal)
24	III (Palvan)	$17 \quad 5019.43$	$74 \quad 29 \quad 4.48$	326532937	5.1439868,0	$1465728 \cdot 18$	IV (Páchvad)
"	IV (Pächvad)	17 31"1.97	$7442 " 10 \cdot 89$		$\begin{aligned} & 5 \cdot 0296143,6 \\ & 5 \cdot 1095348,5 \end{aligned}$	1954929.31	VI (Aundh) V (Katphal)
						8332941	
	" "	"	"	972846.82	5.0262187,0	2772318.80	VI (Aundh)
		"	"	3311232.32	5'1041976,2	$1511540 \cdot 83$	VII (Palsi)
	" ${ }^{\prime \prime}$	"	"	$323920 \cdot 27$	5-2279769,5	$2123440 \cdot 22$	VIII (Kundal)
	V (Katphal)	$173326 \cdot 85$	$\begin{array}{lll}75 & 4 & 12 \cdot 37\end{array}$	2757 4.82	51542642,1	20753 38.72	VII (Palsi)
25	VI (Aundh)	173318.25	$74 \quad 24 \quad 2 \cdot 23$	35444 45•81	51952868,6	1744529.93	VIII (Kundal)

NOTs.-Stations XVII (Kem), XIX (Alsunda) and XXII (Bori) appertain to the Bombay Longitudinal Series.

Station A				Side A B			Station B
Cirouit No.	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Aximuth at B	2Number and Name of Station
$\begin{gathered} 26 \\ " \end{gathered}$	VII (Palsi)	\bigcirc	\bigcirc,	- , "		- ' "	
		17123711	$745242 \cdot 53$	783513.56	5.1918212,1	2582729.48	VIII (Kundal)
	" \quad "	"	"	$165940 \cdot 76$	5.0411566,0	19658 3.61	IX (Dandoba Dongar)
		"	"	$3042451 \cdot 17$	5.0745070,6	1242948.29	X (Daphlápur)
	VIII (Kundal)	$17 \quad 730 \cdot 24$	7426 30-28	3013518.84	5.1505954,7	1214122.21	IX (Dandoba Dongar)
	" "	"	"	3521943.75	$5 \cdot 0986800,8$	1722034.04	XII (Majala)
	IX (Dandoba Dongar)	165514.50	$744711 \cdot 51$	$2534010 \cdot 57$	51320032,1	73464189	X (Daphlápur)
		"	"	$3003530 \cdot 54$	5•1672542,4	1204147.22	XI (Athni)
	" "	"	"	64144.92	5-0617697,9	244855.10	XII (Majala)
	" "	"	"	3543816.62	$5.2633148,0$	17439712	XIII (Mávinhúnda)
	" "	"	"	$233^{22} 19.87$	5.3534102,0	2032754.90	XIV (Hatarvat)
27	X (Daphlápur)	17 131-12	75 9 31•99	15358.40	5-0529230,3	18153 47\%21	XI (Athni)
	XI (Athni)	$164251 \cdot 64$	$75 \quad 8 \quad 53.45$	$453156 \cdot 66$	5•1862495,3	2252635.64	XIII (Mávinhưnda)
	XII (Majala)	$164656 \cdot 82$	742922.75	3173040.21	$5 \cdot 2537487,0$	1373635.85	"
	XIII (Mávinhúnda)	"	"	3545458.03	5-1968582,5	1745538.87	XIV (Hatarvat)
		$1625 \quad 4 \cdot 19$	$7450 \quad 7 \times 56$	771448.62	$5 \cdot 0412545,6$	$257 \quad 937 \cdot 88$	" "
28		"	"	359 925.39	5-0245964,8	$179 \quad 929.86$	XV (Karabgati)
		"	"	$314449^{\circ} \mathrm{O}$	5.1434817,5	134936.61	XVI (Manikeri)
	XIV (Hatarvat)	16212.67	74 31 45.96	3064541×90	51334472,5	1265054.41	XV (Karabgati)
"	XV (Karabgati)	"	"	$85512 \cdot 10$	4.9575146,5	188543179	XVII (Karigudd)
		$16 \quad 734 \cdot 87$	745023.53	$26446 \quad 4.25$	4.9948225,6	845044.91	XVI (Manikeri)
29	$" \quad "$	"	"	$\begin{array}{llll}86 & 16 & 8.47\end{array}$	5-0908386,4	2661018.23	XVII (Karigudd)
		"	"	321534572	5.0166816,9	141564760	XVIII (Kathárigad)
	" "		"	20658.41	4.9250694,7	200536.56	XIX (Kolanhatti)
	XVI (Manikeri)XVII (Karigudd)	16993.57	$75 \quad 713.22$	$204548 \cdot 35$	4.9869381,2	2004411.03	XVIII (Kathárigad)
		$16 \quad 614.30$	$742921 \cdot 72$	3065655.92	5071326,1	127122.07	XIX (Kolanhatti)
30$\#$	XVIII (Kathárigad)	1554 3*70	$75 \quad 120 \cdot 69$	91 $4436 \cdot 16$	4.9689881,8	2714014.79	" ${ }^{\prime \prime}$
	" \quad "	"	"	304035.04	5.0545618,8	2103754.17	XX (Chikk Nandihalligudd)
		"	"	3081313.56	5*0027086,3	128.16 54.17	XXI (Hirěkummigudd)
	XIX (Kolanhatti)	1554 31.21	7445 26.92	3403524.92	5.0267449,5	$16037 \quad 3.23$	XX (Chikk Nandihalligudd)
	" "	*	"	$50 \quad 856.97$	4.9379866,6	$230 \quad 551.03$	XXII (Yalúr)
"	XX (Chikk Nandihalligudd)	$153756 \cdot 39$	745128.64	2553041.06	5.1503636,1	753659.87	XXI (Hirěkummigudd)
	" "	"	"	1134418.93	5.0464716,2	2933936.73	XXII (Yalúr)
	"	"	"	$\begin{array}{llll}76 & 8 & 30 \cdot 67\end{array}$	5-0205521,6	256	XXIII (Samshergad)
	" n	"	"	311 5734.30	5.0504568,9	$132 \begin{array}{lllll}122.93\end{array}$	XXIV (Navalúr)
	" \quad	"	"	3453256.06	4.9237740,8	1653353.34	XXV (Kalkera)
3132	XXI (Hirěkummigudd)	$154345{ }^{\circ} 90$	$751450 \cdot 16$	25533342	5-0887598,4	2055036.38	XXIV (Navalar)
	XXII (Yaltar)	$154520 \cdot 01$	$7434 \quad 5 \cdot 35$	3595112.55	4-8445727,6	1795113.04	XXIII (Samshergad)
	XXIII (Samshergad)	$153346 \cdot 66$	7434 7-18	$29430 \quad 2.99$	5'1302064,3	$1143538 \cdot 21$	XXV (Kalkera)
	XXIV (Navalúr) .	$152531 \cdot 17$	$75 \quad 542 \cdot 6 \mathrm{c}$	$\begin{array}{llll}84 & 27 & 4.16\end{array}$	4.7985553,9	2642414.05	\#\#VI (Ganigudd)
	" !	"	"	3633 30.61	4.9165485,4	2163117.84	XXVI (Ganigudd)

Station A				Bide A B			Station B
$\begin{aligned} & \text { Circuit } \\ & \text { No. } \end{aligned}$	Number and Name of Station	Latitude North	Longitude East of Greenwich	Aximuth at A	${ }^{\text {Log. Foet }}$	Aximuth at B	$\begin{aligned} & \text { Number and Name } \\ & \text { of Station } \end{aligned}$
33	XXIV (Navalár)			- ' "			
		$152531 \cdot 17$	$75 \quad 542 \cdot 60$	31232195	4-9629426,4	132354881	XXVII (Kundgol)
	XXV (Kalkera)	$152430 \cdot 61$	$7455 \quad 2 \cdot 70$	347224.06	4'7901704,6	$1672240 \cdot 48$	XXVI (Ganigudd)
	$X \bar{X} V I \text { (Ganigudd) }$	" 68	"	49261138	$5^{\circ} 0649687,0$	2292213.53	XXVIII (Kanserrudi)
		151433.68	$745720 \cdot 50$	2675359×19	5.0677693,7	875913.04	XXVII (Kundgol)
	" \quad	"		81 261730	$5.122710,4$	2612144.53	XXVIII (Kánsęrudi)
"	$\begin{aligned} & " \quad " \\ & \text { XXVVII (Kundgol) } \\ & \text { XXVIII (Kánsərudi) } \\ & \text { XXIX (Indúr) } \end{aligned}$	"		3303148.81	4-9578889,3	150334777	XXIX (Indúr)
		"		291235.95	5°-1 44533,8	2091021.68	XXX (Rámankŏp)
		151515.28	751713.82	$405916 \cdot 77$	5-0422117,6	220564.11	XXIX (Indúr)
		$1512 \quad 1.13$	7440 1.60	3253232.05	4.9580082,0	1453448.56	XXX (Rámankorp)
		$\begin{array}{ll}15 & 129.91\end{array}$	$75 \quad 456 \cdot 15$	831812×35	4-9811941,2	$26314{ }^{\text {r }} 02$	" \quad
35	$\begin{gathered} " \# \\ \text { XXX (Rämanǩ̌p) } \\ \text { X"̈XI (Bhedasgaregudda) } \end{gathered}$	"	"	24449.40	4-9679431,7	20431000	XXXI (Bhedaggávegudda)
				331219.40	5.1718408,7	15152715	XXXII (Karěkyatanhalli)
		145938.59	$744845 \cdot 71$	$\begin{array}{llll}322 & 5 & 5.56\end{array}$	4.9696339,8	$142 \quad 735.68$	XXXI (Bhedasgáregudda)
		14 ${ }^{3} 8.78$		$201246 \cdot 67$	4-9743124,9	200112148	XXXIII (Menshigudda)
		$144728 \cdot 79$	745829.82	$2921936 \cdot 31$	5-0746230,3	$1122420 \cdot 84$	XXXII (Karěkyatanhalli)
	" "	"	"	803886	4.9594746,3	$2603412 \cdot 84$	XXXIII (Menshigudda)
	" "	"		358 188841	5.1046010,3	178988.93	XXXIV (Chandragutti)
		"		$414433 \cdot 33$	5.1581465,1	2214026.72	XXXV (Halĕbail)
	XXXII (Karəkyatanhalli)	14400.64	75178.94	52166.76	5•1266202, 6	232113601	XXXIV (Chandragutti)
36	XXXIII (Menshigudda)	14451.28	$744313 \cdot 79$	320127.04	5.1657359, 1	140	" \quad "
"	$X X " X I V \text { (Chandragutti) }$		"	3364462	4.9673582,4	1833629.60	XXXV (Halybail)
		142627.56	$745911 \cdot 51$	101115150	5-0080000,4	281 7 73 ${ }^{16}$	
	" \quad	"	"	$4941 \quad 515$	4-9524791,5	2293812.74	XXXVI (Hukaligudd
	" "	"	"	3545653.24	5.0470321,7	174571786	XXXIX (Koramúr)
	" \quad	"	"	$3053^{12} \mathbf{2 4 . 6 2}$	$5.0136420,4$	1253456.44	XL (Hŏnnavalli)
$\stackrel{37}{\prime}$	XXXV (Halybail)	$142943 \cdot 13$	744214.29	$\begin{array}{lllll}337 & 50 & 2.83\end{array}$	4.9239589,2	1575122.86	XXXVI (Hukaligudda)
		"	»	$411216 \cdot 15$	4-7834058,5	221103470	XXXVII (Kaltigudda)
38	XXXVI (Hukaligudda)	141652.09	$744736 \cdot 38$	$114635{ }^{1} 45$	4-8949334,0	$294 \quad 335.04$	
"	"	"	"	26475484	$4 \cdot 7809115,8$	$2064646 \cdot 93$	XXXVIII (Dindermane)
	" "	"	"	30455772	4.9751598,7	$124 \begin{array}{ll}1212 \% 1\end{array}$	XXXIX (Koramúr)
39	XXXVII (Kaltigudda) XXXVIII (Dində̆mane)	1422.9 .86	$743527 \cdot 24$	3323652.90	4.9857613,9	$1523844^{\prime 2}$	XXXVIII (Dinděmane)
		$14 \quad 75748$	744259.68	2692752.43	50229694,6	893214.09	XXXIX (Koramór)
"	XXXIX (Koramár)			3254749.33	5-0839529,6	$1455036 \cdot 77$	XLII (Kǒdashádri)
		$\begin{array}{lll}14 & 8 & 6.59\end{array}$	7505125	2352813.26	4-9544356,7	553118.39	XL (Hŏnnavali)
	" "	"		$\begin{array}{llll}317 & 3 & 30 & 53\end{array}$	5.0601 375,3	137642.99	XLI (Hugadi)
	XL" ${ }^{\text {(Hornnavalli) }}$			20144143	50332198,9	20013972	XLII (Ǩdashádri)
		141632.46	751325.66	3581940.15	$5 \cdot 1308983,6$	1781949.90	XII (Hugadi)
	XLI (Hugadi)	135412.31	$7514 \quad 5 \cdot 72$	81 3518 1.14	5.06770 5,6	261 3036.59	XLII (Kơdashádri)
	" "		"	3513145.36	4-8986787,6	1713213.58	XLIII (Siddeshrar)
		"	"	245848.49	5-1175587,5	204563517	XLIV (Bisale)

Station A				Side A B			Station B
Circuit No.	Number and Name of Station	Latitude North	Longitude East of Greenwich	Aximuth at A	Log. Feot	Aximuth at B	Number and Name of Station
$\begin{gathered} 40 \\ " \end{gathered}$	XLII (Kðdashádri) XLIIII (Siddeshvar)	1	- 1 "	\bigcirc	5•1499587,7	$\begin{array}{ccc} \circ & \prime \prime \\ 115 & 41 & 56.63 \end{array}$	XLIII (Siddeshvar) XLIV (Bisale)
		$135121 \cdot 96$	$745432 \cdot 04$	2953649.06			
		$1341 " 15 \cdot 41$	$7516 "_{4 \cdot 06}$	$32917 \begin{array}{ll}17 & 173\end{array}$	5.0727380,4	1491926.92	
				58520.14	4•8938053,7	2384919.95	"
	" \quad	"	, "	3282138.68	5*0848991,3	148241005	XLV (Hirygudda)
	"	"	"	29249 8.19	5-1521797,8	$1125420 \cdot 40$	XLVI (Hěbbe)
41	XLIV (Bisale)	$133433 \cdot 56$	$75 \quad 444 * 39$	295405735	5.1619809,2	115466.64	XLV (Hirğgudda)
"	XL"V (Hire̋gudda)	132488.40	$7526 \text { " } 50 \cdot 33$	$\left\lvert\, \begin{array}{llll} 350 & 9 & 17 & 71 \\ 234 & \text { II } & 34.53 \end{array}\right.$	4.9355696,7	170.952 .07	
					4:9177488,3	541413.00	XLVII (Valkunji) XLVI (Hěbbe)
	" "	"		$\begin{array}{rrr} 7921 & 4 \times 51 \\ 26 & 42 & 10 \cdot 17 \end{array}$	$\begin{aligned} & 5 \circ 0725677,5 \\ & 5 \cdot 0472406,2 \end{aligned}$	$\left\lvert\, \begin{array}{ccc} 259 & 16 & 32 \cdot 39 \\ 206 & 40 & 13 \cdot 82 \end{array}\right.$	XLVI (Hěbbe) XLVII (Valkunji)
	"	"	"				XLVII (Valkunji) III (Kudurěmukha)
		"	"	291219.48	4.9777374,9		$\begin{aligned} & \text { VI (Ãnúr) } \\ & \text { "̈ "" (Kudurermukha) } \\ & \text { III (Ánúr) } \\ & \text { VI } \end{aligned}$
	XLVI (Hěbbe)	13328.33	$753810 \cdot 66$	3452355.73	4.9308886,9	$1652446 \cdot 28$	
42	XLVII (Valkunji)	132031.02	$75 \quad 713 \cdot 72$	3193447×46	5.0087142,5	$1393720 \cdot 74$	
43	III (Kudurèmukha) VI (Ānúr)	$13 \quad 740 \cdot 32$	$751823 \cdot 26$	244428.43	5•1859637,2	644729.73	
	VI (Anưr)	131829.67	$754148 \cdot 43$				

Note.-Stations III (Kudurěmukha) and VI (Anár) appertain to the Madras Longitudinal Series.
s. a. BURRARD,

In charge of Computing Office.

MANGALORE MERIDIONAL SERIES．

PRINCIPAL TRIANGULATION．HEIGHTS ABOVE MEAN SEA LEVEL．

The following table gives，first，the usual data of the observed vertical angles and the heights of the signal and instrument， \＆c．，in pairs of horizontal lines，the first line of which gives the data for the lst or the fixed station，and the second line the data for the 2nd or the deduced station．This is followed by the arc contained between the two stations，and then by the terrestrial refraction and the height of the 2nd station above or below the lst，as computed from the vertical angles in the usual manner． This difference of height applied to the given height above mean sea level of the fixed station，gives that of the deduced station． Usually there are two or three independent values of the height of the deduced station；the details are so arranged as to show these consecutively and their mean in the columns of＂Trigonometrical Results．＂The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations，which are shown up by the spirit levelling operations，wherever a junction between the two has been effected．The spirit levelled determinations are always accepted as final，and the trigonometrical heights of stations lying between those fixed by the levelling operations are adjusted by simple proportion to accord with the latter．In the table the spirit levelled values are printed thus，2007．96，\＆c．，to dis－ tinguish them from the adjusted trigonometrical values．The column in which the mean trigonometrical heights are given is barred across where necessary，as after deduction of Stn．VI from Stn．IV，page 75＿D，to indicate that one set of adjustments ends and another begins．The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood；when a spirit levelled height does not refer to either of these surfaces，it is given in combination with a correction，thus $\left\{\begin{array}{c}3134.19 \\ -3.5\end{array}\right.$ ，and the sum of these two quantities，in this case $3130 \cdot 69$ ，represents the value with which the corres－ ponding trigonometrical mean height 3127.9 is comparable．Descriptions follow these tables，exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights．

When the pillar of the station is perforated，the height given in the last column is that between the upper surface of pillar and the ground level mark－stone in the floor of the passage；otherwise，it is the approximate height of the structure above the ground at the base of the station．

The heights of the initial stations above Mean Sea Level are taken from the Bombay Longitudinal Series and are as follows ：－

$$
\text { XVII (Kem) } 1951 \cdot 21 \text { feet; XIX (Alsunda) }\left\{\begin{array} { l }
{ 2 1 6 5 \cdot 2 1 } \\
{ - 2 \cdot 0 }
\end{array} \text { feet; XXII (Bori) } \left\{\begin{array}{c}
200514 \\
-2.58
\end{array}\right.\right. \text { feet. }
$$

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet		$\begin{aligned} & \text { 冒 } \\ & \text { 最 } \\ & \text { 亳 } \end{aligned}$	Terrestrial Refraction			Height in feet of 2nd Station above Mean Ses Level			
1863	$\left\|\begin{array}{c} \text { Mean of } \\ \text { Times } \\ \text { of obser-- } \\ \text { vation } \end{array}\right\|$					总亳品					Trigonometrical Results		Final Result	
											$\begin{array}{\|l} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array}$	Mean		
	n^{m}		－＇＂				＂							foet
Mar．5，13	217	XIX（Alsunda）	D $01333{ }^{\circ} \mathrm{O}$		$2 \cdot 5$	$5 \cdot 3$		60			2009 ${ }^{\circ}$			
Apr．11，18	229	I（Kalas）	D 0457.4	8	$2 \cdot 7$	$5 \cdot 3$	1222	60			20090			
＂7，8	227	XXII（Bori）	Do 911］	8	2.6	$5 \cdot 3$						20047	200700	7
，11，12，13	246	I（Kalas）	Do 9 3：2	12	$2 \cdot 6$	$5 \cdot 3$	1166	41			2000 3			

Norz．－Stations XVII（Kem），XIX（Alaunda）and XXII（Bori）appertain to the Bombay Longitadinal Series．

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet		$\begin{aligned} & \text { g } \\ & \text { 品 } \\ & \text { 高 } \end{aligned}$	Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			Height of Pillar or Tower
1865	Mean of Times of obser－ vation				］	$\begin{aligned} & \text { 若 } \\ & \text { 品 } \end{aligned}$		若	$\left\|\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ d \\ 0 \end{array}\right\|$		$\underset{\substack{\text { Trigono } \\ \text { Rest }}}{ }$	metrical ults		
					\％	旁		án	合淢		$\begin{array}{\|c} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{array}$	Mean	Result	
	$h m$		－，＂				＂							feet
Feb．6，7	248	XXII（Bori）	E 066220		$2 \cdot 5$	$5 \cdot 3$	2183	130	－059	＋1438．5	$344{ }^{\prime} 1$			
＂25，27	254	III（Palvan）	D○38 31．0	4	$2 \cdot 7$	$5 \cdot 7$		I		＋1438		3445	3446	5
＂ 13	245	I（Kalas）	E 01513.9	4	$2 \cdot 6$	$5 \cdot 3$		101						
＂ 25	32	III（Palvan）	Do41 0.0	4	$2 \cdot 7$	$5 \cdot 7$		101		＋1442．0	3450			
＂ 15	36	XVII（Kem）	D o 9 4．8	4	$2 \cdot 5$	$5 \cdot 3$	2074	113		$388 \cdot 7$	$2339 \cdot \%$			
＂ 20	258	II（Sulki）	D ○ 21 48．9	4	$2 \cdot 6$	$5 \cdot 2$	2074	13			2339			
＂11，13	241	I（Kalas）	D ○ 224.6	8	2.5	5．3	1433	84		＋ 344.6	$2352 \cdot 6$			
＂18，20	252	II（Sulki）	D $\circ 1847.6$	6	$2 \cdot 7$	$5 \cdot 2$						25．5		\ddagger
＂ 25	256	III（Palvan）	D $03552^{\circ} \mathrm{2}$	4	$2 \cdot 5$	5.7	1556	85			$2352 \cdot 3$			
＂18，20	250	II（Sulki）	E $01212{ }^{\circ} \mathrm{O}$	6	$2 \cdot 6$	$5 \cdot 2$		85						
，18，20	249	II（Sulki）	E 01346.2	8	$2 \cdot 5$	5.2	1178	61		＋ 784.9	3137.4			
Mar．8，9	251	IV（Páchvad）	DO31 31＇1	8	$2 \cdot 5$	5＊3						$3136 \cdot 2$		$5 \cdot 1$
Feb． 25	235	III（Palvan）	D ○ 18 511	4	$2 \cdot 6$	5．7	1379	69			\％ 9			
Mar．4，8	240	IV（Páchvad）	D 0244%	8	$2 \cdot 7$	$5 \cdot 3$	1379							
Feb． 25	245	III（Palvan）	D ○ 18210	4	$2 \cdot 6$	5.7	1061	49		－318．5	3127°			
Mar． 1	242	VI（Aundh）	EO 27.0	4	$2 \cdot 7$	$5 \cdot 3$								$5 \cdot 1$
， 8 8，9	247	IV（Páchvad）	Do 86.9	8	$2 \cdot 7$	5．3						127	－3．5t	5
， 91	223	VI（Aundh）	D ○ 737%	4	$2 \cdot 6$	$5 \cdot 3$	1047	56			3128.6			
Feb．18，20	252	II（Sulki）	D ○ 1838.7	6	$2 \cdot 5$	5．2	876	52	－ 060	－312．0	2041 9			
Mar． 11	256	V（Katphal）	E 0534.6	4	$2 \cdot 5$	$5 \cdot 3$	876	52		－ 3120		2040＇9	2041	5°
＂ 8	35	IV（Páchvad）	D 03853.9	4	$2 \cdot 6$	$5 \cdot 3$	1268	65	－051	－1098＊ 4	2039 9			
＂ 11	243	V（Katphal）	E 01947 I	4	$2 \cdot 7$	$5 \cdot 3$								
＂4，8	225	IV（Páchvad）	D $01250 \cdot 8$	8	$2 \cdot 6$	5＊3		65		－ 124.6	3013.7			
＂14，16	244	VII（Palsi）	Do 66.3	8	$2 \cdot 7$	$5 \cdot 3$	1259	65		124	3013			
＂ 11	34	V（Katphal）	E O 12 $50 \cdot 9$	4	2.6	$5 \cdot 3$	1413	80	$\cdot 057$	＋969＊1	$3010 \cdot 0$	3012．5	3013	5
＂14，15	34	VII（Palsi）	D 03351.5	8	$2 \cdot 6$	$5 \cdot 3$	1413	80	05	＋96－	3010	－ 5		
＂ 20	230	VIII（Kundal）	D $04 \begin{array}{ll}\text { I } & 5\end{array}$	4	2.6	5．3	1533	86	$\cdot 055$	＋ $334{ }^{\circ}$	3013＇7			
＂14，16	249	VII（Palsi）	D 01847×9	8	$2 \cdot 5$	$5 \cdot 3$	1533							
＂8，9	248	IV（Páchvad）	D 02150.0	8	$2 \cdot 5$	$5 \cdot 3$	1673	91		－ $460 \cdot 0$	$2678 \cdot 3$			
＂ 20	27	VIII（Kundal）	D 03373	4	$2 \cdot 7$	5．3	1673	91						
＂ 1	310	VI（Aundh）	D 02122.6	4	2.5	5．3	1554	90	－058		$2680 \cdot 7$	$2678 \cdot 9$	2679	5 1
＂ 20	219	VIII（Kundal）	D 0 1 38.3	4	$2 \cdot 7$	$5 \cdot 3$	1554	9						
＂14，16	249	VII（Palsi）	D ○ 1847×9	8	$2 \cdot 5$	$5 \cdot 3$	1533	86	055	－334＊2	2677×7			
20	230	VIII（Kundal）	D 0415	4	$2 \cdot 6$	$5 \cdot 3$	1533							
Nov． 25	231	VII（Palsi）	D $01221 \cdot 6$	4	$2 \cdot 7$	$5 \cdot 3$	1090	61	$\cdot 056$	－134＊8	2877 7			
Dec． 7	210	IX（Dandoba Dongar）	D ○ 3559	4	$2 \cdot 7$	$5 \cdot 3$	1090			－ 1348		$2876 \cdot 5$	2877	5＊2

Astronomioal Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			解
1865	Mean of Times of obser－ vation					$\begin{aligned} & \text { 营 } \\ & \text { 虽 } \end{aligned}$		若			$\underset{\substack{\text { Res }}}{\text { Trigon }}$	metrical sults		
						宮		』			By each deduc－ tion	Mean	Result	
	$h m$		－＇＂				＂							feet
Nor．21，22	229	VIII（Kundal）	D o 5 30．1	8	$2 \cdot 6$		1396	86	－061	＋196．4	$2875 \cdot 3$			
Dec． 7	246	IX（Dandoba Dongar）	D 0152.6	4	$2 \cdot 7$	$5 \cdot 3$	1396	86	061	＋196．4	2875			
Nov． 25	223	VII（Palsi）	D 024 53．1	4	$2 \cdot 6$	$5 \cdot 3$								
＂28，29	229	\mathbf{X}（Daphlápur）	E $0726 \cdot 0$	8	$2 \cdot 7$	$5 \cdot 3$	1172	67	057	$-558 \cdot 1$	$2454 * 4$			
Dec． 6	248	IX（Dandoba Dongar）	D $02035^{\circ} \mathrm{O}$	4	$2 \cdot 6$	$5 \cdot 3$						2454＊7	2455	－8
Nov． 29	220	X （Daphlápur）	E $004^{\circ} \mathrm{O}$	4	$2 \cdot 7$	$5 \cdot 3$	1336	79	059	－421．5	$2455{ }^{\circ} \mathrm{O}$			
Dec．7，8	224	IX（Dandoba Dongar）	D $0305 \cdot 8$	6	$2 \cdot 6$	$5 \cdot 3$								
2	218	XI（Athni）	E $\circ 843.3$	4	$2 \cdot 7$	$5 \cdot 3$	1451	88	－061	-829.9	$2046 \cdot 6$			
Nor． 29	158	X（Daphlápur）	D 02056.6	4	$2 \cdot 6$	$5 \cdot 3$						2045 8	2048	5＊
Dec．$\quad 1$	250	XI（Athni）	E O $345^{\circ} \mathrm{2}$	4	$2 \cdot 6$	$5 \cdot 3$	1120	49	044	$-405 \cdot 8$	$2048 \cdot 9$			
Nov．21，22	239	VIII（Kundal）	D ○ 1057.4	8	$2 \cdot 6$	$5 \cdot 4$								
Dec． 12	214	XII（Majala）	D ○ 719 1	4	$2 \cdot 7$	$5 \cdot 3$	1244	78	063	－66．4	$2612 \cdot 5$			
＂6，8	240	IX（Dandoba Dongar）	D 01615.2	8	$2 \cdot 8$	$5 \cdot 3$						261	2613	5°
＂ 11	237	XII（Majala）	D ○ ○ $30 \cdot 3$	4	$2 \cdot 6$	$5 \cdot 3$	1138	71	062	－264．2	$2612 \cdot 3$			
＂7，8	226	IX（Dandoba Dongar）	D ○ $1850 \cdot 1$	8	$2 \cdot 7$	$5 \cdot 3$	1818							
＂18，19	227	XIII（Mávinhúnda）	Do $746 \cdot 7$	8	$2 \cdot 6$	$5 \cdot 3$	1818	114	063	－295 0	$2581 \cdot 5$			
＂ 2	249	XI（A thni）	E ○ $044^{\circ} \mathrm{O}$	4	$2 \cdot 6$	$5 \cdot 3$								
＂18，19	219	XIII（Mávinhúnda）	D○ 23 4．9	8	$2 \cdot 7$	$5 \cdot 3$	1518	92	061	＋532．0	$2579 \cdot 8$			
＂11，12	242	XII（Majala）	D ○ $1338{ }^{\text {1 }}$ 1	8	$2 \cdot 6$	$5 \cdot 3$						258	2	50
＂18，19	236	XIII（Mávinhúnda）	D 01227.3	8	$2 \cdot 7$	$5 \cdot 3$	1774	107	060	$-30 \cdot 7$	2581＊7			
＂14，15	225	XIV（Hatarrat）	D 01454.6	8	$2 \cdot 6$	$5 \cdot 3$								
＂18，19	242	XIII（Máviuhúnda）	Do 1 10.5	8	$2 \cdot 7$	$5 \cdot 3$	1084	65	060	－219．6	$2580 \cdot 9$			
＂7，8	250	IX（Dandoba Dongar）	D 01727.5	8	$2 \cdot 6$	$5 \cdot 3$					$2800 \cdot 2$			
＂ 14	223	XIV（Hatarvat）	D○ 15 8．1	4	$2 \cdot 6$	$5 \cdot 3$	2235	142	064	$-76 \cdot 3$	$2800 \cdot 2$			
＂ 14.11	257	XII（Majala）	D o $7 \begin{array}{llll} & 18 \cdot 0\end{array}$	8	$2 \cdot 6$	$5 \cdot 3$				＋188．4	2800•8	2800 5	2801	$5 \cdot 0$
＂14，15	27	XIV（Hatarvat）	D 015 31．7	8	$2 \cdot 7$	$5 \cdot 3$	1560	99	063	＋188．4	28008	28005	2801	5.0
＂18，19	242	XIII（Mávinhúnda）	D ○ 1 10． 5	8	$2 \cdot 7$	$5 \cdot 3$								
＂14，15	225	XIV（Hatarvat）	D 01454.6	8	$2 \cdot 6$	$5 \cdot 3$	1084	65	． 060	$+219.6$	$2800 \cdot 6$			
＂18，19	250	XIII（Mávinhúnda）	Do 9 5．2	8	$2 \cdot 6$	$5 \cdot 3$								
＂23，27，30	231	XV（Karabgati）	D ○ 633.6	12	$2 \cdot 6$	$5 \cdot 3$	1049	61	058	-38.9	$2542 \cdot 1$			
＂14，15	248	XIV（Hatarvat）	D $01626 \cdot 0$	8	$2 \cdot 6$							2542＇9	2544	5＊0
＂23，27，30	218	XV（Karabgati）	D ○ $326 \cdot 3$	12	$2 \cdot 7$	$5 \cdot 3$	1343	79	059	$-256 \cdot 9$	$2543 \cdot 6$			
＂18，19	30	XIII（Mávinhánda）	D ○ 15 24．3	8	$2 \cdot 6$	5．3		78						
＂$\quad 21$	249	XVI（Manikeri）	Do 5 3．2	4	$2 \cdot 6$	5＊3	1376	78	057	-2095	23715			5\％
＂23，27，30	241	XV（Karabgati）	D 01313.0	12	2.6	5．3						2372 －	2373	50
21	242	XVI（Manikeri）	D ○ 1 21．3	4	$2 \cdot 6$	$5 \cdot 3$	974	55	057	$-170 \cdot 5$	$2372 \cdot 4$			

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1865－66	Mean of Times of obser－ vation				䣖	㝘		哭			Trigono Resu	ometrical sults		
					∞	宮		Ξ			By each deduc－ tion	Mean	Result	
	$\boldsymbol{h} \boldsymbol{m}$		－，＂				＂							feet
Dec．14，15	247	XIV（Hatarvat）	E○○13.9	8	$2 \cdot 6$	$5 \cdot 3$	899							
Jan． 2	221	XVII（Karigudd）	$\text { D } \circ 1338 \cdot 0$	4	$2 \cdot 7$	$5 \cdot 3$	899	54	$\cdot 060$	$+183.0$	2983＊ 5			
Dec．26，27，30	250	XV（Karabgati）	E 0316.0	12	$2 \cdot 8$	5•3								
Jan． 2	239	XVII（Karigudd）	D 02117.4	4	$2 \cdot 8$	$5 \cdot 3$	1215	71		$+440 \cdot 3$	$2983 \cdot 2$			
Dec．26，30	246	XV（Karabgati）	D o 0 38．3	8	$2 \cdot 6$	5．3	1028	56	－055	＋214＊	$2757^{\circ} \mathrm{O}$			
Jan．12，13	248	XVIII（Kathárigad）	D ○ 1447×7	8	$2 \cdot 8$	$5 \cdot 3$	1028	5	055	$+2141$	27570			
Dec． 21	211	XVI（Manikeri）	E o 632.1	4	2.6	5•3	962	60	－062	$+385 \cdot 2$		$2758 \cdot 4$	2759	4．9
Jan．12，13	233	XVIII（Kathárigad）	D $02045^{\prime} 1$	8	$2 \cdot 6$	5•3	962	60	062	$+3852$	27572	2758	2759	49
＂6，8	234	XIX（Kolanhatti）	D O $14 \quad 6.6$	8	$2 \cdot 6$	5＊3	918				2761．0			
＂12，13	236	XVIII（Kathárigad）	E O O 20．9	8	$2 \cdot 7$	$5 \cdot 3$	918	52	57	7	27610			
Dec．26，27，30	251	$\mathbf{X V}$（Karabgati）	E $\bigcirc 1029{ }^{\circ} 7$	12	$2 \cdot 6$	5＊3								
Jan．6，9	237	XIX（Kolanhatti）	D 023 2I．5	8	$2 \cdot 8$	5•3	834	37	－ 045	＋414．5	2957 ＊			
$\# \quad 2$	250	XVII（Karigudd）	D o 929.3	4	$2 \cdot 6$	5•3	1164	66					2956	5°
$\text { " } \quad 8,9$	234	XIX（Kolanhatti）	D o 752.9	8	$2 \cdot 7$	$5 \cdot 3$	1164	66	$\cdot 056$	-27.5	29559	29554	2956	50
＂12，13	236	XVIII（Kathárigad）	E ○ ○ 20．9	8	$2 \cdot 7$	5＊3								
＂6，8	234	XIX（Kolanhatti）	D $014 \quad 6.6$	8	$2 \cdot 6$	5＊3		52	057	7				
＂12，13	250	XVIII（Kathárigad）	D ○ 13 2．9	8	$2 \cdot 6$	5•3	1123	64			2604 2			
＂ 27	246	XX（Chikk Nandihallígudd）	Do 3 42＇1	4	$2 \cdot 7$	$5 \cdot 3$	1123	64	－057	-1542	$2604{ }^{\circ}$			
＂6，8	244	XIX（Kolanhatti）	D 019 9．0	8	$2 \cdot 6$	5•3						604＊7	606	5°
＂ $\begin{aligned} & \text {＂} \\ & \end{aligned}$	$\begin{array}{ll}2 & 44 \\ 2 & 21\end{array}$	XX（Chikk Nandihallígudd）	E O 3129.9	4	3.0	53 $5 \cdot 3$	1054	62	－ 059	$-350 \cdot 2$	$2605 \cdot 2$			
＂12，13	235	XVIII（Kathárigad）	D $01645 * 4$	8	$2 \cdot 6$	5＊3								
\％ 15	229	XXI（Hirěkummigudd）	E O 51．0	4	2•7	5＊3	994	55	－056	$-272 \cdot 3$				
						$5 \cdot 3$						2485．6	2487	$5^{1} 1$
＂27，29	244	XX（Chikk Nandihallígudd）	$\text { D } \circ 1315.9$	6	$2 \cdot 6$	5•3		80			$2485^{\circ} \mathrm{O}$			
＂ 15	239	XXI（Hirěkummígudd）	D o 726.6	4	$2 \cdot 6$	5•3	1394	80	057	－119＊	24850			
＂6，8	255	XIX（Kolanhatti）	E O 626.8	8	$2 \cdot 6$	5＊3								
Feb．2，3	220	XXII（Yalúr）	D 019 26．0	8	2＇7	$5 \cdot 3$	857	45	$\cdot 053$	$+326 \cdot 5$	3281＇9			
			E 01248.6									3281•5	3283	6
$\left.\begin{array}{ll} \text { Jan. } & 29 \\ & 93 \end{array} \right\rvert\,$	217	XX（Chikk Nandihallígudd）	E $01248 \cdot 6$	4	$2 \cdot 6$	5．3	1098	70	－ 064	$+676 \cdot 3$	$3281 \cdot 0$			
Feb．2，3	231	XXII（Yalúr）	D $\bigcirc 2856.9$	8	$2 \cdot 8$	5＇3	1098	70	－64	＋676 3	3281			
Jan． 29	227	XX（Chikk Nandiballígudd）	$\text { E } \circ \quad 510 \cdot 7$	6	$2 \cdot 6$	5•3		60						
，31，Feb． 1	227	XXIII（Samshergad）	$\text { D } \circ 2033^{\circ} 9$	8	$2 \cdot 8$	$5 \cdot 3$	1034	60	－058	$+392 \cdot 8$	$2997{ }^{\circ} 5$	－		＊
Feb．2，3	241	XXII（Yalúr）	D 019 4．6	8	$2 \cdot 6$	5＊3						$2998 \cdot 0$	2999	＊
Jan．31，Feb． 1	234	XXIII（Samshergad）	E $08^{8} 86 \cdot 4$	8	$2 \cdot 7$	$5 \cdot 3$	693	45	－065	－283 1	2998.4			
＂ 29	248	XX（Chikk Nandihallígudd）	D O $1315^{\circ} \mathrm{O}$	4	$2 \cdot 7$	$5 \cdot 3$	1110	61		－161．2	2443．5			
＂17，25	237	XXIV（Navalúr）	D o 323.3	8	$2 \cdot 6$	5•3	1110	61	O55	-1612	24435			
＂ 15	248	XXI（Hirěkummígudd）	D o 10 6．4	4	$2 \cdot 7$	$5 \cdot 3$	1215	73	－060	-39.9	2445＊7	$2444{ }^{\circ}$	2445	5^{11}
＂ 17	239	XXIV（Navalúr）	Do $752 \cdot 5$	4	$2 \cdot 6$	5•3	1215	73	－060	－ 399	24457	24440	2445	51

[^7]| Astronomical Date | | Number and Name of Station | Observed Vertical Angle | suorjbaiesqo fo дequmn | Height in feet | | | Terreatrial Refraction | | | Height in feet of 2nd Station above Mean Sea Level | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1866 | Mean of
 Times of obser－ vation | | | | 館 | 豆 | | 若 | | | Trigonom Resu | metrical ults | | |
| | | | | | ∞ | 䓢 | | $\underset{\wedge}{\infty}$ | | | By each deduc－ tion | Mean | Result | |
| | $\boldsymbol{h} \boldsymbol{m}$ | | － 1 | | | | ＂ | | | | | | | feet |
| | 252 | XXV（Kalkera） | D ○ 1115＊3 | 8 | $2 \cdot 7$ | | 620 | | | | | | | |
| (2) | 233 | XXIV (Navalúr) | E ○ 1 46.4 | 12 | $2 \cdot 6$ | 5•3 | 620 | 34 | ．055 | －119＊2 | $2442 \cdot 9$ | | | |
| Jan．27，29 | 248 | XX（Chikk Nandihallígudd） | $\text { D } \circ 758 \cdot 7$ | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 832 | 48 | | | 2562．3 | | | |
| ＂ 24 | 258 | XXV（Kalkera） | $\text { D } \circ 421 \cdot 7$ | 4 | $6 \cdot 2$ | $5 \cdot 4$ | 832 | 48 | 058 | － 42.4 | $2562 \cdot 3$ | | | |
| $\text { „ 31,Feb. } 1$ | 216 | XXIIL（Samshergad） | D o 20 56．9 | 8 | $2 \cdot 7$ 2.6 | $5 \cdot 3$ | 1332 | 79 | －060 | $-436 \cdot 1$ | 2561．9 | 2562．7 | 2564 | 4＊5 |
| $" \quad 24$ | 249 | XXV（Kalkera） | E 0115.5 | 4 | $2 \cdot 6$ | $5 \cdot 4$ | 1332 | 79 | ． 060 | $-436 \cdot 1$ | 25619 | 25627 | 2564 | 45 |
| （2） | 233 | XXIV（Navalúr） | E o 1 46.4 | 12 | 2.6 | $5 \cdot 3$ | 620 | | | | | | | |
| $\begin{gathered} (1) \\ 1867 \end{gathered}$ | 252 | XXV（Kalkera） | DO II 15．3 | 8 | $2 \cdot 7$ | 5•3 | 620 | 34 | $\bigcirc 55$ | ＋119 2 | $2563 \cdot 8$ | | | |
| Feb．27，28 | 235 | XXIV（Navalír） | D o 852.8 | 8 | 2.6 | 5＊3 | | | | | | | | |
| Mar．12，13 | 33 | XXVI（Ganigudd） | D o 3 34．1 | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 817 | 4 I | ．051 | －63＊7 | 2380 3 | | | |
| Feb． 23 | 27 | XXV（Kalkera） | D $01448{ }^{\circ} \mathrm{O}$ | 4 | 2.6 | 5＊3 | | | | | | $2380 \cdot 7$ | 2382 | $4^{\circ} 0$ |
| Mar．13，14 | 248 | XXVI（Ganigudd） | E O 526.9 | 8 | 2.6 | $5 \cdot 3$ | 612 | 34 | －056 | －181＊7 | 238I•0 | | | |
| Feb．27，28 | 215 | XXIV（Navalúr） | Do 18 2.4 | 8 | $2 \cdot 6$ | 5•3 | | | | | | | | |
| Mar．2，4 | 310 | XXVII（Kundgol） | E O 419.8 | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 908 | 48 | －053 | $-298 \cdot 7$ | 2145＊3 | | | |
| ＂12，13 | 310 | XXVI（Ganigudd） | D ○ 1538.6 | 8 | $2 \cdot 6$ | 5•3 | | | | | | 2145.4 | 2147＇06 | $10^{\circ} 0$ |
| ＂ 2,4 | 30 | XXVII（Kundgol） | D o 1 48.4 | 8 | 2.6 | $5 \cdot 3$ | 1152 | 57 | －050 | $-235 \cdot 3$ | $2145^{\circ} 4$ | | | |
| Feb． 23 | 219 | XXV（Kalkera） | D $01930 \cdot 0$ | 4 | $2 \cdot 7$ | 5＊3 | | | | | | | | |
| ＂ 19 | I 33 | XXVIII（Kánsěrudi） | E ○ 238.2 | 6 | 2.6 | 5．3 | 1148 | 73 | －063 | $-374{ }^{\circ}$ | $2190{ }^{\circ}$ | | | |
| Mar．12，14 | 218 | XXVI（Ganigudd） | | 8 | $2 \cdot 8$ | | | | | | | $2190 \cdot 2$ | 2190 | 5＊7 |
| Feb．18，19 | 224 | XXVIII（Kánsěrudi） | $\text { Do } 1 \quad 3 \cdot 2$ | 8 | 2.6 | $\begin{aligned} & 5 \cdot 3 \\ & 5 \cdot 3 \end{aligned}$ | 1014 | 64 | －064 | －191．9 | $2190 \cdot 3$ | | | |
| Mar 1214 | | | | | | 53 | | | | | | | | |
| Mar．$\quad 12,14$ | 240 | XXVI（Ganigudd） | D o 9 4．6 | 8 | 2.6 | 5•3 | | | | | | | | |
| ＂27，28 | 325 | XXIX（Indúr） | D $0421^{\circ} \mathrm{O}$ | 12 | 2.6 | $5 \cdot 3$ | 899 | 53 | ． 054 | －62．4 | 2319.8 | | | |
| $\begin{aligned} & 7,4 \\ & \\ & 25.27 \end{aligned}$ | 318 | XXVII（Kundgol） | D o 3 9 $9^{\circ} 3$ | 8 | 2.6 | 5•3 | | | | | | | | |
| ＂25，27 | 314 | XXIX（Indúr） | D ○ 13 53＊＊ | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 1090 | 39 | －036 | ＋172．1 | $2319^{\circ} 2$ | 2319．5 | 2319 | $5^{\circ} \mathrm{O}$ |
| ＂19，20 | 223 | XXX（Rámankŏp） | $\text { E } \circ 612.2$ | 8 | 2.6 | 5＊3 | | | | | | | | |
| ＂ 27 | 39 | XXIX（Indúr） | D $02018 \cdot 3$ | 8 | $2 \cdot 8$ | $5 \cdot 3$ | 944 | 55 | －058 | $+369{ }^{\circ}$ | 2319×4 | | | |
| $" \quad 14$ | 213 | XXVI（Ganigudd） | Do 22 0．2 | 12 | 2.6 | $5 \cdot 3$ | | | | | | | | |
| ＂19，20 | 216 | $\mathbf{X X X}$（Rámankŏp） | E 0641.4 | 8 | $2 \cdot 6$ | $5 \cdot 3$ | 1024 | 58 | －057 | $-431 \cdot 5$ | 1950＊7 | | | |
| Feb．18，19 | 213 | XXVIII（Kánsĕrudi） | D $01549 * 3$ | 12 | 2.6 | $5 \cdot 3$ | | | | | | | | |
| Mar．19，20 | 211 | XXX（Rámankð̌） | E O 225.8 | 8 | 2.8 | 5．3 | 899 | 53 | －060 | －240．9 | 1949＊3 | 1950 | 1949 | $5^{\circ} \mathrm{O}$ |
| ＂ 27 | 39 | XXIX（Indúr） | D 02018.3 | 8 | $2 \cdot 8$ | 5＊3 | | | | | | | | |
| ＂19，20 | 223 | XXX（Rámankŏp） | E 0612.2 | 8 | 2.6 | $5 \cdot 3$ | 944 | 55 | $\cdot 058$ | $-369 * 4$ | 1950 ＇ 1 | | | |
| ＂25，28 | 314 | XXIX（Indúr） | D $0823^{\circ} \mathrm{O}$ | 8 | $2 \cdot 6$ | 5＊3 | | | | | | | | |
| Apr．18，22 | 31 | XXXI（Bhedasgávegudda） | D o 520.6 | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 920 | 54 | －059 | － $41^{\circ} 0$ | 2278＊5 | 2278．9 | 2278 | $8 \cdot 0$ |
| Mar．19，20 | 231 | $\mathbf{X X X}$（Rámankǒp） | E 0511×7 | 8 | $2 \cdot 6$ | 5•3 | | | | | | ， | | |
| Apr． 18 | 255 | XXXI（Bhedasgávegudda） | D O 19 4．9 | 8 | $2 \cdot 6$ | $5 \cdot 3$ | 923 | 51 | －055 | ＋329．3 | 2279＊3 | | | |

（1）．The mean of observations taken on 24th January，1866，and 23rd February， 1867.

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			$\begin{array}{\|l\|} \hline \text { Terrestrial } \\ \text { Refraction } \\ \hline \end{array}$			Height in feet of 2nd Station above Mean Sea Level			
1867	Mean of Times of obser－ vation				${ }^{3}$	若		坒			Trigonometrical Results		$\begin{array}{\|c} \text { Final } \\ \text { Result } \end{array}$	
						炰		：	号荡\|		$\begin{gathered} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{gathered}$	Mean		
	$\boldsymbol{h} \quad \boldsymbol{m}$		1 ＂				＂							foet
Mar．27，28	316	XXIX（Indur）	D o 15 59＊0	8	$2 \cdot 5$			82		－216．8	$2102 \cdot 7$			
Apr． 6	32	XXXII（Karěkyatanhalli）	D ○ 556.5	12	$2 \cdot 7$	5•3	1471	82	－55	－216．8	2102	$2102 \cdot 8$	2101	5.0
22	33	XXXI（Bhedasgávegudda）	D ○ 1356.5	8	$2 \cdot 6$	5．3		60					2101	50
＂ 6	256	XXXII（Karěkyatanhalli）	D ○ 344.8	8	$2 \cdot 6$	$5 \cdot 3$	1171	60	$\cdot 051$	－176．1	$2102 \cdot 8$			
Mar．19，20	216	XXX（Rámankŏp）	E O 10 1＇1	12	$2 \cdot 9$	$5 \cdot 3$					$6 \cdot 8$			
A pr．30，May 1	31	XXXIII（Menshigudda）	D 02424	8	$2 \cdot 6$	5．3	934	52	－056	＋466•8	$2416 \cdot 8$			
＂22，23	257	XXXI（Bhedasgávegudda）	D ○ 1 $26 \cdot 1$	8	$2 \cdot 6$	$5 \cdot 3$	898		－061			17 3		50
＂30，May 1	310	XXXIII（Menshigudda）	D ○ 1154.8	8	$2 \cdot 7$	5．3	898	55	－061	$+1389$	24178			
$\begin{array}{cc}7 & 18,23 \\ M 8 y & 18,20\end{array}$	32	XXXI（Bhedasgávegudda）		14	2.6	5．3	1262							
May 18，20	248	XXXIV（Chandragutti）	D 02313.7	8	$2 \cdot 7$	$5 \cdot 3$	1262	70	． 056	$+5113$	27902			
Apr． 6	255	XXXII（Karěkyatanhalli）	E ○ 752.4	8	$2 \cdot 6$	5．3								
May 18，20	239	XXXIV（Chandragutti）	D $02725^{\circ} \mathrm{I}$	8	$2 \cdot 6$	$5 \cdot 3$	1322	79	－ 05	$+6871$	2789	2791 1	2789	5.0
Apr．30，May 1	$3 \quad 3$	XXXIII（Menshigudda）	D ○ 1 53＇1	8	$2 \cdot 6$	5．3		88						
May 18，20	256	XXXIV（Chandragutti）	D 01927.1	8	$2 \cdot 6$	$5 \cdot 3$	1448	88	．061	$+374.3$	27916			
（1）	233	XXXV（Halěbail）	E 0945.7	20	$2 \cdot 6$	5．3	1006	61	－060					
（2）	240	XXXIV（Chandragutti）	D 024 41．0	20	$2 \cdot 7$	5•3	1006	61	－ 060	$+5104$	27926			
$\begin{array}{lr}\text { Apr．} & 22,24 \\ \text { May } & 10\end{array}$	34	XXXI（Bhedasgávegudda）	D ○ 1033.6	8	$2 \cdot 6$	$5 \cdot 3$	1424	76	－054	＋4\％	$2282 \cdot 9$			
May $\quad 10$	252	XXXV（Halebail）	D $\bigcirc 1044.8$	4	$2 \cdot 7$	$5 \cdot 3$	1424	76	054	$+40$	228.9			
Apr．30，May 1	243	XXXIII（Menshigudda）	D ○ II 54．2	8	$2 \cdot 6$	5．3				－135＊8	2281 5	2281．5	2279	6
May 10	253	XXXV（Halěbail）	D ○ I 50．2	8	$2 \cdot 6$	$5 \cdot 3$	920	54	059	-1358	22815	2215	229	
（2）	240	XXXIV（Chandragutti）	D $0244^{\circ} \mathrm{O}$	20	$2 \cdot 7$	$5 \cdot 3$		61	060		2280．2			
（1）	233	XXXV（Halěbail）	E 0945%	20	$2 \cdot 6$	$5 \cdot 3$	1006	61	060	$-510 \cdot 4$	2280			
Dec．10，12，13，14	215	XXXIV（Chandragutti）	Do13 7－1	16	$2 \cdot 7$	$5 \cdot 3$	886	53	：060	9＊9	$2621 \cdot 2$			
＂22，23，24	216	XXXVI（Hukaligudda）	Do ○ 5．5	12	$2 \cdot 6$	5＊3		53		9		2621．9	2620	$4 \cdot 8$
Nor．29．30，Deo． 3	245	XXXV（Halĕbail）	E ○ 747．2	16	$2 \cdot 6$	5．3	830	51	．061	＋341＇0	$2622 \cdot 5$			
Dec．22，23，24	246	XXXVI（Hukaligudda）	D 0208.7	12	$2 \cdot 6$	$5 \cdot 3$	830	51	－6．	＋3410	2622			
Nor．20，50，Dec． 3	158	XXXV（Halebail）	D o $810 \cdot 6$	14	$2 \cdot 8$	5＊3	601	41		－ 65.6	2215\％			
＂20，21	21	XXXVII（Kaltigudda）	D ○ $045^{\circ} 4$	12	$2 \cdot 7$	$5 \cdot 3$	601	41			22159			
Dec．22，23，25	144	XXXVI（Hukaligudda）	D 02333.4	12	$2 \cdot 8$	$5 \cdot 3$						22154	2213	．
Nov．20，21	146	XXXVII（Kaltigudda）	E 0124.5	12	$2 \cdot 7$	$5 \cdot 3$	776	51		－	22149			
Dec．${ }_{1873}^{22,23,24}$	20	XXXVI（Hukaligudda）	D $02042 \cdot 0$	12	$2 \cdot 7$	5．3	597	34	058	－283．6	$2338 \cdot 3$			
Jan．${ }_{1872}{ }^{11,12}$	20	XXXVIII（Dinděmane）	E $01135^{\circ} 5$	12	$2 \cdot 7$	$5 \cdot 3$						$2338 \cdot 6$	2335	5\％
${ }^{\text {Nov. }}{ }_{1873}^{20,21}$	214	XXXVII（Kaltigudda）	D ○ 242.5	12	$2 \cdot 7$	$5 \cdot 3$		59	061	＋123．4	$2338 \cdot 8$			
$\text { Jan. }{ }_{1872}^{1873}{ }^{11,12}$	215	XXXVIII（Dinděmane）	D $011{ }^{\text {2 }}$ I 1	12	$2 \cdot 8$	$5 \cdot 3$	957	59		＋123 4	238			
$\text { Deo. }{ }_{1873}^{12,13}$	246	XXXIV（Chandragutti）	D ○ 1614.5	12	2.7 2.6	$5 \cdot 3$ $5 \cdot 3$	1102	64	－058	$-260 \cdot 7$	$2530 \cdot 4$			
Jan．4，5，6	244	XXXIX（Koramár）	D ○ ○ 9．5	16	$2 \cdot 6$	5•3			－58		2530			

（1）The mean of observations taken on 10hh May，1867，and 29th and 80th November， 1872.
（2）Do．do．20th do．12th and 13th December，do．

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Hoight in feet		$\begin{aligned} & y \\ & y \\ & \text { y } \\ & \text { d } \\ & \text { d } \\ & 0 \end{aligned}$	Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1872－73	Mean of Times of obser vation				d	若		范			${\underset{\text { Trigono }}{\text { Ros }}}^{\text {Th}}$	metrical ults		
						类		A	寅藹		By each deduc－ tion	Mean	Result	
	h m		1				＂							feot
Dec．22，23，24	230	XXXVI（Hukaligudda）	D $\circ 1016.8$		$2 \cdot 6$	$5 \cdot 3$								$3 \cdot 0$
Jan．4，5，6	229	XXXIX（Koramúr）	D ○ 338.7	12	$2 \cdot 7$	$5 \cdot 3$	934	55		－91．	$2530 \cdot 8$	$2530 \cdot 8$	2525	
＂11，12	146	XXXVIII（Dindămane）	D 0 I 26.2	12	$2 \cdot 7$	5•3	1042	64		$+192 \cdot 6$	2531．2			
＂5，6	147	XXXIX（Koramúr）	D ○ 13 59． 5	16	$2 \cdot 7$	$5 \cdot 3$	1042	64			25312			
Dec．10，12，13	30	XXXIV（Chandragutti）	D ○ 754.4	12	$2 \cdot 8$	$5 \cdot 3$	1020	55						
Jan．1，2	30	XL（Hŏnnavalli）	D 0763	12	2.6	$5 \cdot 3$	1020	5_{5}		－ 122	2778 9			． 6
＂5，6	215	XXXIX（Koramúr）	E○ 253.5	16	$2 \cdot 7$	$5 \cdot 3$						2779.6	2777	46
＂1，2	214	XL（Hŏnnavalli）	D $016 \quad 93$	12	$2 \cdot 7$	$5 \cdot 3$	89	53		＋ 2495				
＂5，6	3 －	XXXIX（Koramúr）	E ○ 3 9．9	12	$2 \cdot 6$	$5 \cdot 3$								
＂24，25	259	XLI（Hugadi）	D ○ 19 53．3	12	$2 \cdot 6$	$5 \cdot 3$	1136	71	－063	＋ $385 \cdot 2$	$2916 \cdot 0$			
＂ $\begin{array}{r}1,2 \\ 24,25\end{array}$	231	XL（Hŏnnavalli）	D ○ $6 \mathbf{2 6 . 2}$	12	$2 \cdot 7$	$5 \cdot 3$		80				2915＊8		$3 \cdot 8$
＂24，25	229	XLI（Hugadi）	D 01319.0	12	$2 \cdot 6$	$5 \cdot 3$	1337	80		＋1353	29149	2915	2912	38
，17，18，19	215	XLII（Kŏdashádri）	D o $5225^{\circ} 7$	12	$2 \cdot 7$	$5 \cdot 3$	1156	70			2916．5			
＂24，25	214	XLI（Hugadi）	E $03521 \cdot 0$	12	$2 \cdot 8$	$5 \cdot 3$	1156	70		－1492 4	2916			
＂11，12	229	XXXVIII（Dinděmane）	E 04946.7	12	$2 \cdot 8$	$5 \cdot 3$	1200	74	－061	＋2069． 5	4408 1			
＂17，18，19	230	XLII（Kŏdashádri）	D 1727.9	12	$2 \cdot 8$	$5 \cdot 3$	1200	74		＋2069 5	4408			
＂ $\begin{array}{r}\text { 5，6 } \\ \hline 17,18\end{array}$	21	XXXIX（Koramúr）	E $\bigcirc 5150 \cdot 6$	12	$2 \cdot 8$	$5 \cdot 3$	1067	60		＋1878．8		$4408 \cdot 5$		$2 \cdot 5$
＂17，18，19	20	XLII（Kŏdashádri）	D 17476	12	$2 \cdot 7$	$5 \cdot 3$	1067	60	－56	$+1878 \cdot$	44096	44085	4405	25
＂24，25	214	XLI（Hugadi）	E $03521 \cdot 0$	12	$2 \cdot 8$	5＊3								
＂17，18，19	215	XLII（Kŏdashádri）	D $05225^{\prime} 7$	12	$2 \cdot 7$	$5 \cdot 3$	1156	70	O6I	＋1492 4	$4407 \cdot 9$			
＂24，25	244	XLI（Hugadi）	D 02653.5	12	$2 \cdot 6$	5＊3	783	46						
＂27，28，29	246	XLIII（Siddeshvar）	EOI5 4．0	16	$0 \cdot 9$	$5 \cdot 3$	783	46			1－6			
＂17，18，19	146	X LIII（Kŏdashádri）	D 05815%	20	$2 \cdot 7$	$5 \cdot 3$								
＂27，28，29	149	XLIII（Siddeshvar）	E $03749^{\circ} \mathrm{O}$	16	$2 \cdot 8$	$5 \cdot 3$	1397	89	－064	－1974．1	$2434 * 4$	2433 ＊ 4	2429	$2 \cdot 3$
Feb．1，2	231	XLIV（Bisale）	D $02434{ }^{\circ}$	16	$2 \cdot 6$									
Jan． $27,28,29,30$	221	XLIII（Siddeshvar）	E 01248.5	20	$2 \cdot 6$	$5 \cdot 3$	774	42		－ 425.8	2434 1			
＂24，25	158	XLI（Hugadi）	Doil 711	12	$2 \cdot 7$	$5 \cdot 3$								
Feb．1，2	20	XLIV（Bisale）	D 085.6	16	$2 \cdot 6$	$5 \cdot 3$	1296	76		－ 577				
Jan．17，19	247	XLII（Kŏdashádri）	D 05321.3	16	$2 \cdot 7$	$5 \cdot 3$								
Feb．． 2	246	XLIV（Bisale）	E 03634.6	12	$2 \cdot 8$	$5 \cdot 3$	1169	86				2859＊5	2855	$1 \cdot 9$
Jan． $27,28,29,30$	221	XLIII（Siddeshvar）	E 01248.5	20	$2 \cdot 6$	$5 \cdot 3$								
Feb．1，2	231	XLIV（Bisale）	D $02434{ }^{\circ} \mathrm{O}$	16	$2 \cdot 6$	$5 \cdot 3$	774	42		＋ 425	－			
Jan．28，29，30	258	XLIII（Siddeshvar）	E 029445	16	$2 \cdot 6$	$5 \cdot 3$								
Feb．16，18，19	3 －	XLV（Hiřgudda）	D $04731 \cdot 0$	16	$2 \cdot 6$	$5 \cdot 3$	1202	73						
＂ 1,2	238	XLIV（Bisale）	E O 113711	16	$2 \cdot 6$	$5 \cdot 3$				＋ 938.4	3797•9	3798＊9	3794	1＇9
＂16，18，19	234	XLV（Hirĕgudda）	D $03248 \cdot 3$	16	$2 \cdot 7$	$5 \cdot 3$	1436	86		＋ $938 \cdot 4$	3797 9			

81-

Nots.-Stations III (Kudurěmukha) and VI (Anúr) appertain to the Madras Longitudinal Series.
(1) The mean of observations taken on 20th, 23rd and 28th April, 1872, and 25th and 26th February, 1873. Do.
do. 23rd April, 1872, and 26th February, 1873.

When determining the Spirit-levelled heights, given on pages 74_o. to 78_o. the levelling staff stood on the surfaces hereafter described.

XVII (Kem) On a peg at the foot of the station, height $=1945 \cdot 89$ feet. To this value $5 \cdot 32$ feet (the height of the mark-stone in the upper surface of the circular pillar above this peg) being added, the height of the upper mark-stone was found to be $1951 \cdot 21$ feet.

XIX (Alsunda) On a peg at the foot of the station, height $=\mathbf{2 1 5 7} \cdot 99$ feet. To this value $7 \cdot 22$ feet (the height of the upper surface of the rectangular protecting pillar above this peg) being added, the height of the top of the protecting pillar was found to be $2165 \cdot 21$ feet.

XXII (Bori) On a peg at the foot of the station, height $=1997.90$ feet. To this value $7 \cdot 24$ feet (the height of the mark-stone in the upper surface of the rectangular protecting pillar above this peg) being added, the height of the mark-stone on the protecting pillar was found to be $2005 \cdot 14$ feet.

I (Kalas) On a peg at the foot of the station, height $=2000 \cdot 66$ feet. To this value $\mathbf{7} \cdot \mathbf{3 0}$ feet (the height of the upper surface of the circular pillar above this peg) being added, the height of the upper surface of the pillar was found to be $2007 \cdot 96$ feet.

VI (Aundh) On a peg at the foot of the station, height $=3127.85$ feet. To this value 6.34 feet (the height of the upper surface of the rectangular protecting pillar above this peg) being added, the height of the upper surface of the protecting pillar was found to be 3134:19 feet.

XXVII (Kundgol) On the mark-stone in the upper surface of the circular pillar.
For further particulars of these stations, see pages 3-D. ${ }^{\text {to }} 8_{\text {- }}$.
W. H. COLE,

Septomber, 1889.

MANGALORE MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

At IV (Páchvad)

 March 1865 ; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

Star observed
Mean Right Ascension 1865.0
Mean North Polar Distance 1865.0
Local Mean Time of Elongation, March 5
a Ursæ Minoris (West).
$1^{14} \quad 9^{\mathrm{m}} 3^{80}$
$1^{\circ} 24^{\prime} 36^{\prime \prime} \cdot 85$
Western $\mathbf{8}^{\text {h }} \mathbf{1 4}^{\text {m }}$

Abstract of Astronomical Azimuth observed at IV (Páchvad) 1865.
By Western Elongation of a Ursæ Minoris.

At XV (Karabgati)

 December 1865 ; observed by Captain C. T. Haig, R. E., with Barrow's 24-inch Theodolite No. 2.

Star observed
Mean Right Ascension $1865 \cdot 0$
Mean North Polar Distance $1865 \cdot 0$
Local Mean Times of Elongation, December 23

			fate left				pacr bigit			
			Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Dec. 26	E.	$\begin{aligned} & 3093^{36} \\ & \& \\ & 129 \quad 36 \end{aligned}$	- ' 1	$\boldsymbol{m} \boldsymbol{8}$	17	$\begin{array}{rrr} \circ & \prime \prime \\ -34 & 41 & 20 \cdot 05 \\ & 19.34 \\ & 18 \cdot 44 \\ & & 19.22 \end{array}$	$\begin{array}{rrr} \circ & 1 & \prime \prime \\ -34 & 40 & 39 \cdot 04 \\ 40 & 54 \cdot 20 \\ & 41 & 13 \cdot 08 \\ 41 & 8 \cdot 12 \end{array}$	$\begin{array}{cc} m & 8 \\ 17 & 54 \\ 14 & 32 \\ 6 & 44 \\ 9 & 11 \end{array}$	$\left\|\begin{array}{cc} \prime & \prime \prime \\ -0 & 38 \cdot 63 \\ 0 & 25.50 \\ 0 & 5 \cdot 48 \\ 0 & 10.20 \end{array}\right\|$	$\left\lvert\, \begin{array}{rr} -3441 & 17.67 \\ 19.70 \end{array}\right.$
			$\begin{array}{lll}-34 & 41 & 13.40 \\ & 41 & 16.64\end{array}$	$\begin{array}{ll} 7 \quad 25 \\ 444 \end{array}$	-- $6 \cdot 65$					
			4031.14 4020.42	$\begin{array}{r} 444 \\ 1947 \end{array}$	$\begin{array}{r} \circ 47.30 \\ \circ 58.80 \end{array}$					$\begin{aligned} & 18 \cdot 56 \\ & 18 \cdot 32 \end{aligned}$
" 27	E.	$\begin{gathered} 35^{2} 4^{48} \\ { }_{172}{ }^{2} 48 \end{gathered}$	$\left\lvert\, \begin{array}{rlr} -3441 & 12 \cdot 62 \\ 41 & 15.80 \\ 41 & 0 \cdot 80 \\ 40 & 55 \cdot 46 \end{array}\right.$	$\begin{aligned} & 724 \\ & 554 \end{aligned}$		-3441 19.24	$\begin{array}{r} -34 \begin{array}{r} 4040 \cdot 84 \\ 40 \quad 50 \cdot 30 \end{array}, ~ \end{array}$	$\begin{array}{lr} 17 \\ 14 & 58 \end{array}$	$\begin{array}{r} -\quad 35 \cdot 17 \\ -25.26 \end{array}$	$-3441 \begin{aligned} & 16 \cdot 01 \\ & 15 \cdot 56 \end{aligned}$
				$\begin{aligned} & 1228 \\ & 1425 \end{aligned}$	$\begin{array}{ll} \circ & 18 \cdot 78 \\ \circ & 25 \cdot 13 \end{array}$	19.58 20.59	4116.50 4113.60	$\begin{array}{ll} 1 & 38 \\ 3 & 45 \end{array}$	\circ 0.32 1.69	$\begin{aligned} & 16 \cdot 82 \\ & 15 \cdot 29 \end{aligned}$
" 28	W.	$\begin{gathered} 35248 \\ \& \\ { }^{372} 48 \end{gathered}$	$\begin{array}{r} -273731 \cdot 98 \\ 3734 \cdot 14 \\ 3915 \cdot 32 \\ 3933 \cdot 40 \end{array}$	$\begin{array}{r} 444 \\ 7 \\ 723 \\ 29 \\ 32 \\ 32 \\ \hline \end{array}$	$\left\|\begin{array}{rr} 0 & 2 \cdot 71 \\ 0 & 6 \cdot 57 \\ 1 & 47.14 \\ 2 & 5 \cdot 45 \end{array}\right\|$	$\begin{array}{r} -273729.27 \\ 27.57 \\ 28 \cdot 18 \\ 27.95 \end{array}$	$\begin{array}{r} -273733 \cdot 70 \\ 3727 \cdot 98 \\ 3752 \cdot 58 \\ 3757 \cdot 44 \end{array}$	$\begin{array}{rr} 6 & 33 \\ 3 & 16 \\ 14 & 52 \\ 16 & 27 \end{array}$	$\begin{array}{rr} +\circ & 5 \cdot 17 \\ 0 & 1.29 \\ \circ & 26 \cdot 65 \\ 0 & 32 \cdot 64 \end{array}$	$\begin{array}{r} -273728 \cdot 53 \\ 26 \cdot 69 \\ 25 \cdot 93 \\ 24 \cdot 80 \end{array}$
" 29	W.	180	$\left\lvert\, \begin{array}{rrr} -27 & 39 & 9.32 \\ & 39 & 24.66 \end{array}\right.$	$\begin{array}{cc} 28 & 48 \\ 31 & 0 \end{array}$	$\begin{array}{r} 139 \cdot 82 \\ +\quad 155.66 \end{array}$	$\begin{array}{r} -273729.50 \\ 29.00 \end{array}$				

Abstract of Astronomical Azimuth observed at XV (Karabgati) 1865.

1. By Eastern Elongation of δ Ursæ Minoris.

Abstract of Astronomical Azimuth observed at XV (Karabgati) 1865-(Continued).
2. By Western Elongation of δ Ursæ Minoris.

Nots.-Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.
f No observations taken on the zeros 310° and 130° in the case of western elongation.

At XXXIX (Koramur)

Lat. N. $14^{\circ} 8^{\prime} 6^{\prime \prime} \cdot 59$; Long. E. $75^{\circ} 0^{\prime} 51^{\prime \prime} \cdot 25=\begin{array}{cc}\hbar \\ =5 & m \\ 0 & 3 \cdot 4\end{array}$; Height above Mean Sea Level, 2525 feet. March 1873 ; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24 -inch Theodolite No. 1.

Star observed
Mean Right Ascension 1873.0
Mean North Polar Distance 1873.0
Local Mean Time of Elongation, March 23
a Ursæ Minoris (West).
$1^{\mathrm{h}} 12^{\mathrm{m}} 18^{\mathrm{B}}$
$1^{\circ} 22^{\prime} 4^{\prime \prime} \cdot 30$
Western $7^{\text {b }} 5^{\mathrm{m}}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{face lipt} \& \multicolumn{4}{|c|}{pack bight} \\
\hline \& \& \& Obserred Horizontal Angle : Diff. of Readings Ref. Mark - Star \& \& Reduction in Arc to Time of Elongation \& \begin{tabular}{l}
Reduced Obserration \\
Ref. Mark - Star at Elongation
\end{tabular} \& Observed Horizontal Angle : Diff. of Readings
Ref Mark-Star Ref. Mark-Star \& \& Reduction in Arc to Time of Elongation \& Reduced Observation Ref. Mark-Star at Elongation \\
\hline \multirow{4}{*}{Mar. 23} \& \multirow{4}{*}{W.} \& \multirow{4}{*}{\[
\begin{array}{cc}
180 \& 1 \\
\& \& \\
0 \& 1
\end{array}
\]} \& - ' " \& \(\boldsymbol{m} \boldsymbol{8}\) \& 11 \& - ' 1 \& - 11 \& \(\boldsymbol{m} \boldsymbol{8}\) \& , \& - ' " \\
\hline \& \& \& + 565235.74 \& 558 \& +01.72 \& + \(565237 \cdot 46\) \& + 565235.69 \& 4 42 \& +0 0.99 \& + \(565236 \cdot 68\) \\
\hline \& \& \& \(\begin{array}{llll}52 \& 38 \cdot 96\end{array}\) \& \(\begin{array}{rr}1 \& 14 \\ 15 \& 1 \\ 15\end{array}\) \& - 0.07 \& 39.03 \& + \(5230 \cdot 88\) \& \(\begin{array}{ll}11 \& 32 \\ 12\end{array}\) \& + 6.92 \& 56
37.30
38. \\
\hline \& \& \& \begin{tabular}{l}
\(5227 \cdot 35\) \\
52 \\
\hline 29
\end{tabular} \& \(\begin{array}{rrr}1519 \\ 21 \& 2\end{array}\) \& \begin{tabular}{l}
O 11.32 \\
0 \\
\hline
\end{tabular} \& \(38 \cdot 67\)
\(40 \cdot 37\) \& \(\begin{array}{ll}52 \& 9.29 \\ 51 \& 53.86\end{array}\) \& 24
29
29
29 \& \begin{tabular}{l}
028.81 \\
\hline
\end{tabular} \& \(38 \cdot 10\)
\(35 \cdot 73\) \\
\hline \multirow[t]{4}{*}{" 24} \& \multirow[t]{4}{*}{W.} \& \multirow{4}{*}{\[
\begin{gathered}
259 \quad 13 \\
\& \quad 13 \\
79 \quad 13
\end{gathered}
\]} \& \multirow[b]{4}{*}{\[
\begin{array}{r}
523 \mathrm{5I} \cdot 43 \\
5235 \cdot 48 \\
5237 \cdot 00 \\
5234.79
\end{array}
\]} \& 1212 \& +o7.03 \& + \(565238 \cdot 46\) \& + 565213.15 \& 2252 \& + 025.25 \& + 565238.40 \\
\hline \& \& \& \& 1212
9 \& - 4.62 \& +56 52 \(40 \cdot 10\) \& 56
52
520.42 \& \(\begin{array}{rrr}19 \& 43 \\ \\ 2\end{array}\) \& 0.25 .77
0
0 \& 39
+19
\(30 \cdot 00\) \\
\hline \& \& \& \& 713 \& - 2.51 \& \(39^{\circ} 51\) \& \(5238 \cdot 62\) \& \& - 0.38 \& \(39 \cdot 00\) \\
\hline \& \& \& \& 927 \& - 4.30 \& \(39^{\circ} 09\) \& \(5237 \times 1\) \& 013 \& - 0.00 \& \(37 \cdot 01\) \\
\hline \multirow[t]{3}{*}{" 25} \& \multirow[t]{3}{*}{W.} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 33^{8} \quad 25 \\
\& \& \\
\& 158 \quad 25
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
56 \\
+52 \\
52 \cdot 52 \\
52 \\
53 \cdot 77 \\
52 \\
52 \\
58 \cdot 02 \\
56 \cdot 16
\end{array}
\]} \& \(\begin{array}{rrr}11 \& 5 \\ 9 \& 1\end{array}\) \& + 0 5 \(5 \cdot 92\) \& + \(565240 \cdot 44\) \& + \(56 \quad 5219.38\) \& 2028 \& + \(020 \cdot 20\) \& + 565239.58 \\
\hline \& \& \& \& \& \begin{tabular}{l}
\(\circ\) \\
\hline
\end{tabular} \& \(37 \cdot 69\)
41.54 \& 52
52
52
52
38.64

52 \& $\begin{array}{r}1755 \\ 15 \\ \\ \hline\end{array}$ \& 0
0
0
0 15.48 \& $38 \cdot 95$
38.81

\hline \& \& \& \& $\begin{array}{rrr}8 & 32 \\ 10 & 48\end{array}$ \& | 0 |
| :--- | \& $41 \cdot 54$

$41 \cdot 80$ \& 5239.47 \& \& - 0.05 \& 39.52

\hline \multirow[t]{4}{*}{" 26} \& \multirow[t]{4}{*}{W.} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
5737 \\
\& \\
23737
\end{array}
$$} \& \multirow[t]{2}{*}{\[

\left\lvert\, $$
\begin{array}{rr}
+56 & 5240 \cdot 50 \\
52 & 39 \cdot 20
\end{array}
$$\right.
\]} \& 358 \& +00.76 \& + $565241 \cdot 26$ \& + $56 \quad 5229.74$ \& 1338 \& + 08.97 \&

\hline \& \& \& \& 2 I \& -0.26 \& $\begin{array}{r}56524 \\ \hline 9\end{array}$ \& +56 32.68 \& 1110 \& 06.01 \& $$
38.69
$$

\hline \& \& \multirow{7}{*}{$$
\begin{gathered}
13649 \\
\& \\
81649
\end{gathered}
$$} \& + 565235.30 \& 1015 \& +o 5.08 \& + $565240 \cdot 38$ \& + 56 52 $20 \cdot 44$ \& 19 51 \& + 019.03 \& + 565239.47

\hline \& \& \& 5238.89 \& 650 \& - $2 \cdot 26$ \& 41.15 \& $5221 \cdot 96$ \& 1745 \& 015.22 \& $37 \cdot 18$

\hline \multirow[t]{5}{*}{" 27} \& \multirow[t]{5}{*}{W.} \& \& $\begin{array}{llll}52 & 33.26\end{array}$ \& 1336 \& - 8.92 \& 42.18 \& $5237 \cdot 87$ \& ${ }_{4}^{4} 14$ \& $\bigcirc \quad 0.86$ \& $38 \cdot 73$

\hline \& \& \& 52
52
52 \& 1534 \& O 11.68 \& $4 \mathrm{I} \cdot 46$ \& 5238.00 \& 633 \& - $2 \cdot 07$ \& $40 \cdot 07$
30.86

\hline \& \& \& 5214.75
5159.78 \& $\begin{array}{rrr}24 & 1 \\ 29 & 44\end{array}$ \& 017.79
$0 \quad 279$
042.57 \& $42 \cdot 54$

42.35 \& \begin{tabular}{l}
5217.58

5149

\hline 1046

 \& $\begin{array}{lll}21 & 30 \\ 32 & 23\end{array}$ \&

0

\hline
\end{tabular} \& $39 \cdot 86$

39.95

\hline \& \& \& 5159.78 \& \& - 42.57 \& $42 \cdot 35$ \& 5149.46 \& 3223 \& - $50 \cdot 49$ \& 39×95

\hline \& \& \& : $:$ \& \& \& \& \& \& \&

\hline
\end{tabular}

Abstract of Astronomical Azimuth observed at XXXIX (Koramúr) 1873.
By Western Elongation of \boldsymbol{a} Ursæ Minoris.

Astronomical Azimuth of Referring Mark or XL (Hŏnnavalli)
Geodetical Azimuth of Hŏnnavalli by calculation from that

Astronomical - Geodetical Azimuth at XXXIX (Koramúr) - 6.76

October, 1889.

		0	11		
\ldots	\ldots	235	28	6.50	
\ldots	\ldots	235	28	13.26	
\ldots	\ldots	-		6.76	

W. H. COLE,

In charge of Computing Office.

PRINVGIPAI TRIANGUIATION-MAANGATOEH MERIDIOINAI EHEIES.

Madras meridional and coast series.

MADRAS MERIDIONAL AND COAST SERIES.

INTRODUCTION.

The Madras Meridional and Coast Series is the name of the great chain of principal triangles connecting Vizagapatam (Vishakhapatnam) and Madras. It follows the line of the eastern coast of India between the parallels of $17^{\circ} 30^{\prime}$ and 13°, and its initial and terminal sides belong respectively to the two longitudinal series of Bider (Bidar) and Madras. From Vizagapatam the series runs W.S.W., till, in latitude $16^{\circ} 30^{\prime}$, it meets the meridian of 80°; it then follows this meridian to Madras. The Jubbulpore (Jabalpur) Meridional Series, which follows the line of this meridian southwards to the parallel of 18°, was produced to meet the series under review at the angle formed by this change of direction, and a great meridional chain was thus completed connecting Madras with the Calcutta Longitudinal Series. The small portion of this meridional chain that is intercepted between the Bider Longitudinal and the Madras Meridional and Coast Series, was, for purposes of reduction, attached to the latter, which therefore emanates from two distinct sides of the former and with it forms a complete circuit of triangulation.

The whole country between Madras and the Kistna (Krishna) River had been covered with a net-work of principal triangles by Colonel Lambton in the first quarter of the century, and a base-line had been measured by him at Guntúr in 1812. In the last two years of his life, he had despatched Captain (afterwards Sir George) Everest, R.A., and Mr. J. De Penning to carry the triangulation eastwards from Hyderabad to the meridian of 80° and thence north to the Godávari river; but though he had fully planned its extension through the Circars (Sarkárs) to meet the requirements of Colonel McKenzie, then Surveyor General of India, the project fell through and no points were fixed near the coast north of the Kistna. With the exception therefore of the north-eastern branch which runs along the coast from the Kistna, the whole of the present series lay over ground that had been entirely covered with principal triangulation during the first period of the trigonometrical surveys. Owing to the inferiority of his instruments, when compared with those now in use, to the great errors that his base-lines were liable to, and to the complete obliteration of many of his stations, Colonel Lambton's work has not been incorporated with the principal triangulation, but with the secondary operations of recent times.

The Madras Meridional and Coast Series was commenced in 1860. A party under

Seasons 1860-61, and 1861-62. Perbonnel.
Captain J. P. Basovi, R.E., let Assistant. R. Clartson, Esq., Civil Assistant.

Mr. G. R. Howard, Sub-Aesistant, 1st Class. " J. Ellison, " 1st " " F. Byall, " 2nd " various officers, and latterly under Major A. Strange of the Madras Cavalry, had been for some years carrying a series down the East Coast from Calcutta, and by the end of the field season of 1859-60 had completed the NalákŏndaPothkŏnda polygon, which now forms the most eastern figure of the Bider Longitudinal Series: from the southern side of this figure one branch of the series under review emanates. Major Strange, hitherto a Brevet-Major only, having now attained his Regimental Majority, relinquished his appointment in the Survey Department and reverted to military duty, and the charge of the party was transferred to Captain Basevi in the autumn of 1860, the exigencies of the Department having required his transfer from the Trans-Indus frontier all the way to the Madras coast. He commenced operations from the side Sánjib-Dhár of the Bider Longitudinal Series, and was proceeding towards Rajahmundry (Rajamahendravaram) when, on approaching the hill of Kappa in the Rampa estate, he found that his signallers had been driven away from the hill with threats of violence, and that the inhabitants of the district were assembling to prevent him too from ascending. The estate was rent-free, and the people, though under the control of the Godávari magistracy, were a lawless set. Oaptain.Basevi, having obtained an extra military guard and a body of police, made his way to the summit of the hill without molestation, and took the necessary observations. One day the people set fire to the long grass on the hill, and a Raja brought intelligence that they were collecting to attack the surveyors; but the fire was extinguished and the attack was not attempted. Captain Basevi's chief apprehensions were for the signallers, whom he had to leave behind at the station; but a guard was left with them, and they were not molested. The only serious inconvenience occasioned was in having to construct the station on a block of laterite several feet below the summit of the hill; for it was covered with dense jungle, which there was no means of clearing away without the assistance of the villagers, who had all absconded. The operations proceeded without further opposition or hindrance, excepting from the physical difficulties of the ground passed over. The district between the Godávari and Kistna rivers was crossed with considerable trouble, owing to the absence of high hills and the undulating nature of the ground, which was rendered all the more difficult through being covered with dense jungle. Thus the selection of stations, in such a manner as to form an unbroken chain of quadrilaterals and polygons, became a very tedious and laborious undertaking, involving the repeated rejection of positions which at first promised the requisite visibility in all directions, but which were afterwards found to be deficient in some essential relation. By June 1861, the final observations were completed to the side Parampúdi-Sudkŏnda; the figures embraced being 2 hexagons, 1 pentagon and 1 quadrilateral, containing 20 triangles and extending a distance of about 100 miles. In the following season, by April 1862, the Series was advanced a further distance of 90 miles by 1 double polygon and 2 hexagons embracing 21 triangles. The triangulation had now reached a point in the Kistna district near the meridian of Madras, whence it shortly afterwards merged into the meridional series, which was intended to connect Jubbulpore and Madras.

After completing the Series thus far, Captain Basevi returned to Vizagapatam to
select a site for the base-line of verification, which it was proposed to measure in this neighbourhood. He succeeded in obtaining a suitable site, but not until his field operations had been so long protracted that it was the middle of June before he could break up his camp and return to quarters.

On re-entering the field early in October, he found the rains had been so heavy that the

Season 1862-63.

Personnil.

Captain J. P. Basevi, R.E., Ist Assistant. Captain J. P. Basenf, Branfl 2nd " R. Cl. R. Clarkson, Esq., Civil Assistant. Mr. F. Ryall, Sub-Assistant 2nd Class. " J. R. L. O'Neill, " 3rd " surrounding tanks had been converted into lakes, and that the ground selected for the measurement lay submerged under a sheet of water, in some parts as much as sixteen feet deep. By great exertions the water was drained off into adjoining ravines, and a portion of the line was ready for measuring in December; the remainder had become fairly dry by the time it was reached. The details of the measurement of the Vizagapatam Base-line will be found in Section VIII, Vol. I of the Account of the Operations of the Great Trigonometrical Survey of India. It will suffice here to remark that its length is six and a half miles, that Major J. T. Walker, R.E., the Superintendent of the Great Trigonometrical Survey himself superintended the work, and that Captain Basevi's party was employed on the measurement. It was divided into three verificatory sections, which were subsequently checked by two series of triangles, one on each flank of the base, to test the measure of each section against the others. The tests were satisfactory, for the extreme difference between the measured length of the whole base and its computed length by triangulation from either section, was found to be only one inch. The comparison of the measured length with the computed value brought down by triangulation from the Calcutta Base-line was singularly satisfactory, for the error of the computed value was only a quarter of an inch, though the triangulation embraced a distance of four hundred and sixty-six miles, much of it passing over flat plains, which were covered with dense forest and jungle and very difficult to work through.

On the completion of the base-line, Captain Branfill was deputed to connect it with the principal triangles of the East Coast Series, and to execute the verificatory triangulation between the sections. He also observed an azimuth, and carried a line of levels from the south end of the base to the Tide Point Station at the Jetty at Vizagapatam, where tidal observations had been previously taken, a synopsis of which will be found in the Introduc-
 of the Operations \&c.

Meanwhile Captain Basevi proceeded to make a reconnoissance of the neighbouring territories of the Raja of Jeypore (Jayapuram), concerning which little or nothing was known. "It is a singular fact," writes Major Walker in 1863, "that in the vicinity of the British "stations of Vizagapatam and Vizianagrum (Vijayanagaram), and within sixty miles of a "coast which has been frequented by British traders for upwards of a century, there is an " extensive tract of country, subject to a friendly Raja, of which less is known than of dis"tricts occupied by hostile tribes along the frontier of our recently acquired Punjab (Panjáb) "Provinces. A glance at any map of the Madras Presidency reveals a great blank in our
" geographical knowledge of the tract of country which lies parallel to the coast and north"east of the Godávari river. Its deadly reputation appears to have been a bar alike to the "explorations of the curious and scientific, and to the visits of sportsmen. No regular survey " of it has ever been attempted; the few places given on the map seem to have been obtained "from Native information, for they are generally exceedingly erroneous.
"A reconnoissance of this tract was required for our own operations round Vizaga" patam. As any reliable information regarding lands so little known might be expected "to be of much value and general interest, I was much gratified when Captain Basevi "volunteered to reconnoitre this terra incognita; though at the same time I could not but "feel apprehensive for his safety in a country so deadly; for his route would have to pass "through dense jungle, in which it would be necessary for him to preserve his reckoning "by the troublesome process of traversing, which under such circumstances is very labo"rious, and entails the necessity of performing the greater part of each day's march on foot. "The inevitable exposure to be thus undergone is very great in a tropical climate; and " when the district to be traversed is known to be exceedingly feverish and unhealthy, no "small amount of courage is needed to prompt a man to volunteer for such a task."

Captain Basevi took with him one European Assistant, Mr. O'Neill, and a few natives. By means of a compass and perambulator a traverse was run from Kásipuram at the foot of the hills' to Jeypore city, and from Jeypore to Bhadráchalam on the Godávari: observations for time and latitude were taken with a 7 -inch theodolite whenever the weather permitted, and readings of the barometers and thermometers were recorded regularly to afford data for computing the heights above the sea-level. At Padawa, five marches from Kásipuram, Mr. O'Neill became so ill that he was obliged to return, and fever commenced among the natives of the party. The results of this reconnoissance were a good preliminary map of Jeypore; a report by Captain Basevi, giving the details of his route and a general description of the country; several valuable astronomical determinations of latitudes and longitudes and barometrical determinations of heights; also memoranda of various other routes, the details of which were obtained from native information. Captain Basevi was occupied with this work from the 10th of February to the 9 th of April. In the following autumn he proceeded to Europe on furlough, and the command of the party devolved on Captain B. R. Branfill of the Bengal Cavalry.

On the completion of the base-line computations early in November, the party marched

Season 1863-64.
Presonnel.
Captain B. R. Branfill, 1st Assistant.
R. Clarkson, Esq., Civil Assistant.

Mr. F. Ryall, Sub-Assistant, 2nd Class. " J. W. Mitchell, Sub-Assistant, 3rd Clase.
" J. R. L. O'Neill, from its recess quarters at Vizagapatam, and recommenced operations near Guntúr on the 1st of December. Mr. Clarkson had charge of the approximate series, which by the 1st of January he had carried down as far as Nellore (Nellúr). Captain Branfill had marked this town for the goal of the present season's principal observations, and as the country between it and Madras had already been topographically surveyed, Mr. Clarkson was recalled and no more approximate work carried out. The main party was greatly delayed at several hill stations by want of coolies, and by the end of January the final
observations of only two polygons had been completed, and one azimuth of verification observed to δ Ursæ Minoris at Dánapa H.S. The stations however were two marches apart and all situated on difficult hills that required two days to ascend and descend. Extra precautions were taken for the preservation of the stations of the Kotapa heptagon, with a view to the continuation of the series northwards to connect with the Jubbulpore Meridional Series, as the nature of the soil and the materials with which the two stations of Dhúlipalla and Pálaparu were constructed, were such that the platforms were certain after a few rainy seasons to disappear, and leave the masonry pillars exposed and liable to injury. In the next figure, the Medaramétla hexagon, the ray from Faranguldinne to Ongole was found to be impracticable between the hours of 2 and 4-30 p.m., the period of minimum refraction, even when elevated signals were employed. Between half past seven and eight in the evening the stations were however mutually visible, and by Captain Branfill observing at the former with the large instrument and. Mr. Ryall at the latter with an 8 -inch theodolite between these times on an appointed night, simultaneous reciprocal vertical angles were taken. In the month of March Mr. Clarkson was recalled from Guntúr to proceed, in advance of the main party, and fill up a gap which had been left in the approximate series two years previously, but he was unfortunately delayed in completing his secondary work, and his orders were countermanded. In consequence of this Captain Branfill himself, after taking observations at Netivaripálĕm and Pichĕrla, was obliged to desist observing and proceeded to select stations for the east end of the side of continuation and for the east flank of the southern portion of the Netivaripalěm-Kuchĕrla double hexagon. After great difficulty and a month's delay Kesavaram and Darutippa were fixed on, and 12 to 15 feet platforms built at those places and at Puripád. On commencing the next figure, the Rajalli hexagon, the weather became extremely hazy, and it was doubtful, whether the figure could be completed before the end of the field season; but by constantly watching and seizing every opportunity of observing, all the final angles of the polygon were taken. The hill station of Yĕrrakŏnda had only just been quitted by the party, when the hill caught fire, and one set of signalling apparatus was destroyed.

Only three stations having been selected and none built in advance of the Rajalli hexagon, Captain Branfill determined to close operations and march to Madras, which he reached at the beginning of May. Mr. Clarkson however continued to work on the approximate series; he selected 17 stations forming a double polygon, a heptagon and part of a single polygon, extending the series to the vicinity of Madras, and rejoined the office at Ootacamund so late as the 1st of August.

Leaving the instruments and tents in a casemate in Fort St. George, he proceeded with the records and office to Ootacamund (Ontikalmanda), having first collected all the information he could concerning a tide-gauge and the practicability of connecting the series of triangulation with the Astronomical Observatory at Madras.

The principal work, completed during this field season, consisted of one heptagon, two hexagons, and a double polygon; there were 29 triangles in the four figures, extending the series a direct distance of 138 miles from north to south.

On searching for the south-end of the Madras (St. Thomas's) base-line, measured in

VIII- .
1802 by the Trigonometrical Survey under Major Lambton, it was found that all the stones excepting three had been carried off for the purpose of building a temple in the adjoining village. The fact was brought to the notice of the Madras Collector, and a full enquiry held, but with no satisfactory result. During the recess season Captain Branfill also visited Bangalore, and having after much search discovered the ends of the old Bangalore base, measured there in 1804, he took steps for their future preservation.

The principal computations were finished early in October, and the whole party left for Madras, resuming work there on the 1st of November. This month was stormy and rainy, and was spent in organising the field parties, repairing instruments, and in completing the secondary computations and the charts.

The entire party took the field on the 5th of December and was distributed as

Seauen 18se6es. Pregonnel.
Captain B. R. Branfill, Bengal Cavalry, 1st Asst. Mr. F. Ryall, Sub-Assistant 1st Class. " J. W. Mitchell, " 2nd " follows:-Mr. Ryall to take up the approximate series near the Pulicat (Paraverkádu) lake, to select one or two stations on the east flank, clear the rays, and arrange for building the necessary towers. Captain Branfill himself, accompanied by Mr. O'Neill and a native recorder Gangadram Mudhli, proceeded to Nellore to fix that place and resume the principal triangulation in the neighbourhood. After recording the azimuth observed at Kistama H.S. in December and assisting for a few weeks in the observatory and office, until the native recorder had become efficient in his duties, Mr. O'Neill was sent to assist Mr. Ryall in the approximate series by superintending the tower-building.

During February the Jonangipálĕm tower fell, but was rebuilt in time to obviate more than a few days' delay. In March and April the progress of the work was very seriously delayed by the cloudy weather which is so prevalent along this coast, and from the haziness of the atmosphere. Another cause of delay was the deficiency of positive or excess of negative refraction, rendering the rays which, though perhaps grazing, had been quite practicable in January quite out of the question in April, so that the Rěttambedu and Chěmbedu pillars had to be raised from 8 to 12 feet higher, and the signals raised still more on scaffolds erected for the purpose at certain other stations.

Observations were completed at Rĕttambedu and Chěmbedu by April and the rest of the season was employed in carrying on the triangulation to Madras and connecting it with the Madras Observatory. As, however, this triangulation now appertains to the Madras Longitudinal Series no further reference to it is needed here.

Now that the coast triangulation had been completed, the only work remaining on the Series under review, was to connect that portion of it which lay on the meridian of Madras with the Jubbulpore Meridional Series. The latter was commenced in the field season of 1864-65 under the direction of Mr. Shelverton, and by April 1866 had been carried as far south as the parallel of $20^{\circ} 30^{\prime}$. In 1866-67 the principal triangulation was further extended by the same officer to the parallel of $18^{\circ} 35^{\prime}$, and all the remaining stations selected in advance.

The party took the field in November, when Mr. Hickie was despatched to take

Season 1866-67.

Prrbonnel.

G. Shelverton, Esq., Assistant Burveyor.

Mr. M. C. Hickie, Civil Assistant, 4th Grade.
" F. Bell, Sub-Assistant,
, L. J. Pocock, Sub-Assistant, 3rd "
" E. P. Wrixon, Probationary Sub-Assistant. up the approximate series which had reached the parallel of 20°. He had during the previous field season reconnoitered the country between the parallels of 19° and 20°, and was thus able soon after reaching his ground to select finally the stations of the Ankora and Burgpaili polygons, both of which appertain to the Jubbulpore Meridional Series. He then suffered from a severe attack of malarious fever, which compelled him to seek medical aid at the civil station of Seroncha. After his recovery he selected the Katájpur-Bolikŏnda double polyson of the Bider Longitudinal Series, and the two quadrilaterals and the pentagon which belong to the Madras Meridional. He closed on the northernmost side of the latter, on the stations of Mániam and Dhúlipalla. The approximate series was thus completed, having been extended in this field season a direct distance of 245 miles.

On commencing operations in the following year a gap of about $2^{\circ} 10^{\prime}$, between the

Season 1867-68. Personnel.
G. Shelverton, Esq., Assistant Surveyor.

Mr. M. C. Hickie, Civil Assistant, 4 th Grade.
" F. Bell, Sub-Assistant, lst "
" E. P. Wrixon, Probationary Sub-Asst.
" A. C. Low, " \quad " parallels of $16^{\circ} 25^{\prime}$ and $18^{\circ} 35^{\prime}$, still remained to be finished, to connect the northern portion of this chain of triangles, which emanates from a side near Jubbulpore of the Calcutta Longitudinal Series, with the southern portion between Guntúr and Madras. As it was not deemed safe to march through the unhealthy forest tracts between the Nerbudda (Narbadda) and Godávari rivers earlier than December, the party did not take the field till late. On the march down from Jubbulpore the kahárs or carriers engaged for the 36 -inch theodolite deserted in a body at Nágpur, and a delay of ten days ensued : after crossing the Godávari, and entering the Hyderabad (Haidarabad) States, Mr. Shelverton was always supplied with as many carriers as he wanted by the officials of His Highness the Nizam. By the middle of March the Katájpur-Bolikŏnda double polygon of the Bider Longitudinal Series had been completed, and the triangulation of the Madras Meridional Series was then commenced. Many difficulties were caused by the great drought from which the country was suffuring. The numerous tanks, upon which the inhalitants principally rely for the irrigation of their crops during the cold months, were in nearly all cases perfectly dry. The cultivation was restricted at each village to a tield or two, watered from rude gaping wells nearly as wide as they are deep. At Anantagiri H.S., a hillock composed entirely of hard sandstone, there is a fort with an inner and outer wall, and water is to be found throughout nearly the whole year in the clefts and hollows of the rocks. At the foot of the hill there is a well with the inscription in the Tilingi character, stating that it was sunk in the year 1540 of the Hindu era of Salivahana (about 268 years ago) by a Chhatri Raja, and further that the sun was eclipsed that year. Between the stations of Anantagiri and Niálamari there is a strip of British territory containing about 80 villages. A metalled road runsthrough it from Masulipatam on the sea coast to Hyderabad.

The forts and fortifications to be met with in the portion of the Hyderabad territory, through which this series of triangulation passes, are attributed by the inhabitants to the Tilingána kings, who ruled the country prior to its conquest by the Muhammadans, and who
have left behind them traces of a high state of civilization. The present rulers have done nothing to improve the country. Their chief towns are simply a large collection of rude huts, but the people are contented with the Government.

The old Tilingána capital, Warangal, is full of interesting remains. The temples sacred to Maháden, built of massive stone with exquisitely carved interiors, are common enough in the country. His attendant bulls, some of them of life size, are cut with all their trappings out of single blocks of stone. Hanumkŏnda, a city that has sprung up outside the ruins of Warangal, contains a temple called the Hazár Kliamb, so named from the thousand pillars that support it; this temple is also dedicated to Mahádeo, who is the principal divinity worshipped. The banks of the river Kistna were very little cultivated where the triangulation crossed over; slate crops up through the soil rendering it unfit for the plough. On the left bank of the river, skirting this tract of slate, there are some remarkable ruins, and numerous cromlechs.

On the 8th of April 1868, the party entered the Kistna district of the Madras Presidency, crossing the river Kistna at the Kollur ford, where the bottom is shii g'y, and the water at this time of the year only knee-deep. At Miádarsál H.S., facing the delta of the Kistna river, Mr. Shelverton was delayed for the first time during the season by bad signals. During his stay here, a high wind prevailed from the south-west heavily laden with moisture. The northern face of the Miádarsál hill is very precipitous, while the southern face is fortified with a stone wall. From Miádarsál H.S. the party marched to Govindapuram where they encamped, and thence to Sárangapalle H.S. which is situated on a low plateau skirting the river Kistna. The inhabitants of our villages near the Hyderabad frontier were as a rule very surly, and presented a marked contrast to the rest of the people in the Kistna district, who were always willing to help the surveyors in every way. Mániam H.S., one of the stations of the closing side was next visited. There were some iron works at Gŏndlapalle, the nearest village, the ore being obtained in the neighbourhood. The furnace, which was shaped like a chimney, and perforated at intervals, was charged with alternate layers of wood, charcoal, and ore, till it was nearly full; the lowermost layer of charcoal was then ignited, and the furnace closed up for 15 hours. The result was a lump of metal weighing about twenty seers, and valued at two rupees. From Mániam the party proceeded to Kachalboru, the central station of the last figure. Here the natives of the establishment suffered to an alarming extent from an affection of the kidneys, accompanied by pains in the small of the back, and temporary stricture of the neck of the bladder, cansed apparently by drinking the water of the village well, which must have held some caustic alkali in solution. The panic was indescribable, as hardly a man escaped. Voruvakallu H.S. was situated on the top of an almost perpendicular rock, and in order to take the instrument up to it, a strong rope ladder, with stout wooden rungs, was laid in zigzags, and well secured along the face of the hill. The season's work terminated at Dhúlipalla on the 1st May 1868. At both the stations of the closing side the upper mark-stones were found in position, and the pillars shewed no signs of having been tampered with. After closing operations, the party marched to recess at Waltair (Váltëru), in the Madras Presidency, reaching it on the 25th of May 1868. The route adopted was by Bězváda, Ellore (Ellúru), and Rajahmundry.

On the completion of the Simultaneous Reduction of the Southern Trigon it was found that the errors which had actually been dispersed over the Madras Meridional Series between the origin Kándágatla-Adáligat and the terminus Nagari-Chĕmbedu were as follows :-

In Logarithm of the latter side $=+0 \cdot 000,0018,1$ or 0.26 inches per mile.
,"Azimuth , "... ... = - I"•723
, Latitude of Nagari = - 0.044
,"Longitude , = + 0 .05ı
The errors dispersed over the remaining portion of the Coast Series between the origin Sánjib-Dhár and the terminus Dhúlipalla-Ádamsáb were as follows:-

In Logarithm of the latter side $=-0 \cdot 000,0009,2$ or $0 \cdot 13$ inches per mile.
, Azimuth ". $=+0^{\prime \prime} \cdot 624$
, Latitude of Dhúlipalla $=$ +०.038
,, Longitude $=+0 \cdot 002$

Secondary Triangulation.

A large amount of secondary triangulation was executed by the party employed on the Madras Meridional and Coast Series, for the purposes of fixing numerous points on the actual line of coast, and of laying down the courses of the Godávari and Kistna rivers. In 1861 Mr . Howard was employed in conducting a secondary series immediately along the sea coast in the neighbourhood of Vizagapatam. For a considerable distance he had hills and clear ground, and was able to proceed with great rapidity, but on approach. ing Cocanada (Kákináda) his progress was much retarded by having to clear every ray through very valuable ground, abounding in mango topes and palmyra trees. His triangles extended over a distance of 100 miles, defining the coast line well, and fixing the positions of the light-houses at Cocanada and Coringa (Korrangi), points of nautical importance. In the same year Mr. Ellison carried a secondary chain westrard from the principal series to fix the positions of Rajahmundry and Dowlaishweram (Dhavalěsvaram). In the field season of 1862-63 the Madras Coast Party was employed on the measurement of the Vizagapatam Baseline, and no triangulation was carried out, but in the following year a considerable amount of secondary work was executed for the purpose of fixing the geographical position of Masulipatam, the light-houses and other points on the coast. Mr. Clarkson selected and observed the first six triangles of the Masulipatam and Point Devi Minor Series, starting from the sides Bèzváda-Anantavaram-Gorantla, and having to trace and clear most of the rays: he was then succeeded in this work by Mr. Ryall, who in the course of the season, selected all the remaining stations of the series, forming 25 triangles, and extending 45 miles; the connection was made with Masulipatam and the Point Devi Light-house, though the delta of the Kistna is a very difficult country for triangulation, being overgrown with jungle and intersected
by water-courses and swamps in a deep alluvial soil. This series was completed in 1865-66 by Mr. Mitchell, the main portion of the party being employed on the Madras Longitudinal Series. In the same field season, the town of Nellore and the light-house of Pulicat were fixed by Mr. O'Neill; and in 1867-68 numerous points were determined by Mr. Shelverton near the meridian of 80° between the Godávari and Kistna rivers.

Prepared for Press, September 1885.
S. C. BURRARD.

Passed through Press, March 1887. $\}$

MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.

2 -2.
MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS-(Continmed).

MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.

principal triangulation. ndmerical list of stations-(Continuod).

MADRAS MERIDIONAL AND COAST SERIES.

DESCRIPTION OF PRINCIPAL STATIONS.

The Principal Stations of this Series as well as six others of the Bider and Madras Longitudinal Series, which are common to this Series, are generally situated on hills or rising ground. With certain exceptions noted below, each consists of a solid, circular and isolated pillar of masonry about $3 \frac{1}{3}$ feet in diameter and varying from 1 to 14 feet in height. In the centre and upper surface of the pillar a mark (circle and dot) engraved on a stone is imbedded in the normal of one or more similar marks inserted within the pillar, the lowermost in many instances being cut on the rock in situ. Around the pillar and level with its upper surface, a solid platform of stones, of stones and earth, or of sun-dried bricks, 14 to 17 feet square, has been built for the accommodation of the observatory tent. The exceptions are the following:-Stations numbered XLIV, LII, as well as XXXV of the Madras Longitudinal Series : the first and third of these consist of high perforated pillars of masonry, surrounded by towers of sun-dried bricks for the observatory tent to rest on, both the central pillar and tower having an aperture at the base for access to the ground level mark: and the second is simply denoted by a circle and dot cut on a large mass of a rock.

A few stations at which observations were taken subsequent to the year 1867, have their upper marks protected by small pillars of masonry in the form of a frustum of a pyramid about 28 inches square at base and 20 inches at top and $3 \frac{1}{2}$ feet in height. These protecting pillars carry sufficiently accurate marks on their upper surfaces for Topographical and Revenue Survey purposes, as shewn at page 74 of Volume II of the Account of the Operations \&c.

The following descriptions have been compiled from those given by the officers who executed the Series, supplemented in the majority of cases, as regards adjacent villages and places, from the Madras Revenue Survey Maps (scale 1 Inch $=1$ Mile) of the couutry traversed, and corrected, so far as the local sub-divisions in which the several stations are situated, from the Annual Returus furnished by the district officers to whose charge the stations are committed.

The orthography is based on the official lists published under the orders of the Government of India, except that the long $e ́$ is unaccented as in all previous volumes of this series, but the short e is shewn thus, \check{e}; the same remarks apply to o. Final vowels and those in well-known terminals are unaccented. When the popular spelling of a name has been accepted by Government its correct orthography is given in parenthesis where the name occurs for the first time.
XII. (Of the Bider Longitudinal Series). Kándágatla Hill Station, lat. $17^{\circ} 18^{\prime}$, long. $79^{\circ} 40^{\prime}$ observed at in 1868-is situated on a very conspicuous hill lying about $1 \frac{3}{4}$ miles N.N.W. of the village of Kándágatla. It is built on the site of an old station, probably Colonel Lambton's "Kundagutt." The station is in the lands of the village of Kándágatla, taluk Nalgŏnda, Nizám's territories.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one imbedded in the upper surface of the pillar and the other 2.0 feet below it. The azimuths and distances of the following villages are :-Singavaram $245^{\circ} 44^{\prime}$, miles 2.34; and Komalo $136^{\circ} 9^{\prime}$, miles $2 \cdot 8$.
XV. (Of the Bider Longitudinal Series). Adáligat Hill Station (also called Idáligattu), lat. $\mathbf{1 7}^{\circ} 22^{\prime}$, long. $79^{\circ} 58^{\prime}$-observed at in 1868 -is on a hill lying about 3 miles N.E. of the village of Súbler. The station occupies the site of an old platform supposed to be a secondary station of the old Hyderabad (Haidarabad) Topographical Survey. It is in the lands of the village of Abiápálěm, taluk Súbler, Nizám's territories.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 4 feet above it on a stone imbedded flush with the upper surface of the pillar. The azimuths and distances of the following villages are :-Abiápalěm $144^{\circ} 8^{\prime}$, miles 1.32 ; aud Mamudapuram $34^{\circ} 3^{\prime}$, miles 1.30 .
I. Anantagiri Hill Station, lat. $17^{\circ} 3^{\prime}$, long. $80^{\circ} 2^{\prime}$-observed at in 1868 -is situated on a sandstone hill which rises over the village of Anantagiri : the summit of the hill is fortified with an inner and outer wall. The station is about 30 feet N. of Colonel Lambton's station of "Anantageeree" and lies about 4 miles N.E. by

E: of Kumárabanda on the high road from Hyderabad to Masulipatam (Machilipatnam). It is in the lands of the village of Anantagiri, taluk Nialakŏndapalle, Nizám's territories.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones, one imbedded flush with the upper surface of the pillar and the other 2.75 feet below it. The azimuths and distances of the circumjacent villages are:-Aminabada $112^{\circ} 35^{\prime}$, miles $1 \cdot 42$; Venkatapuram $51^{\circ} 50^{\prime}$, miles $2 \cdot 24$; Anantagiri $97^{\circ} 5^{\prime}$, mile 0.31 ; and Khodandu $24^{\circ} 49^{\prime}$, miles 4.6.
II. Niálamari Hill Station, lat. $17^{\circ} 2^{\prime}$, long. $79^{\circ} 46^{\prime}$-observed at in 1868 -is on a hill about 7 miles W. of the village of Bírakhodagúdëm on the high road from Hyderabad to Masulipatam. It is on the site of an old station, probably Colonel Lambton's "Nealamurree." It is in the lands of the village of Malkapuram, taluk Nalgŏnda, Nizám's territories.

The station consists of a platform enclosing a solid, 'circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2 feet above it on a stone imbedded flush with the upper surface of the pillar. The azimuths and distances of the circumjacent villages are:-Niálamari $251^{\circ} 57^{\prime}$, miles $2 \cdot 45$; Chidalla $270^{\circ} 34^{\prime}$, miles 3.57 ; Malkapuram $277^{\circ} 1^{\prime}$, miles $1 \cdot 97$; and Suráyapet $136^{\circ} 25^{\prime}$, miles $9 \cdot 8$.
III. Miádarsál Hill Station, lat. $16^{\circ} 42^{\prime}$, long. $80^{\circ} 6^{\prime}$-observed at in 1868 -is on about the highest part of a very conspicuous range of hills on the right bank of the Kistna (Krishna) river, and $9 \frac{1}{2}$ miles S. by W. of the large village of Jaggayapet. The summit of the hill is fortified with a dry stone wall. The station is on the site of an old platform supposed to be of some former survey. It is in the lands of the village of Pulichinta, taluk Sattěnapalle, district Kistna.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 14 inches above it on a stone imbedded flush with the upper surface of the pillar. The azimuths and distances of the circumjacent villages are:-Kollúr (No. 1) $83^{\circ} 41^{\prime}$, miles $2 \cdot 24$; Kollúr (No. 2) $98^{\circ} 28^{\prime}$, miles $2 \cdot 57$; Pulichinta $152^{\circ} 56^{\prime}$, miles $2 \cdot 15$; Vêlatúr $105^{\circ} 58^{\prime}$, miles $2 \cdot 83$; and Udalúr $74^{\circ} 15^{\prime}$, miles $7 \cdot 2$.
IV. Sárangapalle Hill Station, lat. $16^{\circ} 41^{\prime}$, long. $79^{\circ} 48^{\prime}$-observed at in 1868 -is situated on a low flattopped hill lying about 2 miles S . of the right bank of the Kistna river, and 7 miles N.E. by N. of Dáchepalle, a village a little S. of the high road from Hyderabad to Nellore (Nëllúr). The station is about $\frac{1}{2}$ a mile N. of an old platform supposed to be Colonel Lambton's "Sarangapully." It is in the lands of the village of Sárangapalle, taluk Palnád, district Kıstna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one on a stone imbedded flush with the upper surface of the pillar and the other about 5 feet below it. The directions and distances of the circumjaçent villages are :-Sárangapalle S.E. by S., miles 21 $\frac{1}{2}$; Madinapád S. by W., miles $3 \frac{3}{4}$; Bhattupálěm W. by S., miles 3; and Tangudda E.S.E., miles 5.
V. Kachalboru Hill Station, lat. $16^{\circ} 31^{\prime}$, long. $80^{\circ} 1^{\prime}$-observed at in 1868 -is on a hill about $6 \frac{1}{2}$ miles E.N.E. of the village of Pidugurala on the high road from Hyderabad to Nellore, and $2 \frac{1}{2}$ miles N.W. of Bellamkŏnda. A peak of the same range somewhat higher than the station is about $\frac{1}{4}$ of a mile to the N.E. The station is in the lands of the village of Macháyapalĕm, taluk Sattĕnapalle, district Kistna.

The station consists of a platform of stones and earth euclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2 feet above it on a stone imbedded flush with the upper surface of the pillar. The azimuths, directions and distances of the circumjacent villages are :-Macháyapalěm $303^{\circ} 49^{\prime}$, miles $1 \cdot 38$; Nandirazupálěm $334^{\circ} 54^{\prime}$, miles 2.06 ; Nagirèddipalěm $344^{\circ} 42^{\prime}$, miles 2.86 ; Kananki W. by S., miles $3 \frac{1}{\frac{1}{2}}$; and Papáyapálĕm N.N.W., miles $2 \frac{1}{2}$.
VI. Voruvakallu Station, lat. $16^{\circ} 36^{\prime}$, long. $80^{\circ} 12^{\prime}$-observed at in 1868 -is situated on the highest part of a remarkable rock overlooking the village of Voruvakallu which lies at its northern foot. It is about $3 \frac{1}{2}$ miles W. of the village of Kasala on the right bank of the Kistna river. The station is in the lands of the village of Voruvakallu, taluk Sattěnapalle, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other about 1 foot above it on a stone imbedded flush with the upper surface of the pillar. The azimuths, directions and distances of the circumjacent villages are :-Rudravaram $175^{\circ} 38^{\prime}$, miles 0.51 ; Voruvakallu $143^{\circ} 47^{\prime}$, mile $0 \cdot 04$; Kanúr $249^{\circ} 42^{\prime}$, miles $1 \cdot 81$; Grandisiri S.S.W., miles $1 \frac{1}{2}$; and Ambatipúdi N. by E., miles 2.
VII. Dhúlipalla Station, lat. $16^{\circ} 26^{\prime}$, long. $80^{\circ} 8^{\prime}$-observed at in 1863 and 1868 -is on high ground in the midst of fields and lies about $4 \frac{3}{4}$ miles N.W. by W. of the taluk town of Sattennapalle on the high road from Hyderabad to Guntúr, and the same distance N.N.W. of the large village of Madala. It is in the lands of the village of Dhúlipalla, taluk Sattěnapalle, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are three mark-stones, one imbedded in the soil and two others at 3 and 5 feet above it, the last being flush with the upper surface of the pillar. When visited in 1868, the apper mark-stone was found undisturbed. The directions and distances of the circumjacent villages are :-Bhrugubanda N. by E., miles $1 \frac{1}{3}$; Dhúlipalla S. by W., miles $1 \frac{1}{4}$; Makkapád N.W., miles 2 $\frac{1}{4}$; Rěddigúděm W. by N., miles $2 \frac{1}{2}$; and Töndapi S.W. by S., miles $3 \frac{1}{3}$.
VIII. Mániam Hill Station, lat. $16^{\circ} 22^{\prime}$, long. $79^{\circ} 55^{\prime}$-observed at in 1863 and 1868 -is on a range of rocky hills covered with brushwood and lies about 6 miles N.W. by N. of the large village of Vipparla
and 5 miles S.S.W. of Pĕddanevalipuri both on the high road from Nellore to Hyderabad. It is in the lands of the village of Gattapalle, taluk Sattĕnapalle, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in sitl and the other 1 foot above it on a stone imbedded fush with the upper surface of the pillar. When visited in 1868, the upper mark-stone was found undisturbed. The directions and distances of the circumjacent Villages are :-Narasingapád N.E. by E., miles $2 \frac{1}{\frac{1}{2}}$; Gattapalle N. by W., miles $2 \frac{1}{2}$; Challaguntla E. by S., miles $5 \frac{1}{\frac{1}{2}}$; Chijërla S.S.W., miles $4 \frac{1}{2}$; and Nekarikallu E. by S., miles 4.
IX. Kotapa Hill Station, lat. $16^{\circ} 9^{\prime}$, long. $80^{\circ} 5^{\prime}$-observed at in 1863 -is from 20 to 30 feet east of a small shrine consisting of a heap of stones which occupies the highest part of a hill lying $5 \frac{8}{4}$ miles S . by W. of the taluk town of Narsaraŏpet on the high road from Hyderabad to Parachúr, and $6 \frac{1}{2}$ miles N.W. of the town of Rajapet on the high road from Vinukŏnda to Guntúr. It is identical with Colonel Lambton's "Yellamundah," the circle and dot mark of which was found engraved on the rock in situ and was adopted as the lower mark of the present station. It is in the lands of the village of Ellamanda, taluk Narsaraŏpet, district Kistna.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 7 inches above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Ěllamanda N.E. by N., mile l; Pêtlurivaripálěm W.N.W., miles $2 \frac{1}{1}$; Kŏndakávúr S.W. by S., miles 2; Edavalli S.S.E., miles $4 \frac{1}{\text {; }}$; and Tangedupalle S.W. by W., miles 3 ? ${ }^{3}$.
X. Ádamsáb Hill Station, lat. $16^{\circ} 15^{\prime}$, long. $80^{\circ} 20^{\prime}$-observed at in 1862 and 1863 -is on the site of an old Topographical Survey Station on the highest peak of a group of hills which lies about $10 \frac{1}{2}$ miles W. by S. of the town of Guntúr and $2 \frac{3}{4}$ miles S.E. by S. of the village of Phirangipuram on the high road from Narsaraopet to Guntúr. The hill is well known from a shrine close to the station, built over what is considered by the natives to be a print of Adam's foot in the solid rock : there are also two small stone buildings close to the summit built evidently for pilgrims. On another part of the hills and above the village of Köndavid are the ruins of a large fort. The summit of the hill consists of an enormous mass of nearly bare granite rock which rises perpendicularly from the S. and W. sides of the hill. The station is in the lands of the village of Kŏndavid, taluk Narsaraŏpet, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in sita and the other 1 foot above it on a stone imbedded flush with the upper surface of the pillar. When visited in 1863, the station mark was found intact. The directions and distances of the circumjacent villages are :-Chávadavaram E. by S., miles $3 \frac{1}{2}$; Ěnamadala S.E. by E., miles $3 \frac{1}{4}$; Kðndavíd W.N.W., miles $1 \frac{1}{2}$; and Hávujuganisěm N.W. by W., miles $1 \frac{1}{4}$.
XI. Yërrakŏnda Hill Station, lat. $16^{\circ} 6^{\prime}$, long. $79^{\circ} 45^{\prime}$-observed at in 1862 -is situated on a hill lying about 4 miles N.W. by N. of the taluk town Vinukŏnda on the high road from Kurnool (Karnúl) to Guntúr, and $3 \frac{1}{2}$ miles W.S.W. of the large village of Kŏndramutla. It is in the lands of the village of Vĕnkupalě̆m, taluk Vinukŏnda, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 1 foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Tallapalym E.S.E., miles $1 \frac{1}{3}$; Vénkupalem S.S.E., miles $1 \frac{3}{4}$; Pěrúrpád W., miles $3 \frac{1}{4}$; Vělatúr W.N.W., miles $3 \frac{3}{4}$; and Sarikðndapálěm N.W. by N., miles $1 \frac{18}{4}$.
XII. Pálapáru Station, lat. $16^{\circ} 3^{\prime}$, long. $80^{\circ} 19^{\prime}$-observed at in 1864 -is situated about $5 \frac{3}{4}$ miles N. of the large village of Parachúr and $3 \frac{3}{4}$ miles W. by S. of Pëddanandipád both on the high road from Ongole (Vangol) to Guntúr. It is in the lands of the village of Palaparru, taluk Bápatla, district Kistna.

The station consists of a platform of earth enclosing a solid, circular and isolated pillar of masonry in which are two markstones, one imbedded in the soil and the other 2 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Pálapáru N.E. by E., mile $\frac{3}{4}$; Anavaram N. by W., miles 21 ; Uppalapád N.W. by W., miles 3; Édupád W.S.W., miles $1 \frac{3}{3}$; and Inagallu S.E., miles $1 \frac{1}{2}$.
XIII. Babbĕpalle Hill Station, lat. $15^{\circ} 57^{\prime}$, long. $80^{\circ} 10^{\prime}$-observed at in 1863 -is situated on the summit of a hill $\frac{3}{4}$ of a mile W.S.W. of the village of Babbĕpalle on the high road from Ongole to Guntúr, and $2 \frac{3}{4}$ miles S.E. by S. of the large village of Márutúr. It is in the lands of the village of Babběpalle, taluk Narsaraŏpet, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one on a stone imbedded flush with the upper surface of the pillar and the other 1 foot below it ; the latter mark of a circle and a dot was found in sitl covered over by a pile of stones. The directions and distances of the circumjacent villages are:-Dronádula S.S.E., miles $2 \frac{1}{\frac{1}{2}}$; Punúr E. by S., miles $2 \frac{1}{\frac{1}{2}}$; Jŏnnatali W. by S., miles 2; and Darisa W. by S., miles $3 \frac{1}{2}$
XIV. Dánapa Hill Station, lat. $15^{\circ} 56^{\prime}$, long. $79^{\circ} 59^{\prime}$-observed at in 1862 and 1863 -is situated on a range of hills lying nearly N. and S. and about $1 \frac{1}{2}$ miles \mathbf{W}. of the high road from Madras to Hyderabad. The station is not on the highest peak of the hill, that being taken up by a place of worship. It is in the lands of the village of Gŏrěpád, taluk Narsaraŏpet, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are tro marks, one engraved on the rock in situ and the other 1 foot above it on a stone imbedded flush with the upper sur-
face of the pillar. When visited in 1863, the station was found intact. The directions and distances of the circumjacent villages are:-Kappěrapád E., miles $1 \frac{3}{4}$; Vaidana N.E., miles $2 \frac{3}{4}$; Kukutlapalle N., miles 2; Gŏrěpad W. by S., miles $2 \frac{1}{2}$; and the place of worship on the summit of the hill is N . by W . at a distance of about 150 to 200 yards.
XV. Medaramětla Hill Station, lat. $15^{\circ} 44^{\prime}$, long. $80^{\circ} 3^{\prime}$-observed at in 1864 -is on a low hill, near large boulders irregularly piled up, about $\frac{1}{2}$ mile W. of the high road from Madras to Hyderabad, and 6 miles S.S.E. of the town of Addanki on the high road. It is in the lands of the village of Medaramettla, taluk Ongole, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one on a stone imbedded flush with the upper surface of the pillar and the other 1 foot below it. The directions and distances of the circumjacent villages are :-Tamavaram W.S.W., miles $2 \frac{1}{2}$; Anamanamúr W. by N., miles $2 \frac{1}{\frac{2}{2}}$; Medaramětla E.S.E., miles $1 \frac{1}{2}$; and Timanapálěm S.S.E., miles 3.
XVI. Faranguldinne Station, lat. $15^{\circ} 41^{\prime}$, long. $80^{\circ} 15^{\prime}$-observed at in 1864 -is situated on the western side of a creek or inlet of the sea, on the site of an old town said to have been a French colony or trading port, about 4 miles from the sea coast. Excepting at very low spring tides there is uninterrupted communication with the sea. The station is about $\frac{1}{4}$ of a mile E. of the high road from Ongole to Bápatla, and is in the lands of the village of Pĕddaganjám, taluk Bápatla, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones, one in the foundation and the other 2 feet above it imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Mattigunta N.W. by W., miles $2 \frac{\text { gut }}{}$; Nitiápálém S.W. by W., miles 2; Pěddaganjám S.E. by S., miles $2 \frac{3}{4}$; Razuvaripalěm E.S.E., miles $1 \frac{1}{2}$; and Chinnaganjám E.N.E., miles 24 .
XVII. Pěddakaltippa Hill Station, lat. $15^{\circ} 50^{\prime}$, long. $79^{\circ} 46^{\circ}$-observed at in 1864 -is situated on the top of a rocky hillock lying about $4 \frac{3}{4}$ miles N.E. by N. of the town of Darsi, and $1 \frac{1}{2}$ miles W.N.W. of the village of Kalampilli. It is in the lands of the village of Timáyapálĕm, division Darsi, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{y}}$ feet in diameter in which are two marks, one engraved on the rock in situ and the other 1 foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Basavapuram S. by E., miles 2 ; Timáyapalem W., miles $3 \frac{1}{2}$; Polavaram W. by N., miles $3 \frac{1}{4}$; and Devavaram N.W. by N., miles 2.
XVIII. Ongole Hill Station, lat. $15^{\circ} 30^{\prime}$, long. $80^{\circ} 5^{\prime}$-observed at in 1864 -is situated on a low hill about 200 feet in height, lying immediately W.S.W. of the taluk town of Ongole, and $\frac{8}{4}$ of a mile W. of the road from Nellore to Ongole. It is in the lands of the town of Ongole, taluk Ongole, district Nellore.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{3}{3}}$ feet in diameter in which are two marks, one engraved on the rock in sitd and the other 2 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Anavaripud E.S.E., mile 1; Perana Mitta N.W., miles ${ }_{3 \frac{1}{2}}$; Mámidipálém S.S.W., mile $\frac{1}{2}$; and Guddalaguntapálěm N.W., mile $\frac{1}{\frac{1}{3}}$.
XIX. Chemakurti Hill Station, lat. $15^{\circ} 37^{\prime}$, long. $79^{\circ} 52^{\prime}$-observed at in 1864 -is on a high hill $3 \frac{1}{8}$ miles N.W. of the village of Chemakurti on the road from Ongole to Cumbum (Kambham), and about 12 miles from the former town. It is in the lands of the village of Chemakurti, talukOngole, district Nellore.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\mathrm{f}}$ feet in diameter in which are two marks, one engraved on a block of disrupted rock and the other 1 foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Puligornda S.S.W., miles 5 ; Padamatti Niyanipad E. by S., miles $3 \frac{3}{4}$; and Køndúrivari E.S.E., miles 4.
XX. Netivaripálěm Station, lat. $15^{\circ} 23^{\prime}$, long. $79^{\circ} 51^{\prime}$-observed at in 1864 -is situated on an open swell of ground, about $7 \frac{1}{2}$ miles N. of Pǒnnalúr on the road from Kanigiri to Kandukúr, and $3 \frac{3}{4}$ miles N.E. of Pachave on the Páler river. It is in the lands of the village of Netivaripálĕm, taluk Kandukúr, district Nellore.

The station consists of a platform of stoues and earth enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones, one in the foundation and the other 1 foot above it imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Netivaripalěm E., miles 14 ; Vardinenipalĕm W. by S., miles 31 ; Peddakandlagunta N. by W., miles $1 \frac{3}{4}$; Køndapi N.E. by E., miles 4; and Ilavara Bechiragh E. by S., miles $1 \frac{1}{2}$.
XXI. Puripád (also called Ogár Bĕllatippa) Station, lat. $15^{\circ} 14^{\prime}$, long. $80^{\circ} 1^{\prime}$-observed at in 1864is situated about 5 miles E.N.E. of the taluk town of Kandukúr and $\frac{1}{2}$ a mile S. of the road from Kandukúr to the sea coast. It is in the lands of the village of Pálakúr, taluk Kandukúr, district Nellore.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry 3 z feet in diameter in which are three mark-stones, one imbedded flush with the upper surface of the pillar and two others at $5 \cdot 9$ and $6 \cdot 9$ feet respectively below it. The directions and distances of the circumjacent villages are:-Vogúr S.W. by W., miles $1 \frac{3}{4}$; Pálakúr N.W., miles $2 \frac{3}{4}$; Kanumalla N.E. by E., miles $1 \frac{3}{4}$; Singaráyakǒnda E. by S., miles $3 \frac{1}{2}$; and Sanampúdi S.S.E., miles 2 .
XXII. Nishánkŏnda Hill Station, lat. $15^{\circ} 31^{\prime}$, long. $79^{\circ} 37^{\prime}$-observed at in 1864 -is situated on a peak of the Pǒdili hill; the higher peak of Bulímure on the same hill is about 200 or 300 yards N . of the station, but being inaccessible the station was not fixed on it. The station is $6 \frac{1}{2}$ miles S.S.W. of Pǒdili on the road from Cumbum to Ongole, and is on the site of an old Topographical Survey station of which the platform only was found. It is in the lands of the village of Pědda Arikatla, division Pödili, district Nellore.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one engraved on the rock in situ and the other 1 foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Yědavali S.W., miles $4 \frac{1}{4}$; Pědda Arikatla W., miles 3六; Chinna Arikatla N.W., miles 4; and Maripúdi E. by S., miles 5.
XXIII. Picherrla Fill Station, lat. $15^{\circ} 12^{\prime}$, long. $79^{\circ} 34^{\prime}$-observed at in 1864 -is on the higher and most southern point of a hill about $6 \frac{1}{4}$ miles S.W. by S. of Chĕrlapalle and $4 \frac{3}{4}$ miles W. of Pědda Irlapád. The station is on the site of Colonel Lambton's "Peecherlacondah," but no mark was found. It is in the lands of the village of Chintagumpalle, taluk Kanigiri, district Nellore.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one engraved on the rock in situ, corresponding as nearly as possible to the centre of the pile of storie of Colonel Lambton's station, and the other 1 foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Nasika Trigambákam W., miles $2 \frac{3}{4}$; Ballipalle N.W., miles $4 \frac{1}{2}$; and Pillapalle E., miles $3 \ddagger$.
XXIV. Kuchĕrla Hill Station, lat. $15^{\circ} 6^{\prime}$, long. $79^{\circ} 44^{\prime}$-observed at in 1864 -is on the S.E. end of the Chundi and Mallákŏnda hills and is 5 miles S . by E. of Chundi and 2 miles W. by N. of the large village of Lingasamudram. It is in the lands of the village of Lingasamudram, taluk Kandukúr, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one engraved on the rock in sitl and the other 2 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Zamgamréddipalem E. by N., miles $1 \frac{1}{2}$; Vakamallávaripálem S.E. by E., miles 2 ; Metrala S.E. by S., miles $2 \frac{1}{2}$; and Yěrraparěddipalle N. by E., miles $1 \frac{1}{2}$.
XXV. Darutippa (also called Mangalapápěmtippa) Station, lat. $15^{\circ} 1^{\prime}$, long. $79^{\circ} 58^{\prime}$-observed at in 1864 -is about $4 \frac{1}{4}$ miles S. by E. of the village of Gudlúr, and $6 \frac{1}{4}$ miles W.S.W. of Těttu on the road from Madras to Ongole. It is in the lands of the village of Chalamchěrla, taluk Kandukur, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\text { f feet }}$ in diameter in which are five mark-stones, one imbedded in the upper surface of the pillar and four others at $2,6,10$ and 12.56 feet respectively below it. At the time that the observations were taken the uppermost mark was tested by means of the four pickets fixed at the distance of 50 yards, N., S., E. and W., and was found to be deflected 1 inch to N . of the lowest mark. The observations are referred to the uppermost mark. The directions and distances of the circumjacent villages are:-Pyddavaram S.W. by S., miles $1 \frac{1}{2}$; Chalamchĕrla S.E., miles 3 ; Ammavaripalĕm W. by N., miles $1 \frac{1}{4}$; and Potlúr N.E. by N., miles 3.
XXVI. Kesavaram Station, lat. $14^{\circ} 55^{\prime}$, long. $79^{\circ} 52^{\prime}$-observed at in 1864 -is on a mound $4 \frac{1}{2}$ miles ${ }^{\prime}$ N.N.W. of Chinnakraka village on the road from Udayagiri to Kávali, and $3 \frac{1}{2}$ miles W. of Gattupalle. It is in the lands of the village of Kesavaram, taluk Kávali, district Nellore.

The station consists of a platform partly of wood and partly of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{3}{2}}$ feet in diameter at top in which are six mark-stones, one imbedded flush with the upper surface of the pillar and five others at $2 \cdot 2,4 \cdot 2,5 \cdot 31,7 \cdot 31$ and $9 \cdot 51$ feet respectively below it. The directions and distances of the circumjacent villages are :Kumáraǩ̌ndúr S.S.W., miles 4 $4 \frac{1}{2}$; Kakutúr S.W., miles $4 \frac{3}{4}$; Timasamudram W.S.W., miles 24 ; and Anavaram S.E. by S. miles 34.
XXVII. Chákalakŏnda (also called Aravikŏnda or Adivikŏnda) Hill Station, lat. $14^{\circ} 57^{\prime}$, long. 79° 33^{\prime}-observed at in 1864 -is on a small isolated hill lying $\frac{3}{4}$ mile \mathbf{S}. by W. of Chákalakǒnda (washermen's hill) village and 4 miles $S . W$. by S. of the large village of Garimanapènta. It is in the lands of the village of Chákalakŏnda, taluk Udayagiri, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one engraved on the rock in situ and the other 2 feet above it and level with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Kyttapet S.W. by W., miles 3 ; Kaniyempád W.N.W., miles $4 \frac{3}{4}$; Ganesapuram N. by W., miles $2 \frac{1}{4}$; and Bottinavaripalle E. by N., mile $\frac{3}{4}$.
XXVIII. Rajalli Hill Station, lat. $14^{\circ} 43^{\prime}$, long. $79^{\circ} 39^{\prime}$-observed at in 1864 -is on the site of a Topographical Survey station as denoted by a pile of stones in which no mark was found. The station is on a low hill lying $\frac{8}{4}$ of a mile S.E. of the village of Rájavol and $4 \frac{1}{2}$ miles N . of the hamlet of Nĕllúrpálĕm on the road from Nellore to Cuddapah. It is in the lands of the village of Rajavol, taluk Atmakúr, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one engraved on the rock in sitl (about the centre of the pile of stones) and the other 2.04 feet abore it and level with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Pamidipid S. by W., miles $2 \frac{1}{\frac{1}{2}}$; Dubagunta N.W., miles $3 \frac{3}{4}$; Chávatabhímavaram N.E. by N., miles $2 \frac{5}{4}$; and Punugod S.E. by S., miles $1 \frac{1}{2}$.
XXIX. Nishánbodu Hill Station, lat. $14^{\circ} 42^{\prime}$, long. $79^{\circ} 58^{\prime}$-observed at in 1864 -is on the top of a low range of hills on the boundary of the villages of Yellapod, Damavaram and Dagadarti. It is in the lands of the village of Yěllapod, taluk and district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $8 \frac{1}{3}$ feet in diameter, containing marks one of which is level with the upper surface of the pillar, but the number aud positions of the others are unknown. The directions and distances of the circumjacent villages are :-Dagadarti S. by W., miles 2t ; Yellapod W. by S., miles $1 \frac{1}{2}$; Kamuenipád N.W. by N., miles $1 \frac{1}{2}$; and Damavaram E. by N., miles $2 \frac{1}{2}$.
XXX. Yěrrakŏnda (also locally known as Gúdarikopu) Hill Station, lat. $14^{\circ} 43^{\prime}$, long. $79^{\circ} 18^{\prime}$-observed at in 1864 -is on a detached range of hills about 1500 feet high $5 \frac{1}{4}$ miles E. by N. of the junction of roads
from Udayagiri and Atmakúr to Cuddapah (Kadapa). The station is identical with Colonel Lambton's "Yerracondah," the circle and dot of which were found in the remains of the old platform. It is in the lands of the village of Singanapalle, taluk Udayagiri, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{3} \text { feet }}$ in diameter in which are two marks, one the old mark of Colonel Lambton's station and the other 2 feet above it on a stone embedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Singanapalle W . by S ., miles 24 ; Brahmanapalle N.N.W., miles $2 \frac{3}{4}$; Pegallapád N.E. by E., miles 4 ; and Chunchulúr S. by E., miles $5 \frac{1}{2}$.
XXXI. Kistama Hill Station, lat. $14^{\circ} 27^{\prime}$, long. $79^{\circ} 48^{\prime}$-observed at in April and December 1864-is on the top of Kistama hill. It is in the lands of the village of Prabhagiripatnam, taluk Atmakur, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{3}}$ feet in diameter in which are two marks, one engraved on the rock in sitl and the other $2 \cdot 6$ feet above it and level with the upper surface of the pillar. When visited in December 1864, the station was found in perfect preservation and no alteration was made in its construction. The directions and distances of the circumjacent villages are :-Prabhagiripatnam W. by N., mile $\frac{1}{\frac{1}{2}}$; Navuru W.N.W., miles $5 \frac{1}{2}$; Bhattulapalle N.W. by N., miles $5 \frac{1}{2}$; and Tatiparti N. by E., miles $4 \frac{1}{2}$.
XXXII. Pallakŏnda Hill Station, lat. $14^{\circ} 24^{\prime}$, long. $79^{\circ} 30^{\prime}$-observed at in April and December 1864-is $2 \frac{3}{4}$ miles S.W. by W. of the village of Pallakǒnda on one of a group of hills lying 7 miles E. of the main range of the Eastern Gháts. It is in the lands of the village of Pallakŏnda, taluk Rápur, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter and 2 feet high in which are two marks, one on a stone imbedded in the upper surface of the pillar and the other at an unknown distance below it. On the second visit the station was found in perfect order. The directions and distances of the circumjacent villages are:-Garimanapěnta S. by W., miles $1 \frac{3}{4}$; Tegachĕrla W. by S., miles $3 \frac{1}{4}$; and Kotúrpalle W. by N., miles $4 \frac{1}{2}$.
XXXIII. Vutukúr or Udkúr Hill Station, lat. $14^{\circ} 14^{\prime}$, long. $79^{\circ} 45^{\prime}$-observed at in 1865 -is on the summit of a small rocky hill 5 miles N.W. by N. of the large village of Saidápuram on the main road from the town of Rápur to Gudúr, and $2 \frac{1}{4}$ miles S . of the Pĕnner river. It is in the lands of the village of Vutukúr, taluk Rápur, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one engraved on the rock in sttu and the other 3 feet above it on a stone imbedded level with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Perrumallapad N.W., mile $\frac{3}{4}$; Turime̛rla N.E., miles $3 \frac{1}{4}$; Vutukúr E. by S., miles $2 \frac{1}{4}$; Jafalapuram S. by E., miles $1 \frac{13}{\frac{3}{4}}$; and Chaganam S.W.by S., miles $2 \frac{1}{2}$.
XXXIV. Bandalduru Station, lat. $14^{\circ} 18^{\prime}$, long. $79^{\circ} 59^{\prime}$-observed at in 1865 -is on a mound of earth, excavated from a tank on the high ground, about $2 \frac{1}{3}$ miles W.N.W. of the village of Sarvapalle, $4 \frac{1}{3}$ miles W.S.W. of Anakápalle and 2 miles S.S.E. of Věnkalachalam Chattram on the high road from Gudúr to Guntúr. It is in the lands of the village of Gudúr, taluk Gudúr, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two mark-stones, one in the foundation and the other 2 feet above it imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Tikkavarappan N.E. by E., miles $1 \frac{1}{8}$; Nayudipalĕm Khanerika S. by W., miles $1 \frac{1}{4}$; Vadapálém W.S.W., miles $1 \frac{1}{4}$; and Khaudrikapálém S.S.W., miles $1 \frac{3}{3}$.
XXXV. Pálchěrla Hill Station, lat. $14^{\circ} 10^{\prime}$, long. $79^{\circ} 31^{\prime}$-observed at in 1865 -is on the highest point of the hill at the \mathbf{S}. side of the \mathbf{E}. entrance of the Rapur ghát (pass). The hill is an offshoot of the Vollukŏnda range, and the station lies about 2 miles S. of the road from the pass to the town of Rapur and $4 \frac{3}{4}$ miles W.S.W. of the latter place. It is in the lands of the village of Rápur, taluk Rápur, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one on the rock in sita and the other 3 feet above it on a stone imbedded flush with the upper surface of the pillar. The lower mark which consists of two cross lines was found cut on the rock in situ. The directions and distances of the circumjacent villages are :-Panjili N.N.E., miles $3 \frac{1}{2}$; Devulapalle E.S.E., miles $3 \frac{1}{2}$; and Racharapenta S.E. by S., mile 1 .
XXXVI. Kayyúr Hill Station, lat. $14^{\circ} 1^{\prime}$, long. $79^{\circ} 42^{\prime}$ —observed at in 1865 -is on a small rocky hill $1 \frac{1}{4}$ miles S. by E. of the village of Kayyúr, 2 miles S.E. of the road from Chittoor (Chittúr) to Gudúr, and $6 \frac{1}{2}$ miles N.E. by E. of Vĕnkatagiri. It is in the lands of the village of Venugopalpuram, division Věnkatagiri, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter in which are two marks, one engraved on the rock in sita and the other $2 \cdot 67$ feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Bangarapet (on the high road) S.W. by W., miles 5 ; Pilem E.S.E., miles $1 \frac{3}{4}$; Tikkavaram S. by W., miles $1 \frac{1}{4}$; and Akkasamudram N.W. by W., miles $1 \frac{1}{2}$.
XXXVII. Gurramkŏnda Hill Station, lat. $14^{\circ} \mathrm{I}^{\prime}$, long. $79^{\circ} 53^{\prime}$ —observed at in 1865 -is on a low hill 5 miles W. of Vojili on the high road from Madras to Gudúr, and 10 miles from the latter town. It is in the lands of the village of Gurramkŏnda, division Vĕnkatagiri, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are four marks, one engraved on the rock in situ and three others on stones at 3 , $5 \frac{4}{4}$ and $7 \frac{1}{2}$ feet respectively above it, the uppermost being flush with the top of the pillar. The directions and distances of the circumjacent villages are:-Arimanupad W.N.W., miles 21; Gurramkönda W., mile 1; Sagutúr S.S.W., miles $1 \frac{1}{4}$; and Karjamedu, W. miles $1 \frac{1}{2}$.
XXXVIII. Gudali Hill Station, lat. $14^{\circ} 1^{\prime}$, long. $80^{\circ} 4^{\prime}$-observed at in 1865 -is on an isolated rocky hill lying about $\frac{1}{2}$ a mile from the left bank of the Swarnamukhi river and immediately N. of the village of Gudali : it is 1 mile S.W. of the high road from Dugarázpatnam, on the sea coast, to the town of Gudur, and $9 \frac{1}{2}$ miles W. by N. of Dugarázpatnam. This station is $110 \frac{1}{2}$ feet due W. of the centre of a platform of Colonel Lambton's secondary station of "Gooruloor" : no mark was found. It is in the lands of the village of Gudali, taluk Gudúr, district Nellore.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{3}}$ feet in diameter in which are two marks, one engraved on the rock in sitl and the other 6 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Kota N.E. by E., miles $2 \frac{1}{2}$; Kurrugornda W., miles 4; Kasipuram S.E., miles $1 \frac{3}{4}$; Razupalěm W. by N., mile $\frac{1}{2}$; and Tinnelapúdi E.S.E., miles $1 \frac{8}{4}$.
XXXIX. Áněpúdi Tower Station, lat. $13^{\circ} 48^{\prime}$, long. $80^{\circ} 2^{\prime}$-observed at in 1865 -is on a ridge in the midst of an extensive jungle, about 3 miles W. of the Pulicat (Paraverikád) lake and $3 \frac{1}{4}$ miles E. by N. of Akarapák village on the high road from Madras to Nellore. It is in the lands of the village of Áněpúdi, division Polúr, district Nellore.

The station consists of a tower enclosing a solid pillar of masonry, the upper portion of which is isolated and $3 \frac{1}{3}$ feet in diameter ; the pillar contains seven markstones at $2,4,6,8,10$ and 14 feet respectively above the lowermost one. The directions and distances of the circumjacent villages are :-Áب̣̌̌púdi N.E. by N., miles $1 \frac{3}{4}$; Kallúr E.S.E., miles $1 \frac{1}{2}$; Surapa S.S.W., mile 1; and Muchalagunta N.W. by N., miles $3 \frac{1}{4}$.
XL. Pillimedu or Pallimer Hill Station, lat. $13^{\circ} 51^{\prime}$, long. $79^{\circ} 45^{\prime}$-observed at in 1865 -is on the summit of a small rugged hill lying about a mile north from the left bank of the Swarnamukhi river, and 7 miles N. by E. of the town of Kálahasti. It is in the lands of the village of Pillimedu, zamindári Kálahasti, district North Arcot (Ārkád).

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry 3 f feet in diameter in which are two marks, one engraved in the rock in situ and the other 1.5 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Pillamvedu N.E. by N., mile $\frac{3}{4}$; Rallapalle E. by S., mile $\frac{3}{4}$; Malapalle S.W. by S., miles $1 \frac{3}{4}$; and Kasaram N.W. by N., miles $\frac{13}{4}$.
XLI. Kambákamdurgam Hill Station, lat. $13^{\circ} 34^{\prime}$, long. $79^{\circ} 54^{\prime}$-observed at in 1865 -is on the highest and most eastern point of the Pulicat hills, about 5 miles W.S.W. of the large village of Varadayapalaiyam. Colonel Lambton's station of "Combaucum"-indicated by a pile of stones, but in which there is no mark-lies 45 or 46 feet distant from the present station at an azimuth of 29°. It is in the lands of the village of Kambákam, taluk Tiruvallúr, district Chingleput (Chĕngalpat).

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{8}}$ feet in diameter in which are two marks, one engraved on the rock in sitl and the other 1.5 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Kambákam E. by N., miles 3; Nelvai N.E. by N., miles 5 ; Pandúr E.S.E., miles $4 \frac{1}{2}$; aud Padrikuppam S.E. by E., miles 6.
XLII. Jonangipálěm Tower Station, lat. $13^{\circ} 39^{\prime}$, long. $80^{\circ} 14^{\prime}$-observed at in 1865 -is on a low sand ridge, 150 yards from the E. margin of the Pulicat lake and about 300 yards S. by E. of the well-known masjid of Jonangipalěm. It is in the lands of the village of Rĕttamala, taluk Gudúr, district Nellore.

The station consists of a tower of sun-dried bricks enclosing a solid pillar of masonry 14 feet high, the upper portion of which is isolated and $3 \frac{3}{3}$ feet in diameter; the pillar contains eight mark-stones, the lowest at the ground level and seven others at $2,4,6,8,10,12$ and 14 feet respectively above it. The directions and distances of the circumjacent villages are :Venád W., miles $4 \frac{1}{f}$; Bheripet N. by W., miles $2 \downarrow$; Irakams S.W. by S., miles 6; and Chennugarepalem S.E. by E.,miles $1 \frac{3}{4}$.
XLIII. Yerpet Hill Station, lat. $13^{\circ} 43^{\prime}$, long. $79^{\circ} 36^{\prime}$-observed at in 1865 -is on the S.E. extremity of the Eastern Gháts, about $2 \frac{1}{2}$ miles N.W. of the village of Yerpet on the road from the Tirupati Railway Station to Věnkatagiri, and $9 \frac{1}{4}$ miles W. by S. of the town of Kálahasti. It is in the lands of the village of Yerpet, zamindári Kálahasti, district North Arcot.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter in which are two marks, one on the rock and the other 1.5 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the adjacent villages are:-Krishnampalle N.E., miles $2 \downarrow$; Vernkatapuram S.E. by S., miles 2; and Amandúr S.E., miles 2.
XLIV. Rěttambedu Tower Station, lat. $13^{\circ} 26^{\prime}$, long. $80^{\circ} 13^{\prime}$-observed at in 1865 -is $3 \frac{1}{2}$ miles \mathbb{S}. of the Pulicat lake and 3 miles E . of the high road: it is in the lands of the village of Rettambedu, taluk Pŏnneri, district Chingleput.

The station consists of a tower enclosing a perforated pillar of masonry 28.4 feet ligh, the upper portion of which is isolated and $3 \frac{1}{\frac{3}{f}}$ feet in diameter : the pillar contains a mark-stone imbedded at the ground level, to which access is obtained by a passage constructed for the purpose. The village of Rěttambedu is S.S.W., $1 \frac{1}{2}$ miles.
XLV. Gundálamma Hill Station, lat. $17^{\circ} 31^{\prime}$, long. $82^{\circ} 22^{\prime}$-observed at in 1861-is on a range of hills stretching N.E. and S.W., and about 4 miles E.N.E. of the village of Lodŏddi and 12 miles in the same direction from the village of Jaddangi. The station is not on the highest point of the range but about $\frac{1}{4}$ of a
mile S.W. of it, and is approached from the village of Ragapatnam on the E. by a road somewhat difficult for laden cattle. It is in the lands of the village of Doddŏdi, taluk Pëddapur, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2.0 feet above it on a stone imbedded flush with the upper surface of the pillar. The approximate directions and distances of the following villages are:-Kimiligudda N.W., miles $4 \frac{1}{2}$; Tállapalĕm W., miles $5 \frac{1}{2}$; Vayer W., miles 6; and Vattangi W.S.W., miles $7 \frac{3}{4}$.
XXXIII.-(Of the Madras Longitudinal Series). Nagari or Nagarimor Hill Station, lat. 13 ${ }^{\circ}$ 23', long. $79^{\circ} 38^{\prime}$-observed at in 1865 -is on a very remarkable peak which rises abruptly at the western and southwestern extremity of the mass of hills. The station is $3 \frac{1}{4}$ miles \mathbf{S}. by E. of the large village of Náráyanavaram on the high road from Tiruvallúr to Putúr. The peak is precipitous on the N.W. and S. sides, and is composed of gigantic boulders which seem piled in the most insecure manner as if the least shock would hurl the whole down. The station is not on the highest boulder. It is in the lands of the village of Nárayanavaram, zamindári Kárvĕtnagar, district North Arcot.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{f}}$ feet in diameter in which are two marks, one engraved on the rock in sita and the other 1.5 feet above it on a stone imbedded flush with the upper surface of the pillar. The lower mark was found cut on the rock and is probably that of a station of Colonel Lambton's triangulation. The approximate directions and distances of the adjacent places are:-Putúr station of the Madras Railway N.W. by N., miles $4 \frac{3}{4}$; Paramesvaramangalam N.W., miles 2 ; Gavanesapuram (on the high road near the fifth milestone) W.N.W., miles $1 \frac{1}{2}$; Bojarajapalem N.N.E., miles 2; Mangada S.S.E., miles $3 \frac{1}{4}$; and Rámasamudram W., miles $2 \frac{1}{2}$.
XXXV.-(Of the Madras Longitudinal Series). Chěmbedu or Chěmber Tower Station, lat. 13 ${ }^{\circ} \mathbf{1 5}^{\prime}$, long. $80^{\circ} 1^{\prime}$-observed at in 1865 -is on an extensive swell of ground, about 10 miles N.E. of the town of Tiruvallúr and the same distance N.N.W. of Tinnanúr Railway station. The station is about 50 feet N.E. of an old cairn of stones in which no mark was found but which is supposed to indicate the site of a secondary point of Colonel Lambton's triangulation. It is in the lands of the village of Chĕmbedu, taluk Tiruvallúr, district Chingleput.

The station consists of a tower of sun-dried bricks enclosing a perforated pillar of masonry $70 \cdot 3$ feet high, containing a mark-stone imbedded at the ground level. This pillar was 54.9 feet high when the observations were taken from it and was raised to its present height subsequently to fix the position of the Madras Dome Observatory Station of the Madras Longitudinal Series. The approximate directions and distances of the adjacent villages are:-Chěmbedu S.E., miles lặ ; Malandúr N.W., miles $1 \frac{1}{2}$; Maiúr S.W., miles $2 \frac{1}{2}$; Ĕrikuppam N.E. by E., miles $2 \frac{1}{2}$; and Pĕriyapálaiyam N.E., miles $5 \frac{3}{4}$.
XXXIX.-(Of the Bider Longitudinal Series). Dhár Hill Station, lat. $17^{\circ} 44^{\prime}$, long. $82^{\circ} 31^{\prime}$ observed at in 1860, 1861 and 1871-is on a hill known to the European residents of the district as "Golconda Hill" from its vicinity to Gŏlgŏnda. It is in taluk Gŏlgŏnda, district Vizagapatam (Vishakhapatnam).

The station consists of a platform of stones enclosing a solid, circular and isolated pillar of masonry in which are two marks, one in the upper surface of the pillar and the other 2.0 feet below it. When visited in 1871 , the mark was found undisturbed. The estimated directions and distances of the circumjaceut places are:-Ǧlgønda S. by W., miles $3 \frac{1}{2}$; Narsapatnam E.S.E., miles 11; Paspushettepalĕm at foot of hill E., miles 7; Songari N., miles 2 $\frac{1}{2}$; and Lamsingi N. by E., miles $5 \frac{9}{4}$.
XLI.-(Of the Bider Longitudinal Series). Sánjib Hill Station, lat. $17^{\circ} 31^{\prime}$, long. $82^{\circ} 44^{\prime}$-observed at in 1860-is on the summit of a high, conspicuous hill so named, the most elevated of the group or range running parallel with the coast. The station is about 10 miles from the sea coast, and is in taluk Gölgŏnda, district Vizagapatam.

The station consists of a platform of stones enclosing a solid, circular and isolated pillar of masonry in which are two marks; one in the upper surface of the pillar and the other 1.5 feet below. The directions and distances of the following places are :-Uratla (the residence of the Raja) N., miles 3; and Goteara village E.N.E., miles 2.
XLVI. Kappakŏnda Hill Station, lat. $17^{\circ} 20^{\prime}$, long. $82^{\circ} 31^{\prime}$-observed at in 1861 -is on a low range of hills lying in a N.E. and S.W. direction, and about 7 miles from the sea coast. The station is immediately north of the main road from Rajahmundry (Rájamahěndravaram) to Vizagapatam, and about 3 miles N.N.W. of the village of Hamsavaram. It is in the lands of the village of Kotúr, division Tuni, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 1.0 foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the following villages are:-Thonamutta S.S.E., miles $1 \frac{1}{4}$; Attumelta S., miles $1 \frac{1}{2}$; Věnkatakrishnaráyapuram S. by W., miles $2 \frac{1}{2}$; Paidipala S.S.W., miles 5 ; Tuni N., miles $3 \frac{1}{2}$; and Suraprajpet N.E., miles 2.
XLVII. Pagulráyi Hill Station, lat. $17^{\circ} 47^{\prime}$, long. $82^{\circ} 18^{\prime}$-observed at in 1861 -is on the summit of a high broad hill, $3 \frac{1}{2}$ miles N. of the large village of Badrala and 7 miles S.E, by S. of Gudiam. The station is in taluk Gŏlgŏnda, district Vizagapatam.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Pěddavalasa E., miles $1 \frac{1}{2}$; Köttapet N. by W., mile 1; Turimamadi N.N.W., mile $\frac{3}{4}$; Saprathpálaiyam E.S.E., miles $2 \frac{1}{4}$; and Kinding S.W. by S., miles $2 \frac{3}{4}$.
XLVIII. Nágal Hill Station, lat. $17^{\circ} 21^{\prime}$, long. $82^{\circ} 13^{\prime}$-observed at in 1861 -is on the south-western extremity of a long range of hills running parallel to and at a distance of about 22 miles from the coast, and 7 miles N.E. of the large village of Yĕlesvaram on the road from Jaggammapet to Jaddangi. It is in the lands of the village of Gokavaram, division Tuni, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2.0 feet above it on a stone imbedded flush with the upper surface of the pillar. The approximate directions and distances of the following villages are:-Kimmúr W. by S., miles $3 \frac{1}{2}$; Lingamparti S.W. by S., miles $6 \frac{1}{2}$; and Bayapád N.N.E., miles $2 \frac{1}{2}$.
XLIX. Kalimámidi Hill Station, lat. $17^{\circ} 35^{\prime}$, long. $82^{\circ} 9^{\prime}$-observed at in 1861 -is on a high triple headed hill at the north-eastern extremity of a range running N.E. and S.W. It is in the lands of the village of Kalimámidi, taluk Rajahmundry, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in sitd and the other 1.5 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Jagpalĕm N.N.W., mile l; Duchurti W., miles 4; Kalimámidi S.W. by W., mile 1; Bhímaram S.W., miles $6 \frac{1}{2}$; Somalpád S.S.W., miles $2 \frac{3}{4}$; and Ulbong S., miles $1 \frac{1}{8}$.
L. Nallakŏnda Hill Station, lat. $17^{\circ} 18^{\prime}$, long. $82^{\circ} 0^{\prime}$-observed at 1861 -is on a hill near the centre of a low range running nearly east and west, about $3 \frac{3}{4}$ miles nearly E.N.E. of the large village of Köttapalle and $2 \frac{1}{8}$ miles \mathbf{W}. of Mallávaram. It is in the lands of the village of Dŏddipálĕm, taluk Rajahmundry, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in sitl and the other 2.0 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Loddipalem (at foot of hill) S.S.E., mile $\frac{1}{4}$; Baiyanapalli N.W. by W., miles $1 \frac{1}{\frac{1}{2}}$; Sivarampatnam S. by E., miles $1 \frac{1}{4}$; and Razupalem S.S.W., miles $1 \frac{1}{\frac{1}{2}}$.
LI. Elangoi Hill Station, lat. $17^{\circ} 3^{\prime}$, long. $82^{\circ} 6^{\prime}$-observed at in 1861-is on a low flat-topped hill covered with brushwood, about 5 miles W.S.W. from the town of Pěddapur on the road from Rajahmundry to Sámalkot, and $7 \frac{3}{4}$ miles S. of Jaggammapet. It is in the lands of the village of Kŏndapalli, taluk Pěddapur, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are three mark-stones, one imbedded in the upper surface of the pillar and the others at 2 and 4 feet respectively below it. The directions and distances of the circumjacent villages are:-Anúr W., miles $1 \neq$ (nearly) ; Kŏndapalli S.W. by W., mile 1; Chinnabrahmadevam S.E., miles $2 \frac{3}{4}$; Ráyabhupalápatnam E. by S., miles 3 ; Surampálĕm N., miles $3 \frac{1}{2}$; and Kơttapad W.N.W., miles $2 \mathfrak{d}$.
LII. Kappa (also well known as Kappakǒnda) Hill Station, lat. $17^{\circ} 30^{\prime}$, long. $81^{\circ} 54^{\prime}$-observed at in 1861-is not on the highest point of the hill but on a spur 20 or 30 feet lower and a short distance to the S.E. of the summit. It is about $5 \frac{3}{4}$ miles N.E. by E. of the large village of Rampa and is in the lands of the village of Vadapalli, taluk Rajahmundry, district Godávari.

The station is denoted by a circle and dot cut on a large mass of rock (red laterite), on which the theodolite stand was also set up. The directions and distances of the circumjacent villages are:-Borlagunda S. by W., miles $1 \frac{1}{\frac{1}{2}}$; Yerragada S.E. by E., miles $1 \frac{3}{4}$; Manjel W., miles $2 \frac{1}{2}$; Pálĕm N.E. by N., miles $2 \frac{3}{4}$; and Serúr E. by S., miles $1 \frac{1}{2}$.
LIII. Náwilmětta Station, lat. $17^{\circ} 3^{\prime}$, long. $81^{\circ} 55^{\prime}$-observed at in 1861 -is on high, undulating, sandy ground $\frac{1}{4}$ of a mile south of the road from Rajahmundry to Vizagapatam, $6 \frac{1}{2}$ miles N.E. by E. of the former place, and 3 miles S.W. by W. of Rajanagram. It is in the lands of the village of Chekaradwara, taluk Rajahmundry, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are three marks, one on a large stone imbedded in the ground and two others at 2 and 4 feet respectively above it. The directions and distances of the circumjacent villages are:-Velugubanda N. by E., miles $2 \frac{1}{1}$; Pallachěrla N.W., miles $2 \frac{1}{5}$; Kanavaram E. by S., miles $3 \frac{3}{4}$; and Srikrishnapatnam S. by E., miles $3 \uparrow$.
LIV. Pothkŏnda Hill Station, lat $17^{\circ} 16^{\prime}$, long. $81^{\circ} 47^{\prime}$-observed at in 1861 -is on a high hill about 5 miles E. of the left bank of the Godávari river, 7 miles N. by E. of the large village of Raghudevapuram and $7 \frac{1}{2}$ miles W. of Gokavaram village and Police Station. It is in the lands of the village of Ramanmapalli, taluk Rajahmundry, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2.5 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Potulakðnda E.N.E., mile $\frac{3}{\text { ? }}$; Surrabaram E.S.E., miles $1 \frac{1}{4}$; Pěddakǒndapúdi S.W. by S., miles $3 \frac{1}{\frac{1}{2}}$; Nêllakota W.S.W., miles 3 ; and Chinarigandi N.W. by W., miles $1 \frac{1}{\frac{1}{2}}$.
LV. Lachmipuram Station, lat. $17^{\circ} 0^{\prime}$, long. $81^{\circ} 37^{\prime}$-observed at in 1861 -is on the W. extremity of some high ground stretching about N.W. by W. for 4 miles. The E. extremity of which is of a gravelly nature, while that on which the station stands is sandy. The station is $4 \frac{3}{4}$ miles E. of the town of Yĕrnagúděm on the high road from Ellore (Ëllúr) to Kovúr on the Godávari, and 6 miles W. by N. of the large village of Chagallu. It is in the lands of the village of Lachmipuram, taluk Yĕrnagúděm, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are three marks, one on a large stone imbedded firmly in the sand and two others at $2 \frac{1}{2}$ and $4 \frac{1}{\frac{1}{2}}$ feet respectively above it. The directions and distances of the circumjacent villages are:-Lachmipuram N. by E., mile $\frac{1}{2}$; Chinnayapálem W., mile $\frac{3}{4}$; Pallantla S.W. by W., miles 2 ; Chikkala S.S.E., miles $2 \frac{1}{2}$; and Devarapalli N.W. by N., miles $2 \frac{1}{3}$.
LVI. Adakŏnda Hill Station, lat. $17^{\circ} 14^{\prime}$, long. $81^{\circ} 32^{\prime}$-observed at in 1861 -is on a spur at the southern extremity of the main range of hills about 10 miles W . by S . of the large village of Pallávaram on the Godávari river, and $5 \frac{3}{4}$ miles S. by E. of Chintapalli. The station is in the lands of the village of Sagipad, taluk Yĕrnagúděm, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in sita and the other $2 \frac{1}{8}$ feet above it imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Lankapalli W. by N., mile 1; Vírapagúděm W.S.W., miles 2; Kamayakunta S.W. by W., miles 23 ${ }^{3}$, Kovada S.S.W., miles $2 \frac{1}{2}$; and Suripillagúděm E. by N., miles $1 \frac{3}{4}$.
LVII. Yědlagattu Hill Station, lat. $17^{\circ} 1^{\prime}$, long. $81^{\circ} 23^{\prime}$-observed at in 1861 -is near the centre and on the highest part of a low range of hills extending some 20 miles in a N.E. and S.W. direction. The summit of the hill is flat-topped and covered with very thick jungle. The station is 7 miles N.W. from the large village of Nallachěrla on the high road from Ellore to Yèrrnagúděm, and 4 miles S.E. of Lakkavaram. It is in the lands of the village of Ragapuram, taluk Yĕrnagúdĕm, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are three marks, one engraved on the rock in situ and two others at $1 \frac{1}{2}$ and 3 feet respectively above it. The directions and distances are of the circumjacent villages are :-Ráyavapuram N.W. by N., miles $1 \frac{1}{\frac{1}{2}}$; Lachmipuram W., miles $1 \frac{1}{3}$; Pangidigúdëm N.N.E., miles 34 ; and Ramsingavaram E.S.E., miles 2λ.
LVIII. Aupád Station, lat. $16^{\circ} 53^{\prime}$, long. $81^{\circ} 26^{\prime}$-observed at in 1861 -is on a sandy ridge covered with high jungle $4 \frac{1}{3}$ miles S . by W . of the large village of Nallachĕrla on the road from Ellore to Yèrnagúděm. It is in the lands of the village of Aupád, taluk Yĕrnagúděm, district Godávari.

The station consists of a platform of logs of wood enclosing a solid, circular and isolated pillar of masonry in which are four mark-stones, one imbedded flush with the upper surface of the pillar and others at 3,5 and 7 feet respectively below it. The directions and distances of the circumjacent villages are:-Aupád N.E. by E., miles 2; Marellamudi N., miles $2 \frac{1}{5}$; Dubachĕrla N.W. by W., miles 3 ; Nallamadu S.W. by W., miles $1 \frac{3}{4}$; and Rámachandrapuram W. by S., miles $1 \frac{1}{2}$.
LIX. Sudkŏnda Hill Station, lat, $16^{\circ} 57^{\prime}$, long. $81^{\circ} 15^{\prime}$-observed at in May and December 1861-is on a small, round, isolated hill $4 \frac{1}{3}$ miles S. of the large village of Kamavarapukota and $\frac{1}{2}$ a mile W. of the road from Kamavarapukota to Rámanagáděm. It is in the lands of the village of Vadlapatlanutanam, taluk Ellore, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones, one imbedded in the upper surface of the pillar and the other $1 \frac{1}{\frac{1}{f} \text { feet below it at the ground level. When }}$ visited in December 1861, the pillar and annulus were found in perfect order and the mark had evidently not been tampered with. The directions and distances of the circumjacent villages are :-V̌nnkatakrishnapuram S.E. by E., miles 2; Vĕnkatapuram W.S.W., miles $2 \frac{3}{4}$; Rámauagúděm S.E. by S., miles $2 \frac{3}{4}$; Gundugolanukunta E.N.E., miles 2 ; and Vadlapatlanutanam N.N.W., mile 1 .
LX. Parampúdi Hill Station, lat. $17^{\circ} 13^{\prime}$, long. $81^{\circ} 15^{\prime}$-observed at in May and December 1861 -is on a low hill about 4 miles W. by N. of the large village of Ganapavaram, the same distance E. of Jelugumilli, and 5 miles N. of the large village of Taduvayi. The station is in the lands of the village of Parampúdi, taluk Yĕrnagúděm, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other $2 \frac{1}{2}$ feet above it on a stone imbedded flush with the upper surface of the pillar. When visited in December 1861, the mark had evidently not been tampered with. The directions and distances of the circumjacent villages are:-Rámanapálém W.S.W., miles $2 \frac{3}{7}$; Vírachêttigúděm S.W. by W., miles $1 \frac{17}{4}$; Ganganagúděm S.E. by S., miles 24 ; Rantugúděm E. by S., miles $2 \frac{1}{4}$; and Narnapuram N.E. by N., miles $1 \frac{1}{2}$.
LXI. Bandanchĕrla Hill Station, lat. $17^{\circ} 4^{\prime}$ long. $81^{\circ} 6^{\prime}$-observed at in 1861 -is on a range of hills 5 miles E. by S. of the village of Rětachintalapúdi on the road from Ellore to Gummumet, and $4 \frac{1}{3}$ miles N.E. of Pragadavaram. It is in the lands of the village of Punukumadu, taluk Ellore, district Godávari.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Bandanchěrla N.E. by E., miles $1 \neq ;$ Vurlagúděm W., miles $2 \frac{1}{2}$; Ponukupád S., miles $1 \frac{2}{3}$; Narasapuram N.N.E., miles $3 \frac{1}{2}$; and Ketavaram E., miles $3 \frac{1}{2}$.
LXII. Nágaldurgam Hill Station, lat. $17^{\circ} 20^{\prime}$, long. $80^{\circ} 58^{\prime}$-observed at in 1861 -is on a high hill about 4 miles to the N.N.E. of the small village of Srírampur, the road from which to Jaggavaram passes close under the hill. It is in taluk Khamam, Nizám's territories.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 2 feet above it on a stone imbedded flush, with the upper surface of the pillar. The estimated directions and distances of the circumjacent villages are :-Nagupilli S.S.W., miles 5 ; Mukondapur S., miles 5 ; and Jaggavaram N., miles 2.
LXIII. Dudugat Hill Station, lat. $16^{\circ} 46^{\prime}$, long. $80^{\circ} 59^{\prime}$-observed at in 1862 -is on a low ridge about $6 \frac{1}{2}$ miles E. by S. of Núzvid, a large place and the residence of a petty raja, and 4 miles N.E. by N. of the Police Station of Gollapalli. The station is on the site of the old Topographical Survey station of Dudugat, the pile of stones of which was removed for the platform of the present station. It is in the lands of the village of Katrenipád, division Núzvíd, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 1.5 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Katrenipad N. by E., miles 2; Medicherrla S.E., miles 3 $\frac{1}{2}$; Anapanúrgúdĕm E., miles 3; and Rangapálěm N.E. by N., miles 2.
LXIV. Inupráyi Hill Station, lat. $17^{\circ} 8^{\prime}$, long. $80^{\circ} 49^{\prime}$-observed at in 1861 -is on a low, isolated hill locally called Inupráyigattu. The hill is composed of iron stone. The station is on the site of an old Topographical Survey station, which was marked by the remains of a cairn of stones. It is in the lands of the village Vaimsúr, taluk Khamam, Nizám's territories.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones, one imbedded flush with the upper surface of the pillar and the other, a large one, 2 feet below it imbedded in the ground. The directions and distances of the following villages are:-Vemiréddipalli S.W. by S., miles 5 ; Korlamanda S., miles 5; Tsanubanda S.S.E., miles $6 \frac{1}{2}$; and Yemsúr E., miles $1 \frac{1}{2}$.
LXV. Dálgattu Hill Station, lat. $16^{\circ} 54^{\prime}$, long. $80^{\circ} 51^{\prime}$ —observed at in 1862 -is on the highest of a group of hills at the northern extremity of a long range extending nearly N. and S. The station is about 3 miles S. by E. of the village of Vissanapet on the road from Madavaram to Tsanubanda, and 8 miles N.N.W. of Núzvid. It is in the lands of the village of Köndavarava, division Vissanapet, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 1.8 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Ráyanapalěm W., miles $3 \frac{1}{2}$; Kø̌ndavarava E. by N., miles 2; Ramanakkapet E. by S., miles $4 \frac{3}{4}$; and Rěddigúdĕm W. by S., miles $4 \frac{3}{4}$.
LXVI. Yěrragattu Hill Station, lat. $16^{\circ} 40^{\prime}$, long. $80^{\circ} 42^{\prime}$-observed at in 1862 -is on a range of hills running from S.S.W. to N.N.E. about 6 miles S. by E. of the large village of Mailavaram, the residence of a raja, and $11 \frac{1}{2}$ miles N.N.E. of the town of Bĕzváda. It occupies the site of the old Topographical Survey station of Vělatúr, the platform of which was found. It is in the lands of the village of Vělatúr, taluk Bězvada, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other $1 \cdot 5$ feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Vělatúr W.N.W., miles $1 \frac{1}{2}$; Velagaler W.S.W., miles 4; Kuntamukala N.W. by W., miles 3; and Adivinekalam S.E. by E., miles $4 \frac{1}{2}$.
LXVII. Jammalavoidurgam Hill Station, lat. $16^{\circ} 57^{\prime}$, long. $80^{\circ} 38^{\prime}$ —observed at in 1862 -is on the summit of a hill on which are the ruins of an old fort, one of a group of hills at the northern extremity of a range extending N.N.E. and S.S.W. from Kŏndapalli near the Kistna river. It is an old Topographical Survey station and is in the lands of the village of Kŏndúr, division Vissanapet, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 1.6 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Annumallanka W.N.W., miles 4 ; Kðndưr E. by N., miles 4; Narikempád S. by W., miles 24; and Repúdi E. by S., miles $5 \frac{1}{2}$.
LXVIII. Jujúrdurgam Hill Station, lat. $16^{\circ} 42^{\prime}$, long. $80^{\circ} 31^{\prime}$-observed at in 1862 -is on a high hill on which are the ruins of an old fort $5 \frac{1}{4}$ miles E . by N . of the village of Kanchakacherrla on the road from Hyderabad to Bĕzvada. The W. face of the hill is a perfect precipice, and the station is built on a large granite rock on the verge of it about $\frac{1}{4}$ mile from the highest part of the hill. It is in the lands of the village of Jujúr, taluk Nandigáma, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in sitú and the other $1 \cdot 21$ feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Jujúr N.W., miles 4 ; Narasimharampálém W.N.W., miles 3; and Gottimukkala W. by S., miles $3 \frac{1}{2}$.
LXIX. Bězváda Hill Station, lat. $16^{\circ} 31^{\prime}$, long. $80^{\circ} 39^{\prime}$-observed at in 1862 -is on the highest part of a long precipitous ridge immediately on the left bank of the Kistna river and about $\frac{1}{2}$ mile N.W. of the town of Bězváda. A Revenue Survey pillar is at a distance of 14 yards from the station at an azimuth of 195°. The station is in the lands of the village of Bězváda, taluk Bĕzvada, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other 0.46 of a foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Golapudi N.W. by W., miles $1 \frac{1}{3}$; Věnkatapálěm W.S.W., miles 2昗; and Vundavalli S. by W., miles 2.

MADRAS MERIDIONAL AND COAST SERIES.

LXX. Jŏnnalagadda Hill Station, lat. $16^{\circ} 52^{\prime}$, long. $80^{\circ} 21^{\prime}$-observed at in 1862 -is on a low hill $5 \frac{1}{2}$ miles S.E. by E. of the village of Penuganchiprol on the right bank of the Muniyar river and $6 \frac{1}{4}$ miles N.N.E. of Nandigama on the road from Hyderabad to Bězvada. The hill is on the boundary line of the villages of Jŏnnalagadda and Ramirěddipalli. One of the Revenue Survey boundary pillars is 24.4 feet at an azimuth of 51° from the station which is in the lands of the village of Jŏnnalagadda, taluk Nandigama, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones one (a large stone) imbedded in the soil and the other 1.46 feet above it let in flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Jŏnnalagadda N.E. by E., miles $1 \frac{1}{\frac{1}{2}}$; Anigarlapad N.W., miles $2 \frac{3}{4}$; Gummadidúr W. by N., miles $1 \frac{1}{2}$; Ramirèddipalli E.S.E., mile $\frac{3}{4}$; and Magallu S., miles 3 .
LXXI. Anantavaram Hill Station, lat. $16^{\circ} 31^{\prime}$, long. $80^{\circ} 28$-observed at in 1862 -is on a low hill, whose western face is very precipitous, about $3 \frac{3}{4}$ miles S. by E. of the village of Vaikuntapuram on the right bank of the Kistna river, and 11 miles N.W. by W. of the large village of Mangalagiri on the road from Guntúr to Bězváda. It is in the lands of the village of Anantavaram, taluk Guntúr, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in sitl and the other $1 \cdot 5$ feet above it on a stone imbedded flush with the upper of the pillar. The directions and distances of the circumjacent villages are :-Vadhanián N. by W., mile 1; Tullúr E. by N., miles 3 ; Anantavaram E.S.E., mile $\frac{3}{4}$; and Karlapúdi S.W., miles 2.
LXXII. Chintalapád Station, lat. $16^{\circ} 40^{\prime}$, long. $80^{\circ} 17^{\prime}$-observed at in February and April 1862-is on rising ground about $3 \frac{1}{4}$ miles N.E. of the village and police station of Pŏnnapalli on the left bank of the Kistna river, and 8 miles S.S.W. of the town of Nandigáma on the high road from Hyderabad to Bězváda. It is in the lands of the village of Chintalapad, taluk Nandigáma, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones one (a large stone) imbedded in the soil and the other 2.33 feet above it let in flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Patěmpad W. by N., miles $1 \underset{4}{\text { ª }}$; Turlapád N.N.E., miles $2 \frac{3}{4}$; Totaravulapád E.N.E., miles $2 \frac{1}{2}$; Chintalapád E. by S., miles $2 \frac{1}{4}$; and Valadi S.W. by S., miles 2.
LXXIII. Lagadapád Station, lat. $16^{\circ} 29^{\prime}$, long. $80^{\circ} 17^{\prime}$-observed at in February and April 1862-is on high ground about 9 miles N.E. of the town of Sattěnapalle on the high road from Hyderabad to Guntuŕr, and $7 \frac{1}{2}$ miles E.S.E. of the large village of Krosúr. It is in the lands of the village of Lagadapád, taluk Sattěnapalle, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two mark-stones, one imbedded in the soil and the other 4 feet above it let in flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Lagadapád S.W. by W., mile $\frac{3}{4}$; Kúrapád S.E., miles $1 \frac{3}{4}$; Hussenagram N. by W., miles 2 ; Gárapád N.W. by W., miles $2 \frac{1}{\frac{f}{j}}$; and Gujérlapúdi W. by. N., miles $2 \frac{1}{3}$.
LXXIV. Gorantla Hill Station, lat. $16^{\circ} 21^{\prime}$, long. $80^{\circ} 29^{\prime}$-observed at in 1862 -is on rock 12 feet above the general level of the summit of a low hill, consisting almost entirely of granite, $3 \frac{1}{3}$ miles nearly W. of the village of Kakane on the road from Guntúr to Bĕzvada, and $3 \frac{1}{2}$ miles N. by W. of the former town. The station is in the lands of the village of Gorantla, taluk Guntúr, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other I•5 feet above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Gorantla S.E., mile $\frac{1}{4}$; Věnĕgantla E., miles $2 \frac{3}{4}$; Kŏntepá S. by W., miles 23 ${ }^{\frac{3}{4}}$; and J̌̌nnalagadda N.N.E., miles 24.
LXXV. Chikri Hill Station, lat. $16^{\circ} 36^{\prime}$, long. $80^{\circ} 7^{\prime}$-observed at in 1862 -is on the eastern point of the more northern of two low hills, $3 \frac{3}{4}$ miles S.W. of the village of Chámaru and $5 \frac{1}{2}$ miles N.W. of that of Krosúr. The western point is higher and consists of a mass of granite with such limited space that the station could not be built on it. It is in the lands of the village of Köndúr, taluk Sattěnapalle, district Kistna.

The station consists of a platform of stones and earth enclosing a solid, circular and isolated pillar of masonry in which are two marks, one engraved on the rock in situ and the other $1 \cdot 0$ foot above it on a stone imbedded flush with the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Pěddapalem .E. by S., miles $1 \frac{3}{4}$; Kŏndúr S.S.W., miles $1 \frac{1}{2}$; Dodler S. by W., miles $3 \frac{1}{4}$; and Turakapalle N.N.E., miles $2 \frac{3}{4}$.

[^8]
MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

Norr.-Stations XII and XV appertain to the Bider Longitudinal Series of the South-East Quadrilateral.

March 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.											
Angle between											
$\begin{aligned} & \text { I (Anantagiri) } \\ & \text { and } \\ & \text { II (Niálamari) } \end{aligned}$	$\begin{aligned} & h 46 \cdot 08 \\ & h_{47} \cdot 62 \\ & h_{45} \cdot 68 \end{aligned}$	$\begin{gathered} \prime \prime \\ h 45^{\prime} \cdot 76 \\ l 45 \cdot 60 \\ l 46 \cdot 0 \end{gathered}$	$\begin{gathered} \prime \prime \\ l \\ l \\ l \\ l 4 \cdot 82 \\ l \\ l \\ 47 \cdot 74 \\ \hline \end{gathered}$		$\begin{array}{r} \prime \prime \\ l 46.98 \\ l \\ l \\ l \\ l 6 \cdot 52 \\ 46 \cdot 60 \end{array}$	$\begin{gathered} \prime \prime \\ l \\ l \\ l \\ l \\ l 6 \cdot 16 \\ l \\ l \\ 45 \cdot 56 \end{gathered}$	$\begin{gathered} \prime \prime \\ h h_{4} \cdot 04 \\ h_{45} \cdot 88 \\ h_{45} \cdot 94 \end{gathered}$	$\begin{gathered} n \\ l 47 \cdot 9^{2} \\ l 47 \cdot 52 \\ l 48 \cdot 44 \end{gathered}$	$\begin{array}{cc} & \prime \prime \\ l & 46 \cdot 70 \\ l & 46 \cdot 28 \\ l & 45 \cdot 76 \end{array}$		$\begin{aligned} M & =46^{\prime \prime} \cdot 5^{8} \\ w & =15 \cdot 20 \\ \frac{1}{w} & =0 \cdot 07 \end{aligned}$
	$46 \cdot 46$	$45 \cdot 79$	$46 \cdot 67$	46•20	46•70	45*99	45*95	47×96	46•25	$47 \cdot 81$	$C=40^{\circ}{ }^{12}{ }^{\prime} 4^{\prime \prime \prime} \cdot 5^{8}$
II (Niálamari) and XII (Kándágatla)	 $l 42 \cdot 62$										$\begin{aligned} & \boldsymbol{M}=43^{\prime \prime} \cdot 33 \\ & \boldsymbol{w}=13 \cdot 74 \\ & \frac{\mathbf{1}}{\boldsymbol{w}}=0 \cdot 07 \\ & \boldsymbol{C}=45^{\circ} 32^{\prime} 43^{\prime \prime} \cdot 33 \end{aligned}$
	$43 \cdot 74$	$43 \cdot 57$	$43 \cdot 81$	$43 * 46$	$43^{\prime} 72$	$43 \cdot 56$	42•76	41:27	$43 \cdot 88$	$43 \cdot 57$	

At I (Anantagiri)

March 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Angle between	$180^{\circ} 18^{\prime}$	Circle readings, telescope being set on III (Miádarsál)									$\boldsymbol{M}=$ Mean of Groups ${ }^{20}=$ Relative Woight C = Concluded Angle
$\begin{gathered} \text { III (Miádarsál) } \\ \text { and } \\ \text { IV (Sárangapalle) } \end{gathered}$	$\begin{aligned} & l 14 \cdot 42 \\ & l 15 \cdot 26 \\ & l 15 \cdot 84 \end{aligned}$	$\begin{aligned} & 17 \cdot 10 l \\ & 15 \cdot 28 \\ & 16.54 \\ & 16 \end{aligned}$	$\begin{aligned} & l 17.52 \\ & l 17.94 \\ & l 18.888 \end{aligned}$	$\begin{array}{ll} l & 17.90 \\ l & 17.34 \\ l & 16.56 \end{array}$	$\begin{aligned} & l 18.88 \\ & l 16.70 \\ & l 17.88 \end{aligned}$	$\begin{gathered} \prime \prime \\ l 17 \cdot 24 \\ l 17 \cdot 70 \\ l 17 \cdot 46 \end{gathered}$	$\begin{aligned} & l 16 \cdot 64 \\ & l 17 \cdot 28 \\ & l 17 \cdot 02 \end{aligned}$	$\begin{array}{ll} l & 15.34 \\ l & 14.40 \\ l & 14.86 \end{array}$	$\begin{aligned} & h_{16} 6 \cdot 36 \\ & h_{17} \cdot 24 \\ & h_{16} \cdot 24 \end{aligned}$	$\begin{aligned} & h 15 \cdot 34 \\ & h 15: 92 \\ & h 15 \cdot 34 \end{aligned}$	$\begin{aligned} M & =16^{\prime \prime} \cdot 61 \\ w & =7 \cdot 30 \\ \frac{1}{w} & =0 \cdot 14 \\ C & =41^{\circ} 58^{\prime} 16^{\prime \prime} \cdot 61 \end{aligned}$
	15:17	16.31	18.11	$17 \cdot 27$	$17 \cdot 82$	1747	16•98	$14 \cdot 87$	16.61	15.53	
IV (Sárangapalle) and II (Niálamari)	 										$\begin{aligned} M & =10^{\prime \prime} \cdot 45 \\ w & =13 \cdot 20 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =52^{\circ} 33^{\prime} 10^{\prime \prime} \cdot 45 \end{aligned}$
	11•95	11445	9•70	9'90	$9 \cdot 42$	$9 \cdot 65$	10•26	11:27	10*41	10.51	
$\begin{gathered} \text { II (Niálamari) } \\ \text { and } \\ \text { XII (Kándágatla) } \end{gathered}$	 										$\begin{aligned} M & =5^{\prime \prime \prime} \cdot 17 \\ w & =22 \cdot 20 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =40^{\circ} 5^{\prime} 5^{\prime \prime \prime} \cdot 17 \end{aligned}$
	52.17	52*01	52.59	52.94	52.40	51•16	51.51	52•38	51•67	52•89	

Norr.-Stations XII and XV appertain to the Bider Longitudinal Series of the South-East Quadrilateral.

At I (Anantagiri)-(Continued).

Angle between	Circle readings, telescope being set on III (Miádarsál)										$M=$ Mean of Groupe $w_{0}=$ Relative Weight $C=$ Concluded Δ ngle
	$180^{\circ} 18^{\prime}$	$0^{\circ} 18$	$259^{\circ} 24^{\prime}$	$79^{\circ} 24^{\prime}$	$338^{\circ} \mathbf{3 6}$	$158^{\circ} 36^{\prime}$	$57^{\circ} 48^{\prime}$	$237^{\circ} 48^{\prime}$	$186^{\circ} 59^{\prime}$	$816^{\circ} 59^{\prime}$	
XII (Kándágatla) and $\mathbf{X V}$ (Adáligat)	 										$\begin{aligned} & M=52^{\prime \prime \cdot} \cdot 04 \\ & w=26 \cdot 30 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=45^{\circ} 10^{\prime} 52^{\prime \prime} \cdot 04 \end{aligned}$
	51*61	52.47	51•79	$51 * 45$	51•37	$52 \cdot 65$	$52 \cdot 47$	52.51	51*91	52.18	

At II (Niálamari)

April 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Angle between	Circle readings, telescope being set on XII (Kándágatla)										$M \backsim$ Mean of Groups ${ }^{2} 0$ R Relative Weight C = Concluded Anglo
$\begin{gathered} \text { XII (Kándágatla) } \\ \text { and } \\ \text { XV (Adáligat) } \end{gathered}$		$\prime \prime$ l l l l l 128	$\begin{array}{ll}l & 4.88 \\ l & 4.94 \\ l & 4 \cdot 82\end{array}$		$\begin{array}{ll} & \prime \prime \\ h & 5 \cdot 64 \\ h & 3.74 \\ h & \\ 4 & 40\end{array}$		$\begin{array}{cc}l \\ l & 3.88 \\ l & 4.98 \\ l \\ l & 4.06\end{array}$		$\begin{array}{ll}l & 4 \\ l & 4.08 \\ l & 5 \cdot 00 \\ l & 5.02\end{array}$		$\begin{aligned} & M=5^{\prime \prime} \cdot 04 \\ & w=20 \cdot 80 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=49^{\circ} 48^{\prime} 5^{\prime \prime} \cdot 04 \end{aligned}$
	4.65	$6 \cdot 23$	$4 \cdot 88$	5 31	$4 \cdot 59$	4.74	$4{ }^{\circ} 29$	5*96	470	5.08	
XV (Adáligat)andI (Anantagiri)	 										$\begin{aligned} & M=32^{N} \cdot 22 \\ & w=5 \cdot 50 \\ & \frac{1}{w}=0 \cdot 18 \\ & C=54^{\circ} 30^{\prime} 32^{N / 22} \end{aligned}$
	32.55	30•07	31-53	31-35	32•84	$30 \cdot 85$	$33^{\prime 25}$	31•94	$33 \cdot 80$	34.03	
I (Anantagiri) and III (Miádarsál)	 										$\begin{aligned} M & =43^{\prime \prime} \cdot 67 \\ w & =11 \cdot 90 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =.1^{\circ} 27^{\prime} 43^{\prime \prime} \cdot 67 \end{aligned}$
	43.58	44.34	43.81	$44^{1} 17$	42•73	$45 \cdot 23$	$43 \cdot 87$	43*99	$42 \cdot 99$	42.11	
III (Miádarsál) and IV (Sárangapalle)	 										$\begin{aligned} & M=54^{\prime \prime} \cdot 34 \\ & w=25 \cdot 60 \\ & \frac{\mathbf{1}}{w}=0 \cdot 04 \\ & C=39^{\circ} 2^{\prime} 54^{\prime \prime} \cdot 34 \end{aligned}$
	$53 \cdot 64$	54.45	55*29	55^{11}	54.20	.54*63	54*14	54.33	53.57	54*06	

Nors.-Stations XII and XV appertain to the Bider Longitudinal Series of the South-East Quadrilateral.

At III (Miadarsál)

April 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Angle between	Circle readings, telescope being set on VI (Voruvakallu)										$\boldsymbol{M}=$ Mean of Groupe ${ }^{2} 0=$ Relative Weight C = Concluded Angle
$\begin{gathered} \text { VI (Voruvakallu) } \\ \text { and } \\ \text { V (Kachalboru) } \end{gathered}$	 l26-18										$\begin{aligned} & M=23^{\prime \prime} \cdot 40 \\ & w=6 \cdot 4 \mathrm{I} \\ & \frac{1}{w}=0 \cdot 16 \\ & C=66^{\circ} 88^{\prime} 23^{\prime \prime} \cdot 40 \end{aligned}$
	$22^{\circ} 91$	21.25	22.04	$23^{\circ} \mathrm{OI}$	$24^{\circ} 09$	$23^{\circ} 03$	23.56	$24^{\circ} 51$	24*35	$25 \cdot 22$	
$\begin{gathered} \text { V (Kachalboru) } \\ \text { and } \\ \text { IV (Sárangapalle) } \end{gathered}$											$\begin{aligned} & M=37^{\prime \prime} \cdot 8 \mathbf{I} \\ & w=16 \cdot 24 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=65^{\circ} 3^{\prime} 37^{\prime \prime} \cdot 80 \end{aligned}$
	38.44	38•78	38.11	37×48	37×65	38.23	38-26	$37 \cdot 16$	$37 \cdot 23$	36•77	
IV (Sárangapalle) and II (Niálamari)	$h_{49} \cdot 94 h_{50} \cdot 66 h_{51} \cdot 12 h_{50} \cdot 28 l_{51} \cdot 60 h_{51} \cdot 0_{4} h_{51} \cdot 94 h_{51} \cdot 92 h_{50} \cdot{ }_{46} h_{51} \cdot 88$ 										$\begin{aligned} & M=50^{\prime \prime} \cdot 65 \\ & w=12 \cdot 70 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=47^{\circ} 44^{\prime} 50^{\prime \prime} \cdot 65 \end{aligned}$
	50.59	50•20	50.04	50•09	51.07	50:74	50.41	51•79	$49 \cdot 56$	51*96	
$\begin{aligned} & \text { II (Niálamari) } \\ & \text { and } \\ & \text { I (Anantagiri) } \end{aligned}$	$h_{51} \cdot 86 h_{50} \cdot 76 h_{53} \cdot 06 h_{53} \cdot 5^{6} l_{52} \cdot 14 h_{50} \cdot 48 h_{51} \cdot 00 h_{52} \cdot 1_{4} h_{50} \cdot 60 h_{51} \cdot 7^{2}$ 										$\begin{aligned} & M=51^{\prime \prime} \cdot 63 \\ & w=11 \cdot 90 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=34^{\circ} \circ^{\prime} 51^{\prime \prime} \cdot 63 \end{aligned}$
	51*49	51.30	53.07	52•87	51-88	50•79	5179	51•14	$50 \cdot 63$	51.35	

At IV (Sárangapalle)

April 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Angle between	Circle readings, telescope being set on II (Niálamari)										$\boldsymbol{M}=$ Mean of Groups ${ }^{20}=$ Relative Weight C = Concluded Angle
	$194{ }^{\circ} 55^{\prime}$	$14^{\circ} 55^{\prime}$	$274^{\circ} 7^{\prime}$	$94^{\circ} 7^{\prime}$	$353^{\circ} 18^{\prime}$	$173^{\circ} 18^{\prime}$	$72^{\circ} 30^{\prime}$	$252^{\circ} 30^{\prime}$	$151^{\circ} 41^{\prime}$	$3811^{\circ} 41^{\prime}$	
$\begin{aligned} & \text { II (Niálamari) } \\ & \text { and } \\ & \text { I (Anantagiri) } \end{aligned}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=14^{\prime \prime} \cdot 26 \\ & w=20 \cdot 00 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=36^{\circ} 56^{\prime} 14^{\prime \prime} \cdot 26 \end{aligned}$
	14.66	14*12	14.87	14.34	13.25	13.56	14.51	13.35	14*71	$15^{\circ} \mathrm{21}$	

At IV (Sárangapalle)-(Continued).											
Angle between	Circle readings, telescope being set on II (Niálamari) $194^{\circ} 65^{\prime} \quad 14^{\circ} 55^{\prime} \quad 274^{\circ} \boldsymbol{7}^{\prime} \quad 94^{\circ} 7^{\prime} \quad 353^{\circ} 18^{\prime} \quad 173^{\circ} 18^{\prime} \quad 72^{\circ} 30^{\prime} \quad 252^{\circ} \mathbf{3 0 ^ { \prime }} \quad 151^{\circ} 41^{\prime} \quad 331^{\circ} 41^{\prime}$										$\boldsymbol{M}=$ Mean of Groups wo = Relative Weight C = Concludod Angle
$\begin{aligned} & \text { I (Anantagiri) } \\ & \text { and } \\ & \text { III (Miádarsál) } \end{aligned}$											$\begin{aligned} M & =4^{N \cdot 05} \\ w & =14 \cdot 30 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =56^{\circ} 16^{\prime} 4^{N \cdot} \cdot 05 \end{aligned}$
	5:23	$4 * 49$	$3 \cdot 17$	3•76	4*43	$3 \cdot 37$	4.61	472	$4^{\circ} 00$	2.68	
$\begin{aligned} & \text { III (Miádarsál) } \\ & \text { and } \\ & \text { } \mathbf{V} \text { (Kachalboru) } \end{aligned}$	 										$\begin{aligned} & M=32^{\prime \prime} \cdot 24 \\ & w=14 \cdot 50 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=42^{\circ} 30^{\prime} 32^{\prime \prime} \cdot 24 \end{aligned}$
	$31 \cdot 69$	31•57	32•11	$33^{\circ} 20$	32•39	32•71	31•93	31•06	31•97	$33 \cdot 74$	
$\begin{aligned} & \text { V (Kachalboru) } \\ & \text { and } \\ & \text { VIII (Mániam) } \end{aligned}$	 										$\begin{aligned} & M=54^{\prime \prime} \cdot 47 \\ & w=7 \cdot 40 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=29^{\circ} 23^{\prime} 54^{\prime \prime} \cdot 47 \end{aligned}$
	51•67	55*55	$55^{\circ} 23$	53.91	54.51	54*38	$54 \cdot 61$	55.55	54:94	$54 * 39$	
April 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.											
Angle between	Circle readings, telescope being set on VIII (Mániam) 										M- Mean of Groups © = Relative Weight $C=$ Concluded Δ ngle
VIII (Mániam) and	 										$\begin{aligned} M & =28^{\prime \prime} \cdot 68 \\ w & =14 \cdot 10 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =96^{\circ} 44^{\prime} 28^{\prime \prime} \cdot 68 \end{aligned}$
	29.52	27×33	28•58	28.53	28•51	$28 \cdot 80$	28.47	$30 \cdot 26$	$28 \cdot 59$	28.25	
IV (Sárangapalle) and III (Miádarsál)	 										$\begin{aligned} & M=50^{\prime \prime} \cdot 79 \\ & w=10 \cdot 90 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=72^{\circ} 25^{\prime} 50^{\prime \prime} \cdot 79 \end{aligned}$
	50.00	52.22	50.83	49.55	51.85	50•99	50•19	49*91	$50 \cdot 81$	51.52	

At VII (Dhúlipalła)

*December 1863; observed by Captain B. R. Branfill with Troughton and Simns' 24-inch Theodolite No. 1.
\dagger April 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

At IX (Kotapa)-(Continued).

Angle between	Circle readings, telescope being set on VII (Dhúlipalla) 										$\boldsymbol{K}=$ Mean of Groups ${ }^{*}=$ Relative Weight C $=$ Concluded Angle
$\begin{gathered} \text { X (Ãdamsáb) } \\ \text { and } \\ \text { XII (Pálapáru) } \end{gathered}$	 										$\begin{aligned} M & =51^{\prime \prime} \cdot 10 \\ w & =10 \cdot 30 \end{aligned}$
	$50 \cdot 38$	51.08	$50 \cdot 63$	50.91	$52 \cdot 87$	52.14	50.13	51•28	$49 \cdot 84$	51*72	$C=45^{\circ} 51^{\prime} 51^{\prime \prime} \cdot 10$
$\begin{gathered} \text { XII (Pálapáru) } \\ \text { and } \\ \text { XIII (Babbðpalle) } \end{gathered}$	 										$\begin{aligned} & M=16^{\prime \prime} \cdot 93 \\ & w=10 \cdot 64 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=43^{\circ} 20^{\prime} 16^{\prime \prime} \cdot 93 \end{aligned}$
	$17 \cdot 80$	$17 \cdot 60$	16.91	$15 \cdot 86$	1591	$16 \cdot 92$	$15 \cdot 83$. $16 \cdot 97$	18.31	17*24	
```XIII (Babbæpalle) and XIV (Dánapa)```											$\begin{aligned} & M=61^{\prime \prime} \cdot 72 \\ & w=7 \cdot 30 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=4^{\circ} 14^{\prime} 1^{\prime \prime} \cdot 70 \end{aligned}$
	60'10	61-69	62.97	63•06	60.63	61.64	$63^{* 22}$	61•76	60.92	61:18	
$\begin{gathered} \text { XIV (Dánapa) } \\ \text { and } \\ \text { XI (Yðrrakŏnda) } \end{gathered}$											$\begin{aligned} & M=57^{\prime \prime} \cdot 28 \\ & w=15 \cdot 77 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=55^{\circ} 43^{\prime} 57^{\prime \prime} \cdot 28 \end{aligned}$
	$57 \cdot 86$	$56 \cdot 52$	58•13	58•13	56•95	$57 \cdot 23$	56•99	56•78	$57 \cdot 89$	56.32	
$\begin{aligned} & \text { XI (Yěrrakǒnda) } \\ & \text { and } \\ & \text { VIII (Mániam) } \end{aligned}$	$l$ $l$ $l$ 3.60	$l$ $l$ $5 \cdot 84$	h $2 \cdot 86$ $h$ 3	$l$ $l$ $3 \cdot 78$	$l$ $l$ 5.60	$\begin{array}{rr}l \\ l & 4.90 \\ 3.12 & h \\ \\ \\ & h\end{array}$	$h$ $2 \cdot 96$   $h$ $6 \cdot 06$   $h$ 3   $h$ 3	$\begin{array}{lll} h & 1.62 \\ l & 5 \cdot 06 \\ l & 5.94 \\ l & 4.94 \\ l & 2.38 \\ 2.24 \end{array}$	$\begin{array}{ll} l & 4.54 \\ l & 4.98 \\ l & 4.00 \end{array}$	$\begin{aligned} & 12.50 \\ & 73.96 \end{aligned}$	$\begin{aligned} & M=3^{\prime \prime} \cdot 94 \\ & w=12 \cdot 84 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=65^{\circ} 19^{\prime} 3^{\prime \prime} \cdot 97 \end{aligned}$
	3.73	$4 \cdot 86$	3.29	3.45	$4 \cdot 55$	401	4.51	$3 \cdot 25$	4.51	3.23	
$\begin{aligned} & \text { VIII (Mániam) } \\ & \text { and } \\ & \text { VII (Dhálipalla) } \end{aligned}$											$\begin{aligned} & M=33^{\prime \prime} \cdot 75 \\ & w=8 \cdot 97 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=44^{\mathrm{C}} 37^{\prime} 33^{\prime \prime} \cdot 74 \end{aligned}$
	34*44	$33 \cdot 27$	33•50	33'19	$34 * 43$	33•52	33.88	$34 * 24$	32-26	34*72	

## At $\mathbf{X}$ (Ádamsáb)

December 1863; observed by Captain B. R. Branfil with Troughton and Simms' 24-inch Theodolite No. 1.


At XI (Yërrakŏnda)
March 1862; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-ïnch Theodolite No. 1.

Angle between	Circle readings, telescope being set on VIII (Mániam)  										$M=$ Mean of Groups   ${ }^{0}=$ Relative Weight   C = Concluded Angle
```VIII (Mániam) and IX (Kotapa)```	 										$\begin{aligned} & M=30^{\prime \prime} \cdot 75 \\ & w=9 \cdot 05 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=48^{\circ} 26^{\prime} 30^{\prime \prime} \cdot 75 \end{aligned}$
	31.6	31•40	$30 \cdot 35$	$30 \cdot 63$	$30 \cdot 53$	$30 \cdot 81$	32.23	29.52	31•56	28.83	
$\begin{aligned} & \text { IX (Kotapa) } \\ & \text { and } \\ & \text { XIV (Dánapa) } \end{aligned}$	 h 25.60										$\begin{aligned} & M=24^{\prime \prime} \cdot 79 \\ & w=13 \cdot 33 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=4^{\circ} \quad 3^{\prime} 24^{\prime \prime} \cdot 80 \end{aligned}$
	$25 \cdot 8$	24.11	24•35	$24 * 09$	24*15	$25 \cdot 36$	24*89	25.44	23.92	$25 \cdot 67$	

At XII (Pálapáru)

January 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XIII (Babbe̊palle) $130^{\circ} 42^{\prime} \quad 810^{\circ} 48^{\prime} \quad 209^{\circ} 54^{\prime} \quad 29^{\circ} 55^{\prime} \quad 289^{\circ} 6^{\prime} \quad 109^{\circ} 7^{\prime} \quad 8^{\circ} 18^{\prime} \quad 188^{\circ} 19^{\prime} \quad 87^{\circ} 30^{\prime} \quad 267^{\circ} 31^{\prime}$										M-Mean of Groups ${ }^{2}$ - Relative Weight C = Oonaluded Anglo
$\begin{gathered} \text { XIII (Babbæpalle) } \\ \text { and } \\ \text { IX (Kotapa) } \end{gathered}$											$\begin{aligned} M & =53^{\prime \prime \cdot} \cdot 89 \\ w & =8 \cdot 04 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =60^{\circ} 19^{\prime} 53^{N \cdot} \cdot 87 \end{aligned}$
	54•80	53:96	52•69	52•27	54*49	$54 \cdot 21$	$53 \cdot 43$	54.41	$54 \cdot 62$	53.98	
IX (Kotapa) and X (Ảdamsáb)											$\begin{aligned} & M=37^{\prime \prime} \cdot 32 \\ & w=12 \cdot 92 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=70^{\circ} 21^{\prime} 37^{\prime \prime} \cdot 33 \end{aligned}$
	36•39	36•98	38•97	37•53	$37^{\circ 24}$	36•95	37*32	37*33	36•60	$37 \cdot 86$	

At XIII (Babběpalle)

December 1863; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch
Theodolite No. 1.

Angle between	Circle readings, telescope being set on XVI (Faranguldinne) 										$\boldsymbol{M}=$ Mean of Groupa $w_{0}=$ Relative Weight $C=$ Concluded Angle
XVI (Faranguldinne) and XV (Medaramétla)											$\begin{aligned} & M=61^{\prime \prime} \cdot 60 \\ & w=19 \cdot 03 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=45^{\circ} 33^{\prime} 1^{\prime \prime} \cdot 60 \end{aligned}$
	61.6	61•98	$61 \cdot 55$	$60 \cdot 78$	$62 \cdot 63$	$61 \cdot 87$	61.76	61.53	6r*07	6ı19	
```XV (Medaramêtla) and XIV (Dánapa)```	 										$\begin{aligned} & M=39^{\prime \prime} \cdot 26 \\ & w=8 \cdot 25 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=56^{\circ} 42^{\prime} 39^{\prime \prime} \cdot 27 \end{aligned}$
	$39^{1}$	38.33	40•29	$40 \cdot 23$	38•68	37'90	$39^{\circ} 86$	41•07	38.38	$.38^{8 \cdot 75}$	


At XIII (Babbĕpalle)-(Continued).									
Angle between	Circle readings, telescope being set on XVI (Faranguldinne)								$\begin{aligned} & M=\text { Mean of Groupe } \\ & w=\text { Relative Weight } \\ & C=\text { Concladed } \Delta \text { ngle } \end{aligned}$
$\begin{aligned} & \text { XIV (Dánapa) } \\ & \text { and } \\ & \text { IX (Kotapa) } \end{aligned}$									$\begin{aligned} & M=55^{\prime \prime} \cdot 53 \\ & w=21 \cdot 70 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=70^{\circ} 32^{\prime} 55^{\prime \prime} \cdot 51_{1} \end{aligned}$
	55.46	$\begin{array}{llll}55 & 36 & 55 & 20\end{array}$	55*03	$55 \cdot 84$	$55^{\circ 26}$	54•97	56•16	56•16	
$\begin{aligned} & \text { IX (Kotapa) } \\ & \text { and } \\ & \text { XII (Palapáru) } \end{aligned}$	 								$\begin{aligned} & M=51^{\prime \prime} \cdot 23 \\ & w=14 \cdot 66 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=76^{\circ} 19^{\prime} 51^{\prime \prime} \cdot 23 \end{aligned}$
	50.88	$52 \cdot 07 \quad 51 \cdot 66 \quad 50 \cdot 77$	52.44	50•88	51-06	5132	50.06	51.20	
At XIV (Dánapa)   *March 1862; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.   $\dagger$ December 1863; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.									
Angle between	Circle readings, telescope being set on XI (Yërrakŏnda)   $\begin{array}{llllllllll}139^{\circ} 27^{\prime} & 319^{\circ} 27^{\prime} & 218^{\circ} 38^{\prime} & 38^{\circ} 88^{\prime} & 2977^{\circ} 51^{\prime} & 117^{\circ} 51^{\prime} & 17^{\circ} 3^{\prime} & 197^{\circ} \mathbf{3}^{\prime} & 96^{\circ} 15^{\prime} & 276^{\circ} 15^{\prime}\end{array}$								$\begin{aligned} & M=\text { Men of Grope } \\ & \text { wo }=\text { Relative Weight } \\ & C=\text { Concluded } \Delta \text { nglo } \end{aligned}$
$\begin{gathered} \text { XI (Y̌rrrakőnda) } \\ \text { and } \\ \text { IX (Kotapa) } \end{gathered}$	 								$\begin{aligned} & M=41^{\prime \prime} \cdot 4^{8} \\ & w=8 \cdot 47 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=78^{\circ} 12^{\prime} 41^{\prime \prime} \cdot 48 \end{aligned}$
	43•39	$\begin{array}{lll}40 & 15 & 42 \cdot 02 \quad 40 \cdot 93\end{array}$	42.27	$41 \cdot 89$	$41 \cdot 14$	40. 27	41.41	41.34	
$\begin{gathered} \stackrel{*}{\text { IX (Kotapa) }} \\ \text { and } \\ \text { XIII (Babbępalle) } \end{gathered}$									$\begin{aligned} & M=3^{\prime \prime} \cdot 82 \\ & w=7 \cdot 95 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=61^{\circ} 13^{\prime} 3^{\prime \prime} \cdot 82 \end{aligned}$
	$3 \cdot 24$	$\begin{array}{lll}4.30 & 2.47 & 3.89\end{array}$	$5 \cdot 00$	$3 \cdot 18$	$2 \cdot 76$	$4 \cdot 89$	$2 \cdot 90$	5.54	
Circle readings, telescope being set on Referring Mark  									$\begin{aligned} & M=11^{\prime \prime} \cdot 94 \\ & w=10 \cdot 48 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=56^{\circ} 48^{\prime} 11^{\prime \prime} \cdot 93 \end{aligned}$
$\begin{gathered} \stackrel{\dagger}{\text { Referring Mark }} \begin{array}{c} \text { and } \\ \text { XIII (Babbypalle) } \end{array} \end{gathered}$	 								
	. ${ }^{2} \cdot 06$	$10.59 \quad 11 \cdot 01 \quad 13.13$	10.85	12.35	12.61	12.44	$12 \cdot 67$	11.68	

## At XIV (Dánapa)-(Continued).

Angle between											
	$\begin{aligned} & l 40^{\circ} 0 \\ & l 39^{\circ} \end{aligned}$	$\begin{gathered} 7 \\ 40 \cdot 72 \\ 41 \cdot 40 \end{gathered}$	$\begin{array}{r} l 41 \cdot 26 \\ l 40 \cdot 56 \end{array}$	$\begin{aligned} & l 39^{\circ} 14 \\ & l 38^{\circ} 76 \end{aligned}$	$\begin{aligned} & l \\ & 40 \cdot 82 \\ & 6 \\ & l \\ & 38 \cdot 82 \\ & 40 \cdot 72 \end{aligned}$	$\begin{array}{r} 41 \cdot 46 \\ 640 \cdot 98 \end{array}$	$\begin{aligned} & l 39 \cdot 86 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & 39^{\circ} 72 \\ & 38 \cdot 82 \end{aligned}$	$\begin{aligned} & l 39 \cdot 92 \\ & l \\ & 70 \cdot 12 \end{aligned}$	$\begin{array}{r} 7 \\ l \\ l \\ l \\ l \\ l \\ l \end{array} 38 \cdot 80$	$\begin{aligned} M & =40^{\prime \prime} \cdot 00 \\ w & =12 \cdot 28 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =75^{\circ} 8^{\prime} 40^{\prime \prime} \cdot \infty \end{aligned}$
	$39^{\circ} 5$	41-06	40'91	$38 \cdot 95$	40'12	41.22	$39^{*} 42$	39*27	40*02	39'51	
$\begin{gathered} \stackrel{+}{\text { XV (Medaramětla) }} \underset{\text { and }}{\text { and }} \\ \text { XVII (Pěddakaltippa) } \end{gathered}$	 										$\begin{aligned} & M=56^{\prime \prime} \cdot 76 \\ & w=11 \cdot 57 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=82^{\circ} \circ^{\prime} 56^{\prime \prime} \cdot 77 \end{aligned}$
	$57^{2}$	$56 \cdot 85$	$57 \cdot 65$	$57 \times 40$	57•18	$54 \cdot 83$	57-02	57'15	$55 \cdot 88$	56.43	

## At XV (Medaramětla)

January 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 1^{\prime \prime}$	Circle $180^{\circ} 1^{\prime}$	$79^{\circ} 18^{\prime}$	s, telesco $259^{\circ} 13^{\prime}$	ope being $158^{\circ} 25^{\prime}$	set on $338^{\circ} 25^{\prime}$	XIX (C   $237^{\circ} \mathbf{3 6}^{\prime}$	hemaku   $57^{\circ} 37^{\prime}$	rti) $316^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	$\boldsymbol{M}=$ Mean of Groupe   ${ }^{\infty}=$ Kelative Weight   C = Concluded Angle
$\begin{gathered} \text { XIX (Chemakurti) } \\ \text { and } \\ \text { XVII (Pěddakaltippa) } \end{gathered}$											$\begin{aligned} & M=22^{\prime \prime} \cdot 68 \\ & w=5 \cdot 78 \\ & \frac{1}{w}=0 \cdot 17 \\ & C=51^{\circ} 58^{\prime} 22^{\prime \prime} \cdot 70 \end{aligned}$
	21.18	23*81	23.41	$24^{\prime} 84$	21*26	21.44	. $21 \times 82$	$22 \cdot 67$	23*79	$22 \cdot 62$	
```XVII (Pěddakaltippa) and XIV (Dánapa)```											$\begin{aligned} & M=20^{N} \cdot 30 \\ & w=8 \cdot 06 \\ & \frac{\mathbf{I}}{w}=0 \cdot 12 \\ & C=5^{\circ} 3^{\prime} 20^{\prime \prime} \cdot 30 \end{aligned}$
	21'10	19*97	$18 \cdot 84$	18.62	20*91	20•99	21.51	19.45	20•84	20'73	
$\begin{aligned} & \text { XIV (Dánapa) } \\ & \text { and } \\ & \text { XIII (Babbexpalle) } \end{aligned}$	 										$\begin{aligned} & M=42^{\prime \prime} \cdot 23 \\ & w=28 \cdot 20 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=48^{\circ} 8^{\prime} 42^{\prime \prime} \cdot 23 \end{aligned}$
	$43 \cdot 18$	41'92	$42 \cdot 86$	41•92	41-86	42•48	41星2	$42 \cdot 83$	41•59	41.76	

At XV (Medaramĕtla)-(Continued).											
Angle between											
```XIII (Babbæ̆palle) and XVI (Faranguldinne)```	 										$\begin{aligned} M & =23^{\prime \prime} \cdot 49 \\ w & =26 \cdot 30 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =74^{\circ} 52^{\prime} 23^{\prime \prime} \cdot 49 \end{aligned}$
	$22 \cdot 87$	$23 \cdot 63$	$22 \cdot 44$	24.04	24•02	$23 \cdot 13$	24.02	23.85	23.50	$23 \cdot 37$	
```XVI (Faranguldinne) and XVIII (Ongole)```	 										$\begin{aligned} M & =24^{\prime \prime} \cdot 82 \\ w & =15 \cdot 50 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =68^{\circ} \quad 5^{\prime} 24^{\prime \prime} \cdot 82 \end{aligned}$
	$25 \cdot 74$	24.71	$25 \cdot 84$	23.69	$25 \cdot 35$	24*92	23.73	24*31	24.73	25^{21}	
$\begin{aligned} & \text { XVIII (Ongole) } \\ & \text { and } \\ & \text { XIX (Chemakurti) } \end{aligned}$											$\begin{aligned} & M=46^{\prime \prime} \cdot 05 \\ & w=13 \cdot 60 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=65^{\circ} 22^{\prime} 46^{\prime \prime} \cdot 05 \end{aligned}$
	46•10	46•17	46•06	46•60	$45 \cdot 91$	46•29	46•57	46•92	$45 \cdot 68$	44^{16}	

At XVI (Faranguldinne)

January 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

At XVII (Pěddakaltippe)

January 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

At XVIII (Ongole)

January 1864; observed by Captain B. R. Branfil with Troughton and Sinms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXI (Puripád)										$M=$ Mean of Groups ω_{0} - Relative Weight C = Concluded Angle
$\begin{gathered} \text { XXI (Puripád) } \\ \text { and } \\ \text { XX (Netivaripálĕm) } \end{gathered}$	$\begin{aligned} & l 38 \cdot 22 \\ & l 37 \cdot 12 \\ & d 37 \cdot 57 \\ & d 36 \cdot 73 \end{aligned}$	$\begin{array}{rrr} \quad 4 \\ l & 35 \cdot 72 l \\ l 36.96 & l \\ d 33.58 & d \\ d 36.44 & d \end{array}$		$\begin{aligned} & l 37 \cdot 34 \\ & l \\ & l \\ & d 7 \cdot 26 \\ & d \\ & d \\ & d \\ & d 7 \cdot 16 \end{aligned}$	$\begin{aligned} & 36 \cdot 52 \\ & 37 \cdot 76 \end{aligned}$	$\begin{aligned} & l 390^{\circ} 06 \\ & l 38 \cdot 12 \end{aligned}$	$\begin{aligned} & l 36 \cdot 78 \\ & l 36 \cdot 36 \end{aligned}$		" l l 37 37.20 37	" $36 \cdot 80$ 35.50	$\begin{aligned} & M=37^{\prime \prime} \cdot 32 \\ & w=12 \cdot 32 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=4^{\circ} 8^{\prime} 37^{\prime \prime} \cdot 33 \end{aligned}$
	$37^{\circ} 41$	$36 \cdot 68$	$38 \cdot 44$	37'90	3714	38•59	$36 \cdot 57$	36-81	37'54	36•15	
$\begin{aligned} & \text { XX (Netivaripálem) } \\ & \text { and } \\ & \text { XIX (Chemakurti) } \end{aligned}$											$\begin{aligned} M & =44^{\prime \prime} \cdot 96 \\ w & =7 \cdot 04 \\ \frac{\mathbf{I}}{w} & =0 \cdot 14 \\ C & =58^{\circ} 44^{\prime} 44^{\prime \prime} \cdot 98 \end{aligned}$
	$44 \cdot 85$	46•60	$45^{\prime 2}$	44*88	$45 \cdot 87$	43'17	43*03	$45^{\circ} 07$	$45 * 24$	$45 \cdot 60$	

At XVIII (Ongole)-(Continued).											
Angle between	Circle readings, telescope being set on XXI (Puripád)										$M=$ Mean of Groupe $w^{2}=$ Relntive Weight C $=$ Cuncluded Angle
XIX (Chemakurti) and XV (Medaramêtla)											$\begin{aligned} M & =34^{\prime \prime} \cdot 11 \\ w & =9 \cdot 82 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =51^{\circ} 45^{\prime} 34^{\prime \prime} \cdot 11 \end{aligned}$
	34•36	$33^{\circ} 28$	34*19	$32^{\circ} 42$	$34 * 86$	34*28	34*90	$33^{1} 16$	34*36	$35 \cdot 26$	
XV (Medaramêtla) and XVI (Faranguldinne)	 										$\begin{aligned} & M=44^{\prime \prime} \cdot 28 \\ & w=13 \cdot 10 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=50^{\circ} 4^{\prime} 44^{\prime \prime} \cdot 28 \end{aligned}$
	44*55	$44 \cdot 76$	43*97	45*37	43.42	45•50	$43 \cdot 84$	44•76	43.65	$42 \cdot 98$	
January 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between											
XVII (Pə̊ddakaltippa) and XV (Medaramětla)	 										$\begin{aligned} & M=49^{\prime \prime} \cdot 21 \\ & w=6 \cdot 00 \\ & \frac{1}{w}=0 \cdot 17 \\ & C=83^{\circ} 8^{\prime} 49^{\prime \prime} \cdot 21 \end{aligned}$
	49•16	48•73	48-03	47*07	50'55	50:23	$49 \cdot 43$	50•76	50.06	48.04	
$\begin{gathered} \text { XV (Medaram®ttla) } \\ \text { and } \\ \text { XVIII (Ongole) } \end{gathered}$											$\begin{aligned} M & =43^{N} \cdot 02 \\ w & =8 \cdot 4 \mathrm{I} \\ \frac{1}{w} & =0 \cdot 12 \\ C & =62^{\circ} 51^{\prime} 42^{N} \cdot 99 \end{aligned}$
	$43 \cdot 56$	42•08	44*52	$41 \cdot 85$	44*20	$43 \cdot 32$	$42 \cdot 09$	[42.35	43•18	43.06	
XVIII (Ongole) and XX (Netivaripalł̌m)											$\begin{aligned} & M=3^{\prime \prime} \cdot 91 \\ & w=15 \cdot 03 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=63^{\circ} 30^{\prime} 3^{\prime \prime} \cdot 93 \end{aligned}$
	437	$2 \cdot 82$	$4 * 44$	3•97	$3 \cdot 66$	$4 \cdot 36$	$4 \cdot 56$	3.76	3'44	$3 \cdot 71$	

At XIX (Chemakurti)-(Continued).

Angle between											
$\begin{aligned} & \text { XX (Netivaripálym) } \\ & \text { and } \\ & \text { XXII (Nishánkŏnda) } \end{aligned}$											$\begin{aligned} M & =28^{\prime \prime} \cdot 58 \\ w & =11 \cdot 54 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =62^{\circ} 5^{\prime} 28^{\prime \prime} \cdot 59 \end{aligned}$
	29*99	2714	$28 \cdot 25$	28.71	$28 \cdot 53$	28.38	29'19	$28 \cdot 85$	28.43	$28 \cdot 30$	

At XX (Netivaripalĕm)

February 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 1^{\prime}$	Circ $180^{\circ} 1^{\prime}$	e reading $79^{\circ} 12^{\prime}$	gs, telesc $259^{\circ} 13^{\prime}$	ope being $158^{\circ} 24^{\prime}$	g set on $338^{\circ} 25^{\prime}$	XIX (C $237^{\circ} 36^{\prime}$	Chemaku $57^{\circ} 87^{\prime}$	rti) $316^{\circ} 48^{\prime}$	$186^{\circ} 49^{\prime}$	M = Mean of Groupa ${ }^{20}=$ Relative Weight C $=$ Concluded $\mathbf{A n g l o}$
```XIX (Chemakurti) and XVIII (Ongole)```	$\begin{aligned} & l 12 \cdot 88 \\ & l 13 \cdot 12 \end{aligned}$	$\begin{aligned} & l 12.52 \\ & l 13.42 \end{aligned}$		$\begin{array}{ll} l & 13 \cdot 12 \\ l & 14 \cdot 46 \end{array}$	$l 12.86 ?$ $l 12.14$	$\begin{array}{rl} l & 13 \cdot 26 \\ l & 14 \cdot 28 \end{array}$		$n$ n198 13	$\prime \prime$    $l$ $12 \cdot 82$   $l$ 13	$\begin{array}{ll} l & 12 \cdot 38 \\ l & 12 \cdot 3 \\ \hline \end{array}$	$\begin{aligned} M & =13^{\prime \prime} \cdot 00 \\ w & =24 \cdot 20 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =57^{\circ} 45^{\prime} 13^{\prime \prime} \cdot 00 \end{aligned}$
	13.00	12.97	$13 \cdot 17$	13.79	12.50	13.77	12:70	12.67	$13 \cdot 10$	12.28	
$\begin{gathered} \text { XVIII (Ongole) } \\ \text { and } \\ \text { XXI (Puripád) } \end{gathered}$											$\begin{aligned} M & =48^{\prime \prime \cdot 17} \\ w & =14 \cdot 69 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =69^{\circ} 18^{\prime} 48^{\prime \prime} \cdot 17 \end{aligned}$
	48•36	48.64	48•10	48•99	47•53	48•15	$47 \cdot 32$	47`74	48•87	47•97	
$\begin{gathered} \text { XXI (Puripád) } \\ \text { and } \\ \text { XXIV (Kuche̋rla) } \end{gathered}$											$\begin{aligned} & M=34^{\prime \prime} \cdot 66 \\ & w=5 \cdot 11 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=71^{\circ} 33^{\prime} 34^{\prime \prime} \cdot 62 \end{aligned}$
	31•77	33'76	36•17	34*76	34*37	$34 * 44$	35.88	35*61	34*75	$35 \cdot 06$	
$\begin{aligned} & \text { XXIV (Kuchěrla) } \\ & \text { and } \\ & \text { XXIII (Pichěrla) } \end{aligned}$											$\begin{aligned} & M=11^{\prime \prime} \cdot 74 \\ & w=7 \cdot 43 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=35^{\circ} 28^{\prime} 11^{\prime \prime} \cdot 7^{2} \end{aligned}$
	1439	10.68	11.41	11.93	II•94	11•77	1I•91	10*95	10•93	11*52	

## At XX (Netivaripálĕm)-(Continued).



## At XXI (Puripád)

March 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.


## At XXII (Nishánkŏnda)

January 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between											
```XIX (Chemakurti) and XX (Netivaripálym)```	$l$ $7 \cdot 6$    $l$ 4 8   $l$ 6		$\begin{array}{ll} l & 5 \cdot 32 \\ l & 5 \cdot 18 \end{array}$	$\begin{array}{ll}\prime \prime \\ l & 4.54 \\ l & 7.02 \\ l & 2.16 \\ l & 3.72 \\ l & 3 \\ l & 3.76\end{array}$		$\begin{array}{ll} l \\ l \\ l & 7 \cdot 60 \end{array}$	$\begin{array}{cc}l & \prime \prime \\ l & 7.42 \\ l & 10.22 \\ l & 7.68 \\ l & 6.90 \\ l & 4.80 \\ l & 5.78\end{array}$	$\begin{array}{lc} \prime \prime \\ l & 6.62 \\ l & 6.54 \end{array}$	$\begin{array}{cc} \prime \prime \\ l & 4 \cdot 18 \\ l & 6 \cdot 14 \end{array}$	$\begin{array}{cc}  & \prime \prime \\ l & 8 \cdot 20 \\ l & 7 \cdot 48 \\ l & 5 \cdot 38 \end{array}$	$\begin{aligned} M & =6^{\prime \prime} \cdot 24 \\ w & =5 \cdot 85 \\ \frac{1}{v} & =0 \cdot 17 \end{aligned}$
	$6 \cdot 2$	6.64	$5 \cdot 25$	$4 * 24$	$6 \cdot 81$	$7 \cdot 38$	7-13	$6 \cdot 58$	5•16	7-02	
$\begin{gathered} \text { XX (Netivaripálém) } \\ \text { and } \\ \text { XXIII (Pichðrla) } \end{gathered}$											$\begin{aligned} & M=50^{\prime \prime} \cdot 69 \\ & w=5 \cdot 63 \\ & \frac{1}{v}=0 \cdot 18 \\ & C=68^{\circ} 56^{\prime} 50^{\prime \prime} \cdot 65 \end{aligned}$
	50.9	51:22	52•26	51•81	50'11	49'17	49'17	51•58	50'58.	50-06	

At XXIII (Pichěrla)

February 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

At XXIII (Pichĕrla)-(Continued).

Angle between	Circle readings, telescope being set on XXII (Nishánkǒnda)										$M=$ Mean of Groups w_{0} = Relative Weight $C=$ Concluded Angle
$\begin{gathered} \text { XXIV (Kuchðrla) } \\ \text { and } \\ \text { XXVII (Chákalakð̌nda) } \end{gathered}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} M & =39^{\prime \prime} \cdot 74 \\ w & =15 \cdot 50 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =57^{\circ} 33^{\prime} 39^{\prime \prime} \cdot 74 \end{aligned}$
	38.51	$40 \cdot 24$	$39^{\circ} 21$	$39^{\circ} 49$	$40 \cdot 63$	39*92	$39 * 38$	$40 \cdot 67$	$38 \cdot 85$	40'52	

At XXIV (Kuchěrla)

March 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

At XXIV (Kuchěrla)-(Continued).												
Angle between	Circle readings, telescope being set on XXVI (Kesavaram)										${ }_{w}=$ Mean of Groups ${ }^{0}=$ Relative Weight ${ }_{C}^{*}=$ Conaluded Δ nglo	
$\begin{gathered} \text { XXI (Puripad) } \\ \text { and } \\ \text { XXV (Darutippa) } \end{gathered}$	$\begin{array}{lllllllllllllllll}l & 7.60 & l & 9.34 & l & 7.78 & l & 6.82 & l & 6.88 & l & 7.22 & l & 6.80 & l & 6.18 & l \\ l & 7.98 & l & 6.98\end{array}$ 										$\left\lvert\, \begin{array}{l\|} M=6^{\prime \prime} \cdot 70 \\ w=11 \cdot 80 \\ \frac{1}{w}=0 \cdot 08 \\ C=47^{\circ} 48^{\prime} \\ 6^{\prime \prime \prime} \cdot 71 \end{array}\right.$	
	7*09	8.03	$6 \cdot 86$	6.76	$5 \cdot 88$	$6 \cdot 44$	6.30	$5 \cdot 38$	739	6.91		
$\begin{aligned} & \text { XXV (Darutippa) } \\ & \text { and } \\ & \text { XXVI (Kesaaaram) } \end{aligned}$	 										$\begin{aligned} & M=10^{\prime \prime} \cdot 67 \\ & w=10 \cdot 27 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=34^{\circ} 46^{\prime} 10^{\prime \prime} \cdot 67 \end{aligned}$	
	$\begin{array}{lllllllllll}10.83 & 11.86 & 10.61 & 9.96 & 12.06 & 10.37 & 10.24 & 9.46 & 9.51 & 11.76\end{array}$											
At XXV (Darutippa) March 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.												
Angle between	Circle readings, telescope being set on XXVI (Kesavaram) 										$M=$ Moan of Groupe © $C=$ Rolative Woight Concludod Anglo	
$\begin{aligned} & \text { XXVI (Kesavaram) } \\ & \text { and } \\ & \text { XXIV (Kuchërla) } \end{aligned}$	 										$\begin{aligned} & M=54^{\prime \prime \prime} \cdot 30 \\ & w=15 \cdot 50 \\ & \frac{\mathbf{I}}{w}=0 \cdot 06 \\ & C=65^{\circ} 27^{\prime} 54^{\prime \prime} \cdot 30 \end{aligned}$	
	55.23	$53 \cdot 84$	53.97	$53 \cdot 96$	$53 \cdot 56$	54.77	$53 \cdot 89$	$55^{\circ} 04$	54*06	54.65		
$\begin{gathered} \text { XXIV (Kucherrla) } \\ \text { and } \\ \text { XXI (Puripád) } \end{gathered}$	 										$\begin{aligned} & M=14^{\prime \prime} \cdot 37 \\ & w=7 \cdot 48 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=83^{\circ} 25^{\prime} 14^{\prime \prime} \cdot 3^{6} \end{aligned}$	
	$\begin{array}{lllllllllll}13.39 & 15.56 & 14.84 & 12.94 & 15.34 & 13.27 & 14.81 & 13.37 & 15.24 & 14.95\end{array}$											
At XXVI (Kesavaram) March 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1.												
Angle between	Circle readings, telescope being set on XXIX (Nishánbodu) $\begin{array}{llllllllll}251^{\circ} 30^{\prime} & 71^{\circ} 31^{\prime} & 330^{\circ} 43^{\prime} & 150^{\circ} 43^{\prime} & 49^{\circ} 54^{\prime} & 299^{\circ} 55^{\prime} & 129^{\circ} 6^{\prime} & 309^{\circ} 7^{\prime} & 208^{\circ} 18^{\prime} & 28^{\circ} 19^{\prime \prime}\end{array}$										$\begin{aligned} & M=\text { Mean of Groups } \\ & w=\text { Relative Woight } \\ & C=\text { Conduded } \Delta \text { ngle } \end{aligned}$	
XXIX (Nishánbodu) and XXVIII (Rájalli)											$\begin{aligned} & M=44^{\prime \prime} \cdot 6 \mathrm{I} \\ & w=37 \cdot 75 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=71^{\circ} 43^{\prime} 44^{\prime \prime} \cdot 6 \mathbf{I} \end{aligned}$	
	44.30	$44 \cdot 34$	$45 \cdot 36$	44*79	$44 \cdot 52$	44.71	$44 \cdot 84$	$44 \cdot 8 \mathrm{I}$	$44 \cdot 60$	$43 \cdot 84$		

At XXVII (Chákalakŏnda)-(Continued).

Angle between											
$\begin{gathered} \text { XXVI (Kesavaram) } \\ \text { and } \\ \text { XXVIII (Rájalli) } \end{gathered}$											$\begin{aligned} & M=20^{\prime \prime} \cdot 70 \\ & w=6 \cdot 94 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=61^{\circ} 37^{\prime} 20^{\prime \prime} \cdot 75 \end{aligned}$
	$20 \cdot 16$	18.80	20*99	20.03	21•73	20•58	20•34	21-13	21.85	21-38	
$\begin{aligned} & \text { XXVIII (Rájalli) } \\ & \text { and } \\ & \text { XXX (Yěrrakŏnda) } \end{aligned}$											$\begin{aligned} & M=12^{\prime \prime} \cdot 46 \\ & w=3 \cdot 84 \\ & \frac{1}{w}=0 \cdot 26 \\ & C=68^{\circ} 49^{\prime} 12^{\prime \prime} \cdot 48 \end{aligned}$
	1195	13^{19}	12•06	12.10	$12 \cdot 54$	14•17	14.73	$12 \cdot 35$	9•69	11.83	

At XXVIII (Rájalli)
March and April 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

At XXIX (Nishánbodu)-(Continued).

Angle between	Circle readings, telescope being set on XXXI (Kistama)										$M=$ Mean of Groups $v_{0}=$ Relative Weight $C=$ Concluded Angle
	$117^{\circ} 39^{\prime}$	$297{ }^{\circ} 40^{\prime}$	$196^{\circ} 51^{\prime}$	$16^{\circ} 52^{\prime}$	$276{ }^{\circ} \mathbf{3}^{\prime}$	$96^{\circ} 3^{\prime}$	$855^{\circ} 15^{\prime}$	$175^{\circ} 15^{\prime}$	$74^{\circ} 27^{\prime}$	$254^{\circ} 28^{\prime}$	
XXVIII (Rajalli) and XXVI (Kesavaram)	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=55^{\prime \prime} \cdot 06 \\ & w=12 \cdot 80 \\ & \frac{\mathbf{1}_{1}}{w}=0 \cdot 08 \\ & C=60^{\circ} 4^{\prime} 55^{\prime \prime} \cdot 06 \end{aligned}$
	54.85	55.06	54.42	$55^{\circ} 52$	56•03	56•03	53.71	54*49	54*31	56.22	

At XXX (Yĕrrakŏnda)

March 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

At XXXII (Pallakŏnda)-(Continued).												
Angle between	Circle readings, telescope being set on $X X X$ (Yerrakŏnda) 										$\begin{aligned} & \mathbb{M}=\text { Mean of Groupe } \\ & w=\text { Relative Weight } \\ & C=\text { Concluded Anglo } \end{aligned}$	
$\begin{gathered} * \\ \text { XXVII' (Rájalli) } \\ \text { and } \\ \text { XXXI (Kistama) } \end{gathered}$											$\begin{aligned} & M=16^{\prime \prime} \cdot 86 \\ & w=12 \cdot 78 \\ & \frac{1}{w}=0.08 \\ & C=54^{\circ} 51^{\prime} 16^{\prime \prime} \cdot 87 \end{aligned}$	
	$\cdot 15.51$	$17 \cdot 15$	$16 \cdot 18$	$16 \cdot 54$	1792	16.64	$16 \cdot 88$	17×79	$16 \cdot 38$	17.85		
$\begin{gathered} \stackrel{\dagger}{\text { XXXI }} \begin{array}{c} \text { (Kistama) } \\ \text { and } \\ \text { XXXIII (Vutukúr) } \end{array} \end{gathered}$	Circle readings, telescope being set on XXXI (Kistama) 										$\begin{aligned} & M=26^{\prime \prime} \cdot 39 \\ & w=10 \cdot 45 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=45^{\circ} 1^{\prime} 26^{\prime \prime} \cdot 41 \end{aligned}$	
	l41•78 $39^{\circ} 76$ $39^{\circ} 20$ l 3912 l 393 l $40 \cdot 18$ l $36 \cdot 56$ l $40 \cdot 90 l 38 \cdot 32 l 41 \cdot 46$ l $39^{\circ} 68$ $l 40$. 74 $l 40 \cdot 82$ l39́14										$\begin{aligned} & M=39^{\prime \prime} \cdot 79 \\ & w=5 \cdot 70 \\ & \frac{1}{w}=0 \cdot 18 \\ & C=54^{\circ} 11^{\prime} 39^{\prime \prime} \cdot 80 \end{aligned}$	
	$\begin{array}{lllllllllll}40 \cdot 73 & 39 \cdot 78 & 39 \cdot 40 & 40 \cdot 46 & 39 \cdot 73 & 39 \cdot 44 & 37 \cdot 31 & 41 \cdot 44 & 38 \cdot 71 & 40 \cdot 94\end{array}$											
January 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.												
Angle between	Circle readings, telescope being set on XXXI (Kistama) 											
$\begin{gathered} \text { XXXI (Kistama) } \\ \text { and } \\ \text { XXXIV (Bandalduru) } \end{gathered}$	$\boldsymbol{l} 24 \cdot 20 l 24 \cdot 26 l 25 \cdot 42 l 24 \cdot 04 l 23^{\prime} \cdot 28 l 26 \cdot 28 l 24 \cdot 22 l 22 \cdot 68 l 24 \cdot 82 l 25 \cdot 34$										$\begin{aligned} & M=24^{\prime \prime} \cdot 5^{8} \\ & w=20 \cdot 69 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=62^{\circ} 3^{\prime} 24^{\prime \prime} \cdot 57 \end{aligned}$	
	24.712	24.42	$25 \cdot 19$	24.34	24*00	25.68	23.97	$24 \cdot 18$	$24 \cdot 32$	25.03		
$\begin{gathered} \text { XXXIV (Bandalduru) } \\ \text { and } \\ \text { XXXVII (Gurramkŏnda) } \end{gathered}$	 										$\begin{aligned} & M=9^{\prime \prime} \cdot 91 \\ & w=32 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=77^{\circ} 8^{\prime} 9^{\prime \prime} \cdot 91 \end{aligned}$	
	$\begin{array}{llllllllll}9.86 & 9.97 & 9.22 & 9.82 & 9.62 & 10.09 & 9.35 & 10.18 & 10.45 & 10.53\end{array}$											

At XXXIV (Bandalduru)

January 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$146^{\circ} 25^{\prime}$	$\begin{array}{r} \text { Circl } \\ \mathbf{3 2 6 ^ { \circ }} 25^{\prime} \end{array}$	reading $225^{\circ} 87^{\prime}$, telesc $45^{\circ} 37^{\prime}$	pe being $304^{\circ} 49^{\prime}$	set on $124^{\circ} 49^{\prime}$	$\begin{aligned} & \mathrm{XXX} \bar{\prime} \\ & 24^{\circ} 1^{\prime} \end{aligned}$	$\begin{aligned} & \text { II }(\mathrm{Gu} \\ & 20 \mathbf{s}^{\circ} 1^{\prime} \end{aligned}$	ali) $103^{\circ} 13^{\prime}$	$288^{\circ} 18^{\prime}$	$M=$ Menn of Groups $v_{0}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
```XXXVIII (Gudali) and XXXVII (Gurramkŏnda)```	"	"	"	"							$\begin{aligned} M & =8^{\prime \prime} \cdot 13 \\ w & =9 \cdot 39 \\ \frac{1}{w} & =0 \cdot 11 \\ C & =34^{\circ} 43^{\prime} 8^{\prime \prime} \cdot 12 \end{aligned}$
	77.12 679	7 $l$ $l$ 8.12	$l$ $l$ 789 8.90	$l$ $l$ $l$ 8.12 8.14	$l$   $l$   $l$   $8 \cdot 92$   8	$\begin{aligned} & l 8 \cdot 38 \\ & l 8 \cdot 12 \end{aligned}$	$l 8.04$ $l$ 9	$\begin{array}{ll} l l \\ l & 6.12 \\ l & 6.04 \\ l & 8.24 \end{array}$	$\begin{array}{ll} l & 9 \cdot 78 \\ l & 9.38 \end{array}$	$l$ $l$ $l$ 8.12	
	7•51	$7 \cdot 64$	8-32	$7 \cdot 68$	9'15	$8 \cdot 25$	9*00	$6 \cdot 83$	9*58	730	

## At XXXIV (Bandalduru)-(Continued).

Angle between	Circle readings, telescope being set on XXXVIII (Gudali).										$M=$ Mean of Groups   $w_{0}=$ Relative Weight   C = Concluded Angle
XXXVII (Gurramkŏnda) and											$\begin{aligned} M & =22^{\prime \prime \prime} \cdot 76 \\ w & =35 \cdot 22 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =55^{\circ} 29^{\prime} 22^{\prime \prime} \cdot 75 \end{aligned}$
	22.41	23.50	23.27	$22 \cdot 62$	22.93	$22 \cdot 73$	$22 \cdot 50$	$22 \cdot 40$	$22 \cdot 58$	$22 \cdot 64$	
XXXIII (Vutukúr)   and XXXI (Kistama)	 										$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 5^{8} \\ & w=9 \cdot 07 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=5^{\circ} \cdot 11^{\prime} 58^{\prime \prime} \cdot 5^{6} \end{aligned}$
	$58 \cdot 85$	57-29	57•58	59 13	59*61	57`75	$57 \cdot 81$	$59 \cdot 89$	$59 \cdot 21$	58.71	

## At XXXV (Pálchĕrla)

January 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1.


## At XXXVI (Kayyur)

February 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXXV (Pálchěrla)										$M=$ Mean of Groupe   ${ }^{\infty}=\mathbf{R}=$ Relative Weight   C $=$ Concluded Angle
	$209{ }^{\circ} 29^{\prime}$	$29^{\circ} 29^{\prime}$	$288^{\circ} 40^{\prime}$	$108^{\circ} 40^{\prime}$	$7{ }^{\circ} 52^{\prime}$	$187^{\circ} 58^{\prime}$	$87^{\circ} 5^{\prime}$	$267{ }^{\circ} 5^{\prime}$	$166^{\circ} 17^{\prime}$	$846^{\circ} 16^{\prime}$	
$\begin{aligned} & \text { XXXV (Pálchěrla) } \\ & \text { and } \\ & \text { XXXIII (Vutukúr) } \end{aligned}$	"	"	"	"	*	"	"	"	"	"	$\begin{aligned} M & =19^{\prime \prime} \cdot 33 \\ w & =15 \cdot 90 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =60^{\circ} 41^{\prime} 19^{\prime \prime} \cdot 33 \end{aligned}$
	19'13	19*29	20'10	$19 \cdot 92$	18.79	19.91	$18 \cdot 79$	20'38	18.83	$18 \cdot 11$	

## At XXXVI (Kayyúr)-(Continued).

Angle between	Circle resdings, telescope being set on XXXV (Pálchěrla)										$\boldsymbol{M}=$ Mean of Groupe   *o = Relative Weight   C - Concluded Angle
XXXIII (Vutukúr)   and   XXXVII (Gurramkǒnda)		$\begin{aligned} & l 44 \cdot 14 \\ & l 43 \cdot 38 \end{aligned}$		$\begin{aligned} & l \\ & l \\ & l \end{aligned} 42.44$	$\begin{aligned} & 644^{\circ} 04 \\ & 45^{\circ} \cdot 34 \end{aligned}$	$\begin{aligned} & l 44 \cdot 60 \\ & l 43 \cdot 98 \end{aligned}$	$\begin{aligned} & l^{2 \cdot 14} 4{ }^{2} 45 \cdot 08 \end{aligned}$	$43 \cdot 80$ $643 \cdot 22$	$\begin{gathered} \bullet \\ l \\ l \\ 44 \cdot 70 \\ 44 \cdot 52 \end{gathered}$	$\begin{gathered} \prime \prime \\ 46 \cdot 12 \\ 45 \cdot 56 \end{gathered}$	$\begin{aligned} M & =44^{N \cdot} \cdot 23 \\ w & =10 \cdot 39 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =77^{\circ} \cdot 55^{\prime} 44^{\prime \prime} \cdot 22 \end{aligned}$
	$44 * 8$	$43 \cdot 76$	$43 \cdot 65$	$42 \cdot 56$	44*99	44*29	44*61	$43 \cdot 51$	44*61	$45^{\circ} 84$	
XXXVII (Gurramkðnda)   and   XL (Pillimedu)											$\begin{aligned} & M=48^{\prime \prime} \cdot 41 \\ & w=16 \cdot 40 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=70^{\circ} 5^{\prime} 48^{\prime \prime} \cdot 41 \end{aligned}$
	473	48* 44	48*41	$49^{\prime} 85$	49*00	48•16	$47^{\circ} 86$	48•80	48•70	47*49	

## At XXXVII (Gurramkŏnda)

January 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XL (Pillimedu)   $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 13^{\prime} \quad 259^{\circ} 13^{\prime} \quad 158^{\circ} 25^{\prime} \quad 388^{\circ} 25^{\prime} \quad 287^{\circ} 37^{\prime} \quad 57^{\circ} 36^{\prime} \quad 816^{\circ} 49^{\prime} \quad 186^{\circ} 49^{\prime}$									$\boldsymbol{M}=$ Mean of Groupe   $w_{0}=$ Relativo Weight   C = Concluded Angle
$\begin{gathered} \text { XL (Pillimedu) } \\ \text { and } \\ \text { XXXVI (Kayyúr) } \end{gathered}$	   h 28.52 h 29.08									$\begin{aligned} & M=28^{\prime \prime} \cdot 48 \\ & w=22 \cdot 09 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=52^{\circ} 42^{\prime} 28^{\prime \prime} \cdot 49 \end{aligned}$
	$27 \cdot 86 \quad 28 \cdot 98$	$28 \cdot 63$	29.29	$27 \cdot 85$	28.01	28•96	27`98	28.16	$29^{\circ} 07$	
$\begin{aligned} & \text { XXXVI (Kayyár) } \\ & \text { and } \\ & \text { XXXIII (Vutukúr) } \end{aligned}$										$\begin{aligned} & M=49^{\prime \prime} \cdot 73 \\ & w=6 \cdot 16 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=61^{\circ} 33^{\prime} 49^{\prime \prime} \cdot 71 \end{aligned}$
	$50 \cdot 64 \quad 48 \cdot 95$	50*72	49•59	49*08	$49 \cdot 62$	49*54	$49^{\circ} 09$	52.12	47*95	
```XXXIII (Vutukúr) and XXXIV (Bandalduru)```										$\begin{aligned} & M=28^{N} \cdot 46 \\ & w=6 \cdot 80 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=47^{\circ} \cdot 22^{\prime} 28^{\prime \prime} \cdot 46 \end{aligned}$
	27.60 28.10	$27 \cdot 67$	29.80	30*30	29*21	$28 \cdot 42$	$28 \cdot 53$	$26 \cdot 69$	28•32	

At XL (Pillimedu)-(Continued).

Angle between											
```XXXVII (Gurramkǒnda) and XXXIX (Åněpúdi)```	$\begin{aligned} & h 33 \cdot 58 \\ & h 33 \cdot 30 \end{aligned}$	$\begin{array}{ll} l & 32 \cdot 96 \\ l & 34 \cdot 9_{52} \end{array}$	$\begin{aligned} & h 35^{\prime} 14 \\ & h \\ & h 4^{\prime} 70 \end{aligned}$	h $32 \cdot 92$   h 33 . 70	$\begin{aligned} & h 33 \cdot 82 \\ & h_{33} \cdot 98 \end{aligned}$	$\begin{aligned} & l 33 \cdot 56 \\ & l \\ & l \end{aligned}$	$\begin{array}{r} l \\ l \\ l \\ 35^{\circ} \end{array}$	$\begin{aligned} & l \\ & l \\ & l \\ & 34 \cdot 34 \\ & \hline 56 \end{aligned}$	$\begin{aligned} & h_{33 \cdot} 38 \\ & h_{32} \cdot 58 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 32 \cdot 32 \\ l \\ 74 \cdot 34 \end{array}, ~ \end{aligned}$	$\begin{aligned} & M=33^{N} \cdot 86 \\ & w=20 \cdot 40 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=63^{\circ} 9^{\prime} 33^{N \cdot} \cdot 86 \end{aligned}$
	33.44	$33 \cdot 74$	34*92	$33^{\prime 3}$	33'90	$33 \cdot 90$	34*48	$34 * 45$	$33 \cdot 13$	$33 \cdot 33$	
XXXIX (Ãnĕpúdi)   and   XLI (Kambákamdurgam)	$h 1774$ $h 27$	h 2.60 $h 2.54$	h 2.28 $h 2.56$	h 2.68 h 2.80	$h 2 \cdot 22$ $h 1.84$	$\begin{array}{ll}h & \circ \\ l \\ \text { I }\end{array}$	$\begin{array}{ll} l & 3.64 \\ l & 0.80 \\ l & 1.84 \end{array}$	$\begin{array}{ll} l & 2.84 \\ l & 0.64 \\ l & 0.20 \end{array}$	$\begin{aligned} & h 1 \cdot 72 \\ & h 2 \cdot 54 \end{aligned}$	$h 2.20$ $l$ $l$	$\begin{aligned} & M=2^{\prime \prime} \cdot 18 \\ & w=18 \cdot 90 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=52^{\circ} 44^{\prime} 2^{\prime N} \cdot 16 \end{aligned}$
	$2 \cdot 22$	$2 \cdot 57$	$2 \cdot 42$	$2 \cdot 74$	$2 \cdot 03$	1.41	$2 \cdot 09$	$1 \cdot 23$	$2 \cdot 13$	$2 \cdot 93$	
XLI (Kambákamdurgam)   and   XLIII (Yerpet)	 										$\begin{aligned} & M=46^{\prime \prime} \cdot 37 \\ & w=17 \cdot 40 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=73^{\circ} 15^{\prime} 46^{\prime \prime} \cdot 37 \end{aligned}$
	47•19	$46 \cdot 33$	$45 \cdot 85$	46•06	$47^{\circ 21}$	$47 \times 33$	$45 \cdot 80$	$46 \cdot 05$	$45 \cdot 64$	$46 \cdot 23$	

## At XLI (Kambákamdurgam)

March 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 1^{\prime}$	$180^{\circ} 1^{\prime}$	cle readi $79^{\circ} 18^{\prime}$	ngs, tele $259^{\circ} 12^{\prime}$	ascope be $158^{\circ} 24^{\prime}$	ing set 838 ${ }^{\circ}$ 24'	n XL 237${ }^{\circ} 7^{\prime}$	Pillimed 67 ${ }^{\circ} 37^{\prime}$	u) $\mathbf{8 1 6 ^ { \circ }} \mathbf{4 8 ^ { \prime }}$	$186^{\circ} 48^{\prime}$	$M=$ Mean of Groups   $w_{0}=$ Relative Weight   C $=$ Ooncluded Angle
XL (Pillimedu) and	$h_{41} \cdot 76$   $l 40 \cdot 58$   $l 40 \cdot 74$   $l 41^{\prime} 54$   l 40 . 52	$\begin{aligned} & l 42 \cdot 16 \\ & l \\ & l \\ & l 2 \cdot 18 \\ & l \\ & l 3 \cdot 62 \\ & l \\ & 42 \cdot 40 \end{aligned}$	$\begin{gathered} n \\ h_{41} \cdot 52 \\ h_{42} \cdot 18 \\ l_{42} 44 \cdot 92 \\ l \\ l 41 \cdot 70 \end{gathered}$	$\begin{aligned} & h 40 \cdot 22 \\ & h_{43} 43 \\ & d 41 \cdot 35 \end{aligned}$	$\begin{aligned} & l 40 \cdot 76 \\ & l \\ & l \\ & l \\ & l \end{aligned}$	$h 40 \cdot 40$   $h 42 \cdot 68$   $l 41 \cdot 60$   h $40 \cdot 98$	$\begin{aligned} & l \\ & l \\ & l \\ & \hline 42 \cdot 68 \end{aligned}$	$\begin{aligned} & l 42 \cdot 94 \\ & l \\ & l \\ & l \\ & 42 \cdot 16 \\ & 4 \mathrm{I} \cdot 16 \end{aligned}$	$\begin{aligned} & l 41 \cdot 72 \\ & l \\ & l \\ & h 2 \cdot 84 \\ & h \\ & 41 \cdot 42 \end{aligned}$	$\begin{aligned} & l 40 \cdot 30 \\ & l \\ & 741 \cdot 62 \end{aligned}$	$\begin{aligned} & M=41^{\prime \prime} \cdot 7 \mathrm{I} \\ & w=16 \cdot 72 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=55^{\circ} \cdot 54^{\prime} 41^{\prime \prime} \cdot 73 \end{aligned}$
	41-03	42.59	$42 \cdot 58$	41•62	41-12	$41 \cdot 42$	$41 \cdot 69$	$42^{\circ} 09$	41*99	$40 \cdot 96$	
$\begin{aligned} & \text { XXXIX (Åněpúdi) } \\ & \text { and } \\ & \text { XLII (Jonangipálěm) } \end{aligned}$											$\begin{aligned} & M=49^{\prime \prime} \cdot 75 \\ & w=29 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=48^{\circ} 5^{\prime} 49^{\prime \prime} \cdot 74 \end{aligned}$
	$49^{\circ} 8 \mathrm{I}$	50.25	48•81	$49 \cdot 87$	49*46	50*43	50'04	49 37	$49 * 46$	50*01	


At XLI (Kambákamdurgam)-(Continued).											
Angle between											
XLII (Jonangipálĕm) and   XLIV (Rěttambedu)											$\begin{aligned} & M=52^{N} \cdot 19 \\ & w=12 \cdot 37 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=37^{\circ} 2^{\prime} 52^{\prime \prime} \cdot 21 \end{aligned}$
	52.5	52:74	52•16	51•73	$53 \cdot 72$	51.66	50•83	52.15	51•94	52.39	
XLIV (Ryttambedu) and XXXV (Chĕmbedu)	    										$\begin{aligned} & M=41^{N \cdot 05} \\ & \boldsymbol{w}=10 \cdot 79 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=45^{\circ} 27^{\prime} 41^{N \cdot} \cdot 02 \end{aligned}$
	$41 \times 0$	42'19	$40 \cdot 36$	41:27	40*48	41*91	41•20	41'15	41*65	39*23	
$\begin{gathered} \text { XXXV (Chĕmbedu) } \\ \text { and } \\ \text { XXXIII (Nagari) } \end{gathered}$	   h 18.40 l 20 -18 l21.20    d18.25l17.40 $l 20.86$ d17.58 h21.28 d18.98 d18.56   d 18.45 d19.98   d $20 \cdot 09 \mathrm{~d} 2 \mathrm{I} \cdot \mathrm{O}$   d 18.59   d $22 \cdot 38$   d 19.4 I										$\begin{aligned} & M=19^{\prime \prime} \cdot 3^{8} \\ & w=5 \cdot 75 \\ & \frac{1}{w}=0 \cdot 17 \\ & C=72^{\circ} 5^{6^{\prime}} 19^{\prime \prime} \cdot 3^{8} \end{aligned}$
	$18 \cdot 6$	18.26	21•05	$19 \times 7$	18•10	$19 \cdot 82$	$18 \cdot 45$	19.08	18.83	21.71	
$\begin{aligned} & \text { XXXIII (Nagari) } \\ & \text { and } \\ & \text { XLIII (Yerpet) } \end{aligned}$											$\begin{aligned} & M=25^{\prime \prime} \cdot 74 \\ & w=6 \cdot 82 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=62^{\circ} 5^{\prime} 25^{\prime \prime} \cdot 77 \end{aligned}$
	$26 \cdot 7$	27*82	23*97	$25 \cdot 23$	25*91	26:13	$25^{\circ} 09$	25.18	25.68	$25 \cdot 63$	
$\begin{aligned} & \text { XLIII (Yerpet) } \\ & \text { and } \\ & \mathbf{X I} \text { (Pillimedu) } \end{aligned}$											$\begin{aligned} M & =10^{\prime \prime} \cdot 15 \\ w & =8 \cdot 40 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =36^{\circ} 48^{\prime} 10^{\prime \prime} \cdot 14 \end{aligned}$
	$11 \cdot 3$	9.65	10*34	$9 \cdot 32$	10'10	9•39	11.41	10.87	.9•86	$9 \cdot 22$	

Norr.-Stations XXXIII (Nagari) and XXXV (Chěmbedu) appertain to the Madras Longitudinal Series.

## At XLII (Jonangipálĕm)

March 1865 ; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.


## At XLIII (Yerpet)

February 1865; observed by Captain B. R. Branfil with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$129^{\circ} 1$	$\begin{aligned} & \mathrm{Cir} \\ & 309^{\circ} 1^{\prime} \end{aligned}$	cle readi $208^{\circ} 12^{\prime}$	ngs, teles $28^{\circ} 12^{\prime}$	scope be   $287^{\circ} 24^{\prime}$	ing set $107^{\circ} 24^{\prime}$		Pillimedu)   $186^{\circ} 36^{\prime}$	$85^{\circ} 48^{\prime}$	$265^{\circ} 48^{\prime}$	$M=$ Mean of Groupa   ${ }^{\infty}$ - Relative Weight   C = Conoluded Angle
XL (Pillimedu)   and	$\begin{aligned} & h_{5} 5 \cdot 06 \\ & h \\ & 3.8 \mathrm{c} \end{aligned}$	$\begin{aligned} & h_{4} .56 \\ & h_{4} .84 \end{aligned}$	$\begin{aligned} & h \\ & h \\ & h \\ & 2 \cdot 88 \\ & 2 \cdot 88 \end{aligned}$	$\begin{array}{ll} l & 5 \cdot 16 \\ l & 3 \cdot 74 \end{array}$	$\begin{array}{ll} l \\ l & 4.58 \\ 4.92 \end{array}$	$\begin{array}{ll} l & 4 \cdot 38 \\ l & 3 \cdot 02 \end{array}$	$\begin{array}{ll} l \\ l & 4.62 \\ 5 \cdot 48 \end{array}$	$\begin{array}{ll} l & 4.48 \\ l & 4.70 \end{array}$	$\text { K } 4.70$ $h 5 \cdot 16$	$\begin{aligned} & 4.80 \\ & h \\ & h \\ & h \cdot 74 \end{aligned}$	$\begin{aligned} & M=4^{\prime \prime} \cdot 43 \\ & w=25 \cdot 00 \\ & \frac{1}{v}=0 \cdot 04 \\ & C=69^{\circ} 56^{\prime} 4^{\prime \prime} \cdot 43 \end{aligned}$
	$4 * 43$	$4 \cdot 70$	$3 \cdot 38$	$4 * 45$	4*75	3•70	5*05	4*59	$4 * 93$	4.27	
$\begin{aligned} & \text { XLI (Kambákamdurgam) } \\ & \text { and } \\ & \text { XXXIII (Nagari) } \end{aligned}$	   $h 35 \cdot 26$										$\begin{aligned} & M=36^{\prime \prime} \cdot 07 \\ & w=16 \cdot 13 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=59^{\circ} 3^{\prime} 3^{\prime \prime} \cdot 06 \end{aligned}$
	$36 \cdot 85$	35 36	35*56	36.51	$36 \cdot 69$	$35 \cdot 49$	35`49	36-24	35•62	36•92	

Notr.-Station XXXIII (Nagari) appertains to the Madras Longitudinal Series.


## At XXXIII (Nagari)

March 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.


Norz.-Stations XXXIII (Nagari) and XXXV (Chĕmbedu) appertain to the Madras Longitudinal Serien.

## At XXXV (Chěmbedu)

May 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.


## At XXXIX (Dhár)

December 1860; and January 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XLI (Sánjib)  										$M=$ Mean of Groups   so - Relative Weight   $\boldsymbol{C}=$ Concluded Angle
$\begin{gathered} \text { XLI (Sánjib) } \\ \text { and } \\ \text { XLV (Gundálamma) } \end{gathered}$	$\begin{aligned} & l 26 \cdot 8 \\ & l 26 \cdot 8 \end{aligned}$	$\begin{gathered} \prime \prime \\ l 26 \cdot \infty \\ l 25 \cdot 98 \end{gathered}$	$\begin{aligned} & h 28 \cdot 16 \\ & \text { h } 27 \cdot 54 \end{aligned}$	$\begin{gathered} n \\ h 28 \cdot 38 \\ h 27 \cdot 48 \end{gathered}$	$\begin{aligned} & 29 \cdot 18 \\ & 27.42 \\ & 28 \cdot 12 \end{aligned}$	$\begin{gathered} l 27 \cdot 12 \\ l 27 \cdot 18 \end{gathered}$	$\begin{gathered} " \\ l 27.98 \\ l 27.54 \end{gathered}$	$\begin{array}{ll} l & 24 \cdot 98 \\ l & 26 \cdot 58 \end{array}$	$l 29.76$ $l 29.06$	$l 29^{\circ} 68$ $l 29^{\circ} 54$	$\begin{aligned} & M=27^{\prime \prime} \cdot 65 \\ & w=5 \cdot 81 \\ & \frac{1}{w}=0 \cdot 17 \\ & C \doteq 79^{\circ} 11^{\prime} 27^{\prime \prime} \cdot 65 \end{aligned}$
	$26 \cdot 8$	25*99	$27 \cdot 85$	27•93	$28 \cdot 24$	2715	27•76	25 78	29*41	29*61	
$\begin{gathered} \text { XLV (Gundálamma) } \\ \text { and } \\ \text { XLVII (Pagulráyi) } \end{gathered}$	$\begin{array}{ll}l & 10.0 \\ l \\ l\end{array}$	$l 10 \cdot 42$ 10.86	h $10 \cdot 78$ $h$ 9	h 10004	$\begin{aligned} & h 7 \cdot 62 \\ & l \\ & 7 \cdot 54 \end{aligned}$	$\begin{array}{lll} l & 6 \cdot 18 \\ l & 7 \cdot 16 \end{array}$	$l$ $l$ $l$ 9 9	$\begin{array}{rr}l 11902 \\ l \\ 9 & 900\end{array}$	$\begin{array}{r} l 8 \cdot 44 \\ l \\ l \end{array}$	$\begin{aligned} & l 11 \cdot 22 \\ & l 10.66 \end{aligned}$	$\begin{aligned} & M=9^{\prime \prime} \cdot 48 \\ & w=5 \cdot 10 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=67^{\circ} 11^{\prime} 9^{\prime \prime \prime} \cdot 48 \end{aligned}$
	9*7	$10 \cdot 64$	10*00	10'16	7•58	$6 \cdot 67$	9*51	$10 \times 46$	9•07	10.94	

Nots.-Stations XXXIII (Nagari) and XXXV (Chĕmbedu) appertain to the Madras Longitudinal Series, and XXXIX (Dhár) and XII (Sánjib) to the Bider Longitudinal Series of the South-East Quadrilateral.

## At XLI (Sánjib)

December 1860; observed by Lieutenant J. P. Basevi, R.E., and Mr. R. Clarkson with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XLVI (Kappakonda)										$\mathbf{M}=$ Mean of Groups   $\omega_{0}=$ Relative Weight   C = Concluded Anglo
LXVI (Kappakŏnda)   and   XLV (Gundálamma)	$\begin{array}{lll} l & 14.34 & l \\ l & 14.58 & l \end{array}$			$\begin{aligned} & h 14.48 \\ & h 16.44 \end{aligned}$	$$	$\begin{gathered} " \\ l 18 \cdot 38 \\ l 15 \cdot 46 \\ h 16 \cdot 60 \end{gathered}$	$\begin{gathered} \prime \prime \\ h 17.54 \\ h_{15} 54 \\ h 15 \cdot 92 \end{gathered}$	$\begin{gathered} " \\ h 15 \cdot 80 \\ h 18.44 \\ h 17.68 \end{gathered}$	\% $l 12.90$ $l 14.68$	$\begin{gathered} " \\ l 14.20 \\ l 14.38 \end{gathered}$	$\begin{aligned} & M=15^{\prime \prime} \cdot 57 \\ & w=4 \cdot 19 \\ & \frac{1}{w}=0 \cdot 24 \\ & C=42^{\circ} 45^{\prime} 15^{\prime \prime} \cdot 60 \end{aligned}$
	14.46	1371	$16 \cdot 45$	$15 * 46$	1711	16.81	16*33	1731	$13 \times 79$	14.29	
$\begin{gathered} \text { XLV (Gundálamma) } \\ \text { and } \\ \text { XXXIX (Dhár) } \end{gathered}$	 										$\begin{aligned} M & =36^{\prime \prime} \cdot 24 \\ w & =12 \cdot 74 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =45^{\circ} 11^{\prime} 3^{\prime \prime \prime} \cdot 23 \end{aligned}$
	$35 \cdot 87$	37-29	$36 \cdot 82$	35 79	$36 \cdot 40$	$34 \cdot 83$	$35 \cdot 48$	36-13	37-25	$36 \cdot 50$	

## At XLV (Gundálamma)

January 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between		Circle readings, telescope being set on XLVII (Pagulráyi)									$\boldsymbol{M}=$ Mean of Groups   $w_{0}=$ Relative Weight   $C=$ Concluded Angle
$\begin{aligned} & \text { XLVII (Pagulráyi) } \\ & \text { and } \\ & \text { XXXIX (Dhár) } \end{aligned}$	$\prime \prime$ $h 59.32$ $l$ $l$	$\begin{gathered} \prime \prime \\ l \\ l \\ l \\ l \\ l \\ 58 \cdot 8 \cdot 84 \\ 55 \cdot 18 \end{gathered}$	$\begin{aligned} & l 58 \cdot 66 \\ & l \\ & 57 \cdot 86 \end{aligned}$	$\begin{gathered} \prime \prime \\ h_{58 \cdot 60} \\ h_{59} \cdot 28 \end{gathered}$	$\begin{gathered} \quad " \\ h 60 \cdot 86 \\ h 59 \cdot 74 \\ h 59 \cdot 62 \end{gathered}$	$n$ $l$ 79 $l$ 59 59 56		$\begin{aligned} & l 60 \cdot 36 \\ & l \\ & l \end{aligned}$	" $h$ $58 \cdot 26$ $h 88$	$\begin{gathered} " \\ h 59 \cdot 38 \\ h 56 \cdot 02 \\ h_{57} .52 \\ d 57 \cdot 70 \end{gathered}$	$\begin{aligned} & M=58^{\prime \prime} \cdot 98 \\ & w=5 \cdot 21 \\ & \frac{1}{w}=0 \cdot 19 \\ & C=49^{\circ} 38^{\prime} 58^{\prime \prime} \cdot 96 \end{aligned}$
	59*07	56•75	58.26	58•94	60.07	59*54	61•16	$59 \cdot 87$	58.51	$57 \cdot 66$	
$\begin{gathered} \text { XXXIX (Dhár) } \\ \text { and } \\ \text { XLI (Sánjib) } \end{gathered}$											$\begin{aligned} & M=57^{\prime \prime} \cdot 5^{2} \\ & w=9 \cdot 05 \\ & \frac{\mathrm{I}}{w}=0 \cdot 1 \mathrm{II} \\ & C=55^{\circ} 3^{\prime} 57^{\prime \prime} \cdot 5 \mathrm{I} \end{aligned}$
	57*00	$58 \cdot 15$	$57 \cdot 67$	56.43	56.31	5719	$57 \times 48$	57•07	$59 \cdot 62$	58.29	
$\begin{gathered} \text { XLI (Sánjib) } \\ \text { and } \\ \text { XLVI (Kappakŏnda) } \end{gathered}$											$\begin{aligned} & M=60^{\prime \prime} \cdot 45 \\ & w=10 \cdot 71 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=5 I^{\circ} 46^{\prime} 0^{\prime \prime} \cdot 47 \end{aligned}$
	$60 \cdot 42$	$60 \cdot 42$	60•88	61.46	59•68	59*06	59*74	60*55	61 30	61.03	

Note, -Stations XXXIX (Dhár) and XLI (Sánjib) appertain to the Bider Longitudinal Series of the South-East Quadrilateral.

## At XLV (Gundálamma)-(Continued).

Angle between	Circle readings, telescope being set on XLVII (Pagulráyi)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}$ = Relative Weight   C $=$ Concluded Angle
$\begin{aligned} & \text { XLVI (Kappakŏnda) } \\ & \text { and } \\ & \text { XLVIII (Nágal) } \end{aligned}$	$\begin{aligned} & h 23 \cdot 8 \\ & h 23 \cdot 5 \end{aligned}$	$\begin{gathered} " \\ h 23 \cdot 10 \\ l 23 \cdot 20 \end{gathered}$	$\begin{gathered} " \prime \\ l 26 \cdot 00 \\ l 23 \cdot 72 \\ l \\ 24.70 \end{gathered}$	$\begin{gathered} " \\ h 22.56 l \\ h 26 \cdot 20 l \\ l 23.64 \end{gathered}$	$\begin{gathered} " \prime \\ l 23 \times 44 \\ l 24.02 \end{gathered}$	$\begin{array}{lll} l & 23.34 \\ l & 23 . & 20 l \end{array}$	$\begin{aligned} & l 22 \cdot 68 \\ & 24 \cdot 08 \end{aligned}$	$\begin{gathered} \prime \prime \\ l 24.74 \\ l 22.84 \\ l \\ l \end{gathered} 24.56$	$\begin{gathered} " 1 \\ h 23 \cdot 02 \\ h 24 \cdot 36 \end{gathered}$	$\begin{gathered} " \prime \\ \text { h } 23 \cdot 30 \\ \text { h } 21.94 \end{gathered}$	$\begin{aligned} & M=23^{\prime \prime} \cdot 67 \\ & w=15 \cdot 40 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=77^{\circ} 3^{6^{\prime}} 23^{\prime \prime} \cdot 71 \end{aligned}$
	23.6	$23 \cdot 15$	24*81	24*13	$23 \cdot 73$	23.42	23*38	24.05	$23 \cdot 69$	$22 \cdot 62$	
XLVIII (Nágal) and XLIX (Kalimámidi)	 										$\begin{aligned} M & =3^{\prime \prime \prime} \cdot 47 \\ w & =6 \cdot 32 \\ \frac{1}{w} & =0 \cdot 16 \\ C & =65^{\circ} 24^{\prime} 38^{\prime \prime} \cdot 46 \end{aligned}$
	$40 \cdot 4$	$38 \cdot 73$	37•93	3711	$38 \cdot 49$	$38 \cdot 07$	$38 \cdot 73$	. $36 \cdot 97$	$37 \cdot 82$	40'40	
```XLIX (Kalimámidi) and XLVII (Pagulráyi)```											$\begin{aligned} M & =60^{\prime \prime} \cdot 41 \\ w & =5 \cdot 92 \\ \frac{1}{w} & =0 \cdot 17 \\ C & =59^{\circ} 57^{\prime} 0^{\prime \prime} \cdot 41 \end{aligned}$
	59.6	61-33	$60 \cdot 45$	61•16	60.08	60.21	$57 \cdot 81$	59•74	$6 \mathrm{I} \cdot 64$	$62 \cdot 01$	

At XLVI (Kappakǒnda)

January 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XLVIII (Nágal) $\begin{array}{llllllllll}226^{\circ} & 59^{\prime} & 46^{\circ} 59^{\prime} & 306^{\circ} & 11^{\prime} & 126^{\circ} 11^{\prime} & 25^{\circ} & 23^{\prime} & 205^{\circ} & 23^{\prime} \\ 104^{\circ} & 36^{\prime} & 284^{\circ} 36^{\prime} & 183^{\circ} 47^{\prime} & 8^{\circ} 48^{\prime}\end{array}$										$M=$ Mean of Groups $w_{0}=$ Relative Weight C $=$ Concluded Angle
$\begin{gathered} \text { XLVIII (Nágal) } \\ \text { and } \\ \text { XLV (Gundálamma) } \end{gathered}$											$\begin{aligned} M & =47^{\prime \prime} \cdot 4 \mathrm{I} \\ w & =8 \cdot 12 \\ \frac{\mathrm{I}}{w} & =0 \cdot 12 \\ C & =47^{\circ} 32^{\prime} 47^{\prime \prime} \cdot 41 \end{aligned}$
	45'94	$46 \cdot 32$	47×46	$47 * 03$	47×48	49×23	48•14	48•17	46•12	48'19	
$\begin{gathered} \text { XLV (Gundálamma) } \\ \text { and } \\ \text { XLI (Sánjib) } \end{gathered}$	 										$\begin{aligned} & M=45^{\prime \prime} \cdot 17 \\ & w=3 \cdot 5^{2} \\ & \frac{1}{w}=0 \cdot 28 \\ & C=85^{\circ} 28^{\prime} 45^{\prime \prime} \cdot 17 \end{aligned}$
	46•68	$47 \cdot 02$	44*20	44*86	$42 \cdot 83$	$43 \cdot 15$	$44 \cdot 29$	$45^{\prime} 31$	47'77	45.60	

Notr.-Station XLI (Sánjib) appertains to the Bider Longitudinal Series of the South-East Quadrilateral.

At XLVII (Pagulráyi)

January 1861 ; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

At XLVIII (Nágal)

Jamuary 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$105^{\circ} 28^{\prime}$	$285^{\circ} 28^{\prime}$	ircle rea $184^{\circ} 39^{\prime}$	dings, te $4^{\circ} 89^{\prime}$	lescope $263^{\circ} 52^{\prime}$	being set $83^{\circ} 52^{\prime}$	$\begin{aligned} & \text { on LI (] } \\ & 843^{\circ} 4^{\prime} \end{aligned}$	Elangoi) $163^{\circ} 4^{\prime}$	$62^{\circ} 16^{\prime}$	$242^{\circ} 16^{\prime}$	$\boldsymbol{M}=$ Mean of Groups ${ }_{\infty}=$ Relative Weight C = Concluded Angle
$\begin{gathered} \text { LI (Elangoi) } \\ \text { and } \\ \mathrm{L} \text { (Nallaǩ̌nda) } \end{gathered}$	 h $39 \cdot 18$ ${ }^{l} 35^{\circ} 9^{8}$										$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 69 \\ & w=4 \cdot 74 \\ & \frac{1}{w}=0 \cdot 21 \\ & C=5^{\circ} 7^{\prime} 38^{\prime \prime} \cdot 69 \end{aligned}$
	$39^{\circ} 5^{2}$	40•68	39*37	$38 \cdot 57$	$39 \cdot 80$	$39 * 36$	38*43	$37 * 80$	37*53	$35 * 85$	
$\begin{gathered} \mathrm{I}_{6} \text { (Nallaǩ̌nda) } \\ \text { and } \\ \text { XLIX (Kalimámidi) } \end{gathered}$	h 8.28 h $6 \cdot 92$ h $7 \cdot 64$	$\begin{aligned} & h 7 \cdot 18 \\ & h 8 \cdot 26 \\ & l \\ & 7.72 \end{aligned}$	$\begin{aligned} & h_{4} \cdot 24 \\ & h 3 \cdot 62 \end{aligned}$	$\begin{aligned} & h_{4} 4^{\prime} 82 \\ & h_{5} \cdot 0 \end{aligned}$	$\begin{aligned} & h 4^{\circ} 14 \\ & h \\ & h \end{aligned}$	$\begin{aligned} & h 5 \cdot 22 \\ & h \\ & 4 \cdot 76 \end{aligned}$	$\begin{array}{ll}l & 3 \\ l & 3 \\ 3 & 36\end{array}$	$\begin{array}{ll}l \\ l & 4.42 \\ 3\end{array}$	$h 7.76$ $h 5 \% 40$	$\begin{array}{ll}l & 7 \\ l \\ 7 & 7\end{array}$	$\begin{aligned} & M=5^{\prime \prime} \cdot 3^{6} \\ & w=3 \cdot 42 \\ & \frac{1}{w}=0 \cdot 29 \\ & C=88^{\circ} 19^{\prime} 5^{\prime \prime} \cdot 37 \end{aligned}$
	7.61	$7{ }^{72}$	3•93	4.91	$4^{\circ} 04$	4•99	$3 \cdot 38$	$3 \cdot 89$	5•58	$7 \cdot 55$	
$\begin{gathered} \text { XLIX (Kalimámidi) } \\ \text { and } \\ \text { XLV (Gundálamma) } \end{gathered}$											$\begin{aligned} & M=25^{\prime \prime \prime} \cdot 43 \\ & w=8 \cdot 77 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=55^{\circ} 15^{\prime} 25^{\prime \prime} \cdot 44 \end{aligned}$
	24.30	$25 \cdot 23$	$26 \cdot 44$	24*32	25*74	$25^{\circ} 09$	$26 \cdot 39$	26.91	$25 \cdot 27$	24.58	

Nore.-Station XXXIX (Dhar) appertains to the Bider Longitudinal Series of the South-East Quadrilateral.

At XLVIII (Nágal)—(Continued).

At XLIX (Kalimámidi)

February 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$183^{\circ} 3$	$\begin{gathered} \text { Circl } \\ \mathbf{8}^{\circ} \mathbf{3 5 ^ { \prime }} \end{gathered}$	e reading $262^{\circ} 48^{\prime}$	s, teles $82^{\circ} 48^{\prime}$	ope being $842^{\circ} 0^{\prime}$	g set on $162^{\circ}{ }^{\prime}$	XLVII $61^{\circ} 11^{\prime}$	(Pagulrá $241^{\circ} 11^{\prime}$	áyi) $140^{\circ} 24^{\prime}$	$820^{\circ} 24^{\prime}$	\boldsymbol{M} - Mean of Groups ${ }^{20}=$ Relative Weight $C=$ Concluded Angle
$\begin{aligned} & \text { XLVII (Pagulráyi) } \\ & \text { and } \\ & \text { XLV (Gundálamma) } \end{aligned}$											$\begin{aligned} & M=50^{\prime \prime} \cdot 76 \\ & w=5 \cdot 02 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=71^{\circ} 42^{\prime} 50^{\prime \prime} \cdot 76 \end{aligned}$
	$49^{\circ} 3$	51•58	$49^{\circ} 77$	49 ${ }^{15}$	50.84	$49^{\circ} 09$	$52 \cdot 69$	51*97	$50 \cdot 89$	52.25	
```XLV (Gundálamma) and XLVIII (Nágal)```	 										$\begin{aligned} & M=58^{\prime \prime} \cdot 62 \\ & w=5 \cdot 20 \\ & \frac{1}{w}=0 \cdot 19 \\ & C=59^{\circ} 19^{\prime} 58^{\prime \prime} \cdot 62 \end{aligned}$
	$59^{\circ} 4$	$60 \cdot 67$	$59 \cdot 69$	59*92	57*99	59*45	56*47	$57 \cdot 84$	57*58	57•18	
$\begin{aligned} & \text { XLVIII (Nágal) } \\ & \text { and } \\ & \mathbf{L} \text { (Nallakǒnda) } \end{aligned}$	   h 19 - 10 ${ }^{1} 17$ 10										$\begin{aligned} & M=17^{\prime \prime \cdot} \cdot 72 \\ & w=3 \cdot 52 \\ & \frac{1}{w}=0 \cdot 28 \\ & C=45^{\circ} 22^{\prime} 17^{\prime \prime} \cdot 72 \end{aligned}$
	$19^{\circ} 4$	$19 \cdot 43$	$15 \cdot 97$	17*61	$16 \cdot 41$	$16 \cdot 05$	$16 \cdot 69$	16.31	19.57	19.67	
$\begin{gathered} \text { L (Nallakŏnda) } \\ \text { and } \\ \text { LII (Kappa) } \end{gathered}$	 										$\begin{aligned} & M=23^{\prime \prime} \cdot 96 \\ & w=14 \cdot 70 \\ & \frac{\mathbf{I}}{w}=0 \cdot 07 \\ & C=43^{\circ} 45^{\prime} 23^{\prime \prime} \cdot 96 \end{aligned}$
	24.	23.01	24.25	$23 \cdot 68$	24.68	$25 \cdot 37$	23*79	23.23	23.28	$23 \cdot 52$	

## At L (Nallakŏnda)

February 1861 ; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$$	le readin $79^{\circ} 12^{\prime}$	gs, teles   $259^{\circ} 12^{\prime}$	cope bein   $158^{\circ} 24^{\prime}$	$838^{\circ} \mathbf{2 4}$	$\begin{aligned} & \text { XLVII } \\ & 297^{\circ} 87^{\prime} \end{aligned}$	$\begin{aligned} & \text { I (Nágal) } \\ & 57^{\circ} 87^{\prime} 8 \end{aligned}$	)   $816^{\circ} 49^{\prime}$		$M=$ Mean of Groups   $\infty=$ Relative Weight   C = Concluded Angle
XLVIII (Nágal) and   LI (Elangoi)										$\begin{aligned} & M=53^{\prime \prime} \cdot 59 \\ & w=4 \cdot 31 \\ & \frac{1}{w}=0 \cdot 23 \\ & C=80^{\circ} 15^{\prime} 53^{\prime \prime} \cdot 59 \end{aligned}$
	53*40 52.35	$53 \cdot 87$	52.28	56.43	$53 \cdot 89$	$5.5 * 24$	53*92	53'13	51*40	
LI (Elangoi) and   III (Náwilmětta)	   h 31 - $7^{2}$ h 29.38 h 27.92 h28.62									$\begin{aligned} M & =29^{\prime \prime} \cdot 90 \\ w & =5 \cdot 22 \\ \frac{1}{w} & =0 \cdot 19 \\ C & =41^{\circ} 29^{\prime} 29^{\prime \prime} \cdot 89 \end{aligned}$
	$30 \cdot 84 \quad 29.39$	31 73	3i 33	29.55	28.21	30.72	28.04	$28 \cdot 98$	$30 \cdot 24$	
LIII (Náwilmĕtta) and   LIV (Pothkŏnda)	$h_{59 \cdot 08} l 59 \cdot 64 h 60 \cdot 72 h 59 \cdot 92 h 59 \cdot 02 l 60 \cdot 30 h 60 \cdot 26 h 62 \cdot 24 h 60 \cdot 98 h 59 \cdot 12$    k $60 \cdot 50$									$\begin{aligned} M & =59^{\prime \prime} \cdot 98 \\ w & =9 \cdot 79 \\ \frac{1}{w} & =0 \cdot \cdot 10 \\ C & =60^{\circ} 34^{\prime} 59^{\prime \prime} \cdot 98 \end{aligned}$
	58.61 $\quad 59 \cdot 77$	59*59	59•60	59*06	$60 \cdot 40$	61.09	61•34	$60 \cdot 64$	$59 \cdot 65$	
```LIV (Pothkŏnda) and LII (Kappa)```	$l 62 \cdot 18 l 63 \cdot 94 h 61 \cdot 30 h 61 \cdot 36 h 61 \cdot 10 l 55 \cdot 72 h 60 \cdot 86 h 61 \cdot 46 h 64 \cdot 82 h 63 \cdot 92$  									$\begin{aligned} & M=62^{\prime \prime} \cdot 26 \\ & w=5 \cdot 28 \\ & \frac{\mathbf{I}}{w}=0 \cdot 19 \\ & C=76^{\circ} 53^{\prime} \quad 2^{\prime \prime} \cdot 27 \end{aligned}$
	$62.44 \quad 63.49$	$62 \cdot 18$	$63 \cdot 30$	$6 \mathrm{P} \cdot 87$	$59 \cdot 76$	$60 \cdot 59$	62.42	$63 \cdot 19$	63.34	
$\begin{gathered} \text { LII (Kappa) } \\ \text { and } \\ \text { XLIX (Kalimámidi) } \end{gathered}$										$\begin{aligned} & M=55^{N} \cdot 9^{8} \\ & w=5 \cdot 12 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=54^{\circ} 27^{\prime} 55^{\prime \prime} \cdot 98 \end{aligned}$
	$55^{\circ} 94 \quad 54.06$	57.91	57'18	56•07	$57 * 43$	$56 \cdot 72$	55*34	$55^{\circ} 03$	54.09	
```XLIX (Kalimámidi) and XLVIII (Nágal)```	   $l 38 \cdot 42$ h $39^{\circ} 06$ d $40^{\circ} 13$									$\begin{aligned} & M=37^{\prime \prime} \cdot 95 \\ & w=3 \cdot 03 \\ & \frac{\mathbf{I}}{w}=0 \cdot 33 \\ & C=46^{\circ} 18^{\prime} 37^{\prime \prime} \cdot 96 \end{aligned}$
	37*79 41*40	$35 \cdot 84$	$36 \cdot 49$	$37 \cdot 57$	$37 \cdot 85$	36-10	37.30.	$39 \cdot 27$	39*90	

## At LI (Elangoi)

March 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.


## At LII (Kappa)

February 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	Circle readings, telescope being set on XLIX (Kalimámidi)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{\infty}=\mathbf{R}=$ Relative Weight   C = Concluded Auglo
XLIX (Kalimámidi) and											$\begin{aligned} & M=42^{\prime \prime} \cdot 66 \\ & w=2 \cdot 80 \\ & \frac{1}{w}=0 \cdot 36 \\ & C=81^{\circ} 46^{\prime} 42^{\prime \prime} \cdot 66 \end{aligned}$
	$44 \cdot 3$	45.07	44*18	$43 \cdot 74$	44*34	$42 \cdot 08$	$40 \cdot 03$	40*68	40'76	41 38	
$L$ (Nallakornda) and LIV (Pothkǒnda)	    										$\begin{aligned} & M=48^{\prime \prime} \cdot 65 \\ & w=8 \cdot 50 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=49^{\circ} 6^{\prime} 48^{\prime \prime} \cdot 64 \end{aligned}$
	$47 \cdot 97$	48•05	47*99	49 70	-46.78	48•34	49*92	49'58	48•97	$49 \cdot 24$	

## At LIII (Náwilmĕtta)

March 1861; observed by Captain J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.


## At LIV (Pothkŏnda)

February and March 1861; observed by Lieutenant J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between											
$\begin{gathered} \text { LII (Kappa) } \\ \text { and } \\ \mathrm{L} \text { (Nallakŏnda) } \end{gathered}$	"	"	"	"	"	"	"	"	*	"	$\begin{aligned} & M=9^{N} \cdot 73 \\ & w=10 \cdot 40 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=54^{\circ} 0^{\prime} 9^{n \cdot 73} \end{aligned}$
	$\begin{aligned} & k 7 \cdot 94 \\ & h \\ & 7.62 \end{aligned}$	$\begin{aligned} & h_{10} \cdot 96 \\ & h_{11} \cdot 90 \end{aligned}$	$10 \cdot 50$ $l 1122$	$\begin{aligned} & l 9.32 \\ & l 0.78 \end{aligned}$	$\begin{aligned} & l 9.32 \\ & l 0.48 \end{aligned}$	$\begin{aligned} & l=76 \\ & l \\ & l \end{aligned}$	$\begin{aligned} & h 9 \cdot 60 \\ & h 8 \cdot 56 \end{aligned}$	$h_{10} 1022$ $h_{10} \cdot 24$	$\begin{aligned} & l 9.28 \\ & l 9.62 \end{aligned}$	$\begin{array}{rr} l & 10 \cdot 34 \\ l & 0.88 \end{array}$	
	778	11'18	10.86	9•55	$9 \cdot 40$	$9 \cdot 63$	9*08	10. 28	$9 \times 45$	10.11	

## At LIV (Pothkŏnda)-(Continued).

Angle between	Circle readings, telescope being set on LII (Kappa)   $121^{\circ} 39^{\prime} \quad 301^{\circ} 39^{\prime} \quad 200^{\circ} 51^{\prime} \quad 20^{\circ} 51^{\prime} \quad 280^{\circ} 3^{\prime} \quad 100^{\circ} 3^{\prime} \quad 859^{\circ} 15^{\prime} \quad 179^{\circ} 15^{\prime} \quad 78^{\circ} 28^{\prime} \quad 258^{\circ} 28^{\prime}$										K = Moan of Groups   ${ }^{*}=$ Relative Weight   C = Concluded Angle
$\begin{gathered} \text { L (Nallakǒnda) } \\ \text { and } \\ \text { LIII (Náwilmętta) } \end{gathered}$	 										$\begin{aligned} & M=60^{\prime \prime} \cdot 33 \\ & w=6 \cdot 20 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=71^{\circ} 22^{\prime} 0^{\prime \prime} \cdot 33 \end{aligned}$
	61.0	60•33	$60 \cdot 24$	$59 \cdot 32$	60.74	58•19	$60 \cdot 32$	59.07	62.40	61.60	
$\begin{aligned} & \text { LIII (Náwilmětta) } \\ & \text { and } \\ & \text { LV (Lachmipuram) } \end{aligned}$											$\begin{aligned} & M=20^{\prime \prime} \cdot 03 \\ & w=4 \cdot 54 \\ & \frac{1}{w}=0 \cdot 22 \\ & C=61^{\circ} 38^{\prime} 20^{\prime \prime} \cdot 01 \end{aligned}$
	19.3	19*98	20•00	$22 \cdot 00$	20.91	$21 \cdot 47$	20•92	$19 \times 74$	$18 \cdot 85$	1715	
$\begin{aligned} & \text { LV (Lachmipuram) } \\ & \text { and } \\ & \text { LVI (Adakŏnda) } \end{aligned}$	     $d_{51}$ 41 $l_{51}$ (76										$\begin{aligned} & M=49^{\prime \prime} \cdot 17 \\ & w=4 \cdot 84 \\ & \frac{1}{w}=0 \cdot 21 \\ & C=51^{\circ} 20^{\prime} 49^{\prime \prime} \cdot 19 \end{aligned}$
	$49^{\circ}$	48•94	$47 \cdot 82$	$48 \cdot 09$	$48 \cdot 27$	48•19	$48 \cdot 44$	49*58	51•13	51*82	

## At LV (Lachmipuram)

May 1861 ; observed by Captain J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

Angle between	$156^{\circ} 37{ }^{\prime}$	$836^{\circ} 37^{\prime}$	Circle re $235^{\circ} 48^{\prime}$	dings, t $55^{\circ} 49^{\prime}$	lescope $815^{\circ} 1^{\prime}$	being set   $135^{\circ} 1^{\prime}$	on LV   $84^{\circ} 18^{\prime}$	III (Aup $214^{\circ} 13^{\prime}$	pád)   $118^{\circ} 25^{\prime}$	$293^{\circ} 25^{\prime}$	$\boldsymbol{M}=$ Mean of Groups   $\infty=$ Relative Weight   C = Conoluded Anglo
LVIII (Aupád) and											$\begin{aligned} M & =22^{\prime \prime} \cdot 81 \\ w & =5 \cdot 82 \\ \frac{1}{w} & =0 \cdot 17 \\ C & =37^{\circ} 55^{\prime} 22^{\prime \prime} \cdot 81 \end{aligned}$
	21*32	23.42	23.60	22'18	21•97	$22 \cdot 48$	20*95	24*09	$23 \cdot 35$	24.77	
```LVII (Yědlagattu) and LVI (Adakŏnda)```	   $h_{52}{ }^{\prime} 94$   $l 51 \cdot 66$   $l 50.68$										$\begin{aligned} & M=5^{\prime \prime} \cdot 69 \\ & w=3 \cdot 53 \\ & \frac{1}{w}=0 \cdot 28 \\ & C=64^{\circ} 19^{\prime} 51^{\prime \prime} \cdot 69 \end{aligned}$
	54.98	53*29	51:13	52.45	50.63	50.66	50.62	$49^{*} 45$	52:20	51*51	

At LV (Lachmipuram)-(Continued).		
Angle between	Circle readings, telescope being set on LVIII (Aupad) $\begin{array}{llllllllll}1566^{\circ} 37^{\prime} & 336^{\circ} 37^{\prime} & 235^{\circ} 48^{\prime} & 65^{\circ} 49^{\prime} & 815^{\circ} 1^{\prime} & 135^{\circ} 1^{\prime} & 34^{\circ} 13^{\prime} & 214^{\circ} 13^{\prime} & 113^{\circ} 25^{\prime} & 299^{\circ} 25^{\prime}\end{array}$	 ${ }^{20}=\begin{aligned} & \text { Relative Weight } \\ & \text { Concluded } A \text { ngle }\end{aligned}$
$\begin{gathered} \text { LVI (Adakŏnda) } \\ \text { and } \\ \text { LIV (Pothkŏnda) } \end{gathered}$	 	$\begin{aligned} & M=46^{\prime \prime \prime} \cdot 93 \\ & w=4 \cdot 81 \\ & \frac{1}{m}=0 \cdot 21 \end{aligned}$
	$\begin{array}{llllllllll}45 \cdot 56 & 45 \cdot 49 & 46 \cdot 84 & 47 \cdot 37 & 47 \cdot 61 & 46 \cdot 89 & 48 \cdot 47 & 48 \cdot 56 & 47 \cdot 84 & 44 \cdot 63\end{array}$	$C=52^{\circ} 38^{\prime} 46^{\prime \prime \prime} \cdot 94$
$\begin{gathered} \text { LIV (Pothlŏnda) } \\ \text { and } \\ \text { LIII (Náwilmětta) } \end{gathered}$	 $h{ }_{54} \cdot 98$	$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 19 \\ & w=2 \cdot 60 \end{aligned}$
	$\begin{array}{lllllllllll}58 \cdot 70 & 61 \cdot 17 & 56 \cdot 70 & 58 \cdot 10 & 56 \cdot 26 & 56 \cdot 39 & 56 \cdot 67 & 57 \cdot 03 & 60 \cdot 05 & 60 \cdot 79\end{array}$	

At LVI (Adakŏnda)

June 1861; observed by Captain J. P. Basevi, R.E., with Barrow's 24-inch I'heodolite No. 2.

Angle between	$176^{\circ} 3$	Circle readings, telescope being set on LIV (Pothkŏnda)									$\boldsymbol{M}=$ Mean of Groups w = Relative Weight C = Concluded Angle
LIV (Pothlð̌nda) and	 										$\begin{aligned} M & =10^{\prime \prime} \cdot 17 \\ w & =25 \cdot 60 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =33^{\circ} 0^{\prime} 10^{\prime \prime \prime} \cdot 17 \end{aligned}$
	9'9	10•96	10. 24	$10 \cdot 75$	10.98	9*92	9•07	10.11	$9 \cdot 85$	9•94	
LIII (Náwilmĕtta) and	 d 14.65 h 12 . 94										$\begin{aligned} & M=14^{\prime \prime} \cdot 44 \\ & w=7 \cdot 26 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=43^{\circ} 0^{\prime} 14^{\prime \prime} \cdot 44 \end{aligned}$
	15.5	14.36	13.86	13.75	14.11	14.82	15.67	16.11	13.46	$12 \cdot 64$	
LV (Lachmipuram) and LVII (Y̌̌dlagattu)											$\begin{aligned} & M=41^{\prime \prime} \cdot 00 \\ & w=6 \cdot 52 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=55^{\circ} 29^{\prime} 41^{\prime \prime} \cdot 02 \end{aligned}$
	41'2	41•47	39*9	40.72	39:79	$39^{\circ} 29$	41•92	41'19	41•34	$43 \cdot 13$	

At LVI (Adakŏnda)-(Continued).

Angle between	$176{ }^{\circ} 37^{\prime}$	$356^{\circ} 37^{\prime}$	cle readi $255^{\circ} 50^{\prime}$	gs, teles $75^{\circ} 50^{\prime}$	scope bei $335^{\circ} 1^{\prime}$	ing set on $155^{\circ} 1^{\prime}$	$\begin{aligned} & \mathrm{LIV} \\ & 54^{\circ} 13^{\prime} \end{aligned}$	Pothkŏnda $234^{\circ} 13^{\prime}$	13) ${ }^{183^{\circ} 26^{\prime}}$	$313^{\circ} 26^{\prime}$	$M=$ Mean of Groups $v_{0}=$ Relative Weight $C=$ Concluded Δ ngle
LVII (Yědlagattu) and LX (Parampúdi)	 										$\begin{aligned} & M=24^{\prime \prime} \cdot 99 \\ & w=8 \cdot 10 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=51^{\circ} 53^{\prime} 24^{\prime \prime} \cdot 99 \end{aligned}$
	$25 \cdot 69$	$26 \cdot 24$	24.32	$24 \cdot 58$	$24 \cdot 38$	25.08	23.49	$23 \cdot 56$	26.29	$26 \cdot 24$	

At LVII (Yědlagattu)

May 1861; observed by Captain J. P. Basevi, R.E., with Barrow's 24-inch Theodolite No. 2.

At LX (Parampúdi)-(Continued).

At LXI (Bandanchĕrla)

December 1861 ; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXIV (Inupráyi)										$M=$ Mean of Groups ${ }^{*}=$ Relative Weight C = Concluded Angle
$\begin{gathered} \text { LXIV (Inupráyi) } \\ \text { and } \\ \text { LXII (Nágaldurgam) } \end{gathered}$	$\begin{aligned} & h_{18 \cdot 2} \\ & h_{16} \cdot 3 \end{aligned}$	$\begin{gathered} " \\ h 19^{\circ} 90 \\ h 17.92 \\ 716.72 \end{gathered}$	$\begin{gathered} \prime \prime \\ 18 \cdot 00 \\ 18 \cdot 40 \end{gathered}$	$\begin{gathered} n \\ 718 \cdot 06 \\ h_{17} \cdot 52 \end{gathered}$	$\begin{gathered} " \\ h 17 \cdot 36 \\ h 17 \cdot 54 \end{gathered}$	$\begin{aligned} & 17.82 \\ & 16 \cdot 60 \end{aligned}$	$\begin{gathered} \prime \prime \\ l \\ l \\ 18 \cdot 18 \\ 17 \cdot 06 \end{gathered}$	$\begin{gathered} * \\ 17 \cdot 78 \\ 17 \cdot 98 \end{gathered}$			$\begin{aligned} & \boldsymbol{M}=17^{\prime \prime} \cdot 50 \\ & w=18 \cdot 82 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=51^{\circ} 0^{\prime} 17^{\prime \prime} \cdot 51 \end{aligned}$
	173	18.18	18.20	1779	17×45	17.21	$17 \cdot 62$	17.88	16•97	16.44	
$\begin{gathered} \text { LXII (Nágaldurgam) } \\ \text { and } \\ \text { LX (Parampúdi) } \end{gathered}$	 										$\begin{aligned} & M=52^{\prime \prime} \cdot 50 \\ & w=20 \cdot 44 \\ & \frac{\mathbf{I}}{w}=0 \cdot 05 \\ & C=67^{\circ} 34^{\prime} 52^{\prime \prime} \cdot 49 \end{aligned}$
	$53^{\circ} 3$	52.15	51.90	52.03	52.30	53.08	$52 \cdot 43$	52.16	52.48	53'16	

At LXI (Bandanchěrla)-(Continued).											
Angle between	Circle readings, telescope being set on LXIV (Inupráyi)										$M=$ Mean of Groups $v_{0}=$ Relative Weight $C=$ Concluded Δ angle
$\begin{aligned} & \text { LX (Paramptrdi) } \\ & \text { and } \\ & \text { LIX (Sudkønda) } \end{aligned}$											$\begin{aligned} & M=40^{\prime \prime} \cdot 75 \\ & w=6 \cdot 25 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=85^{\circ} 36^{\prime} 40^{\prime \prime} \cdot 75 \end{aligned}$
	$43^{\circ} 0$	4 ${ }^{\circ} \mathrm{OI}$	40 70	$40 \cdot 86$	39*11	40*58	38•94	40'79	41•13	41•35	
$\begin{aligned} & \text { LIX (Sudkǒnda) } \\ & \text { and } \\ & \text { LXIII (Dudugat) } \end{aligned}$											$\begin{aligned} & M=42^{\prime \prime} \cdot 63 \\ & w=11 \cdot 40 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=74^{\circ} 13^{\prime} 42^{\prime \prime} \cdot 63 \end{aligned}$
	$41^{1} 2$	42.53	$42 \cdot 93$	$43 \cdot 51$	$43 \cdot 23$	42•36	$43 \cdot 23$	42•21	$43 \cdot 07$	42.01	
```LXIII (Dudugat) and LXV (Dálgattu)```	 										$\begin{aligned} & M=10^{\prime \prime} \cdot 06 \\ & w=14 \cdot 10 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=34^{\circ} 36^{\prime} 10^{\prime \prime \prime} \cdot 06 \end{aligned}$
	9*5	$10 \cdot 85$	9*11	10'19	10.99	10•14	10•74	$9^{1} 15$	$9 \cdot 85$	10.02	
$\begin{gathered} \text { LXV (Dálgattu) } \\ \text { and } \\ \text { LXIV (Inupráyi) } \end{gathered}$	 										$\begin{aligned} M & =16^{\prime \prime} \cdot 51 \\ w & =12 \cdot 39 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =46^{\circ} 58^{\prime} 16^{\prime \prime} \cdot 51 \end{aligned}$
	$17^{1} 1$	16•10	$16 \cdot 52$	16.11	15.83	$16 \cdot 44$	15.82	18.23	15.67	$17 \cdot 22$	

At LXII (Nágaldurgam)
December 1861; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on ${ }^{\text {LX }}$ ( ${ }^{\text {a }}$ (Parampúdi)										$\boldsymbol{M}=$ Mean of Groups   $w_{0}=$ Relative Weight   C $=$ Concluded Angle
	$102^{\circ} 22^{\prime}$	$282^{\circ} 28^{\prime}$	$181{ }^{\circ} 34^{\prime}$	$1^{\circ} 34^{\prime}$	$260^{\circ} 46^{\prime}$	$80^{\circ} 46^{\prime}$	$339^{\circ} 58^{\prime}$	$159{ }^{\circ} 58^{\prime}$	69 ${ }^{\circ} 10^{\circ}$	$239^{\circ} 10^{\prime}$	
$\begin{gathered} \text { LX (Parampúdi) } \\ \text { and } \\ \text { LXI (Bandanchěrla) } \end{gathered}$											$\begin{aligned} & M=44^{\prime \prime} \cdot 83 \\ & w=12 \cdot 30 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=40^{\circ} 2^{\prime} 44^{\prime \prime} \cdot 83 \end{aligned}$
	46•12	44*20	$44 \cdot 78$	$45 \cdot 84$	$45 \cdot 84$	$43 \cdot 93$	45:22	$44 \times 39$	$44^{\circ} 04$	$43 \cdot 93$	



## At IXIV (Inupráyi)-(Continued).

Angle between	Circle readings, telescope being set on LXII (Nágaldurgam)										$M=$ Mean of Groups   ${ }^{2}=$ Relative Weight   $\boldsymbol{C}=$ Concluded Angle
```LXI (Bandanchërla) and LXV (Dálgattu)```	$\begin{aligned} & h 18 \cdot 8 \mathrm{c} \\ & h_{19} 94 \end{aligned}$	$\begin{gathered} " \prime \\ h 20 \cdot 02 \\ h 20 \cdot 30 \end{gathered}$	  h 19 -84		$\begin{gathered} " \\ l \times 18 \cdot 94 \\ l 19 \cdot 32 \end{gathered}$	$\begin{gathered} " \\ l 20 \cdot 22 \\ l 22130 \end{gathered}$	$\begin{gathered} n \\ l 18 \cdot 0_{4} \\ l \\ 17 \cdot 58 \end{gathered}$	$\begin{array}{cc} 4 \\ l & 19.38 \\ l & 19.50 \end{array}$	$\begin{aligned} & l 18.54 \\ & l \pm 8.28 \end{aligned}$	$\begin{gathered} " 7 \\ l 17.78 \\ l 20.00 \\ l 18.56 \end{gathered}$	$\begin{aligned} & M=19^{\prime \prime} \cdot 20 \\ & w=10 \cdot 14 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=69^{\circ} 0^{\prime} 19^{\prime \prime} \cdot 20 \end{aligned}$
	193	20•16	19*97	18.12	$19 \cdot 13$	20•76	17*81	$19^{\circ} 44$	18.41	$18 \cdot 78$	
$\begin{gathered} \text { LXV (Dálgattu) } \\ \text { and } \\ \text { LXVII (Jammalavoidurgam) } \end{gathered}$	 h 19 -98 h 19.30 $l 21 \cdot 38$ $l 22.06$										$\begin{aligned} M & =20^{\prime \prime} \cdot 49 \\ w & =12 \cdot 46 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =52^{\circ} 43^{\prime} 20^{\prime \prime} \cdot 49 \end{aligned}$
	$20 \cdot 2$	$19 \cdot 39$	$19 \cdot 32$	20'79	20.60	20.79	20•29	$20 \cdot 46$	21.28	21•78	

At LXV (Dálgattu)

January 1862; observed by Captain J. P. Busevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

At LXV (Dálgattu)-(Continued).										
Angle between										
LXVI (Yĕrragattu) and LXVII (Jammalavoidurgam)	$\begin{array}{llll} l & 20 \cdot 04 & l & 20 \cdot 38 \\ l & 20 \cdot 24 & l & 20 \cdot 32 \end{array}$			$\begin{aligned} & h_{19} 98 \\ & h_{1} 7.74 \\ & l_{19} 98 \end{aligned}$	$\begin{array}{r} 619.18 l \\ 19.70 l \end{array}$	$\begin{aligned} & l 20 \cdot 24 \\ & l 20 \cdot 22 \end{aligned}$	$\begin{aligned} & 619 \cdot 86 \\ & k 21 \cdot 00 \end{aligned}$	$\begin{aligned} & h_{19} 198 \\ & h_{19} \cdot 72 \end{aligned}$	h19.30 h $19 \cdot 66$	$\begin{aligned} & M=19^{\prime \prime} \cdot 64 \\ & w=19 \cdot 05 \\ & \frac{1}{w}=0.05 \\ & C=75^{\circ} 37^{\prime} 19^{\prime \prime} \cdot 64 \end{aligned}$
	20.14 $\quad 20 \cdot 35$	$18 \cdot 83$	18.61	19'15	19.44	20.23	$20 \cdot 43$	19*77	19.48	
LXVII (Jammalavoidurgam) and LXIV (Inupráyi)	 									$\begin{aligned} & M=10^{\prime \prime} \cdot 79 \\ & w=46 \cdot 51 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=64^{\circ} 59^{\prime} 10^{\prime \prime} \cdot 80 \end{aligned}$
	10'77 10'19	11*42	11.00	10•77	10•64	$10 \cdot 81$	11.07	10•45	10.79	

At LXVI (Yĕrragattu)

January 1862 ; observed by Captain J. P. Basevi, R.E., vith Troughton and Simms' 24 -inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXIX (Bězváda)										$M=$ Mean of Groups ${ }^{*}=$ Relative Weight $C=$ Concluded Angle
```LXIX (Bězváda) and LXVIII (Jujúrdurgam)```	${ }^{2} 51 \cdot 12$   $l 50 \cdot 58$	50.08 50'74	$\begin{aligned} & l \\ & l \\ & l \\ & 52 \cdot \\ & 52 \end{aligned}$	$\begin{aligned} & l 51 \cdot 44 \\ & l \\ & 53.30 \end{aligned}$	$\begin{aligned} & l_{51}^{50 \cdot 66} \\ & l \mid \end{aligned}$	h 50•12 h 50'96		$l 52 \cdot 46$   l51-26	$151 \cdot 46$ l50•84	$\begin{aligned} & l \\ & l \\ & l \\ & 49 \\ & 49 \cdot 9 \\ & \hline \end{aligned}$	$\begin{aligned} M & =51^{\prime \prime} \cdot 22 \\ w & =8 \cdot 90 \\ \cdot \frac{1}{w} & =0 \cdot 11 \\ C & =80^{\circ} 22^{\prime} 51^{\prime \prime} \cdot 22 \end{aligned}$
	$50 \cdot 85$	$50^{\circ} 41$	52•96	52•37	51*20	50•54	51•34	51•86	51'15	49*54	
LXVIII (Jujúrdurgam)   and   LXVII (Jammalaroidurgam)	 										$\begin{aligned} & M=33^{\prime \prime} \cdot 58 \\ & w=16 \cdot 10 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=66^{\circ} \cdot 50^{\prime} 33^{\prime \prime} \cdot 58 \end{aligned}$
	32•94	$33 \cdot 80$	$33^{\circ} \mathrm{F}$	$33 \cdot 27$	$34 * 49$	$33 \cdot 86$	$33^{1} 14$	32•91	32•86	34*91	
LXVII (Jammalavoidurgam) and   LXV (Dálgattu)	   $l 34 \cdot 12 l 35 \cdot 18$										$\begin{aligned} & M=35^{\prime \prime} \cdot 40 \\ & w=7 \cdot 32 \\ & \frac{1}{w}=0 \cdot 14 \\ & C=44^{\circ} 56^{\prime} 35^{N} \cdot 38 \end{aligned}$
	34.04	$35 \cdot 83$	34•57	33*97	35-18	36•34	35*81	35•57	37*34	$35 \cdot 37$	
LXV (Dálgattu) and LXIII (Dudugat)	 										$\begin{aligned} M & =47^{\prime \prime} \cdot 42 \\ w & =5 \cdot 88 \\ \frac{1}{w} & =0 \cdot 17 \\ C & =39^{\circ} 2^{\prime} 47^{\prime \prime} \cdot 44 \end{aligned}$
	47 74	$47^{\circ} 09$	48•71	$48 \cdot 96$	48-13	$45 \cdot 16$	$46 \cdot 68$	$47 \cdot 37$	46•06	48:26	

## At LXVII (Jammalavoidurgam)

January 1862 ; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXIV (Inupráyi)$205^{\circ} 43^{\prime}-25^{\circ} 43^{\prime} \quad 284^{\circ} 55^{\prime} \quad 104^{\circ} 55^{\prime} \quad 4^{\circ} 6^{\prime} \quad 184^{\circ} 6^{\prime} \quad 83^{\circ} 19^{\prime} \quad 268^{\circ} 19^{\prime} \quad 162^{\circ} 31^{\prime} \quad 342^{\circ} 31^{\prime}$									$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}=$ Relative Weight   $C=$ Concluded Angle
```LXIV (Inupráyi) and LXV (Dálgattu)```	 									$\begin{aligned} & M=30^{\prime \prime} \cdot 14 \\ & w=20 \cdot 40 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=62^{\circ} 17^{\prime} 30^{\prime \prime} \cdot 14 \end{aligned}$
	30*31 30.79	29.72	$30 \cdot 14$	30•73	$30 \cdot 87$	$29 \cdot 80$	$30 \cdot 31$	$30 \cdot 01$	28.71	
LXV (Dálgattu) and LXVI (Yěrragattu)	 									$\begin{aligned} & M=6^{\prime \prime} \cdot 99 \\ & w=30 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=59^{\circ} 26^{\prime} 6^{\prime \prime} \cdot 99 \end{aligned}$
	$6 \cdot 64 \quad 6 \cdot 94$	7•13	6•95	$6 \cdot 44$	$6 \cdot 50$	7•14	7-16	6•81	$8 \cdot 17$	
LXVI (Yěrragattu) and LXVIII (Jujúrdurgam)	 									$\begin{aligned} & M=51^{\prime \prime} \cdot 08 \\ & w=20 \cdot 40 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=39^{\circ} 26^{\prime} 51^{\prime \prime} \cdot 08 \end{aligned}$
	$50 \cdot 61 \quad 51 \cdot 27$	51•49	50•97	52.14	51*46	50•36	50*52	51.63	50•37	
LXVIII (Jujúrdurgam) and LXX (Jŏnnalagadda)	 									$\begin{aligned} & M=29^{\prime \prime} \cdot 87 \\ & w=16 \cdot 10 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=44^{\circ} 31^{\prime} 29^{\prime \prime} \cdot 87 \end{aligned}$
	29.08 29*57	29*98	29'13	29•86	29.25	30'71	$30 \cdot 09$	29*59	31*41	

At LXVIII (Jujúrdurgam)

January and February 1862; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 1^{\prime}$	$\begin{aligned} & \text { Circ } \\ & 180^{\circ} 1^{\prime} \end{aligned}$	$79^{\circ} 13^{\prime}$	gs , telesc $259^{\circ} 18^{\prime}$	ope bein $158^{\circ} 25^{\prime}$	g set on $838^{\circ} 25^{\prime}$	LXVI $237^{\circ} 37^{\prime}$	(Yerrraga $57^{\circ} 36^{\prime}$	ttu) $816^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	$M=$ Mean of Groups $v_{0}=$ Relative Weight C $=$ Concluded Angle
```LXVI (Yěrragattu) and LXIX (Bĕzváda)```	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=9^{\prime \prime \cdot 06} \\ & w=20 \cdot 89 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=44^{\circ} 25^{\prime} \quad 9^{\prime \prime} \cdot 06 \end{aligned}$
	$h$ 4 $l$ 7 7	10.02 9.86	$\begin{array}{r} l \\ l \\ l \\ l \\ l \\ \hline 9.08 \\ 9.70 \end{array}$	$h 8 \cdot 80$ $h 9.32$	$\begin{array}{ll}l \\ l & 7 \\ 7 \\ 7\end{array}$	$\begin{array}{ll}l & 9 \\ l & 94 \\ 9 & 466\end{array}$	$l$ $l$ $l$ 8.48	$h$   $h$ 9.54	$\begin{array}{ll}h & 8 \cdot 84 \\ h & 9.16\end{array}$	$\begin{array}{ccc}l & 9 & 16 \\ l & 8.62\end{array}$	
	$8 \cdot 48$	9*94	9'53	9•06	7 70	9•55	$8 \cdot 84$	9•60	9*00	$8 \cdot 89$	


At LXVIII (Jujúrdurgam)-(Continued).											
Angle between	Circle readings, telescope being set on LXVI (Yěrragattu)										$M=$ Mean of Groups   $\infty$ - Relative Weight   C = Concluded Angle
IIXIX (Bĕzváda)   and   LXXI (Anantavaram)											$\begin{aligned} M & =18^{\prime \prime} \cdot 4 \mathrm{I} \\ w & =12 \cdot 08 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =48^{\circ} 25^{\prime} 18^{\prime \prime} \cdot 36 \end{aligned}$
	18.60	1931	$17 \cdot 67$	$18 \cdot 40$	18.79	16.90	17997	18.69	$18 \cdot 84$	18.94	
LXXI (Anantavaram)   and   LXXII (Chintalapád)	 										$\begin{aligned} & M=55^{\prime \prime} \cdot 25 \\ & w=8 \cdot 24 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=66^{\circ} \cdot 3^{\prime} 55^{\prime \prime} \cdot 25 \end{aligned}$
	56.23	53*92	54.91	$54 * 48$	$55 \cdot 87$	$57 \times 43$	55*39	54.62	$55^{\circ} 02$	54.59	
LXXII (Chintalapád)   and   LXX (Jŏnnalagadda)	     $h_{42}{ }^{92}$   $l_{42} \cdot 84$   $l 42 \cdot 82$										$\begin{aligned} & M=42^{\prime \prime} \cdot 18 \\ & w=9 \cdot 45 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=57^{\circ} 24^{\prime} 42^{\prime \prime} \cdot 19 \end{aligned}$
	$40 \cdot 89$	$42 \cdot 53$	41 79	$43 \cdot 53$	41*95	40•78	41•93	$43 \cdot 27$	41 96	$43 \cdot 20$	
LXX (Jŏnnalagadda) and   LXVII (Jammalavoidurgam)	 										$\begin{aligned} & M=17^{\prime \prime} \cdot 16 \\ & w=16 \cdot 92 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=69^{\circ} 4^{\prime} 17^{\prime \prime} \cdot 15 \end{aligned}$
	$17 \times 48$	$16 \cdot 67$	16.79	16.56	18•17	16•76	$16 \cdot 39$	1718	18-01	17.63	
LXVII (Jammalaroidurgam) and LXVI (Yěrragattu)	 										$\begin{aligned} & M=37^{\prime \prime} \cdot 74 \\ & w=10 \cdot 96 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=73^{\circ} 42^{\prime} 37^{\prime \prime} \cdot 75 \end{aligned}$
	37-52	$37 \cdot 07$	$38 \cdot 56$	37•04	37.51	39.61	$38 \cdot 54$	37*59	37-20	$36 \cdot 77$	

## At LXIX (Bězváda)

February 1862 ; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXI (Anantavaram)										$\boldsymbol{M}=$ Mean of Groups   ${ }^{w}=$ Relative Weight   C $=$ Concluded Angle
	$110^{\circ} 52^{\prime}$	$290^{\circ} 52^{\prime}$	$190^{\circ} 4^{\prime}$	$10^{\circ} 4^{\prime}$	$269^{\circ} 15^{\prime}$	$89^{\circ} 15^{\prime}$	$348^{\circ} 28^{\prime}$	$168^{\circ} 28^{\prime}$	$67^{\circ} 40^{\prime}$	$247^{\circ} 40^{\prime}$	
LXXI (Anantavaram) and   LXVIII (Jujúrdurgam)	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=54^{\prime \prime} \cdot 57 \\ & w=13 \cdot 30 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=55^{\circ} 38^{\prime} 54^{\prime \prime \cdot} \cdot 57 \end{aligned}$
	55*68	$55 * 08$	$55^{*} 23$	$53 \cdot 87$	53*93	53.60	54*55	54*74	55*56	53*48	



## At LXX (Jŏnnalagadda)

January 1862; observed by Captain J. P. Basevi, R.E., with Troughion and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXVII (Jammalavoidurgam)										M $=$ Mean of Groups   ${ }^{\infty}=$ Relative Weight   C $=$ Concluded Angle
LXVII (Jammalavoidurgam) and   LXVIII (Jujúrdurgam)	$\begin{array}{ll} l & 14.9 \\ l & 13.8 \end{array}$	$\begin{aligned} & h 13 \cdot 80 \\ & l 14 \cdot 36 \end{aligned}$	$\begin{array}{ll} l 13.60 \\ l \times 3.02 \end{array}$	$\begin{aligned} & 13.84 \\ & 13.86 \end{aligned}$	$\begin{aligned} & 14.02 \\ & 12.86 \end{aligned}$	$\begin{aligned} & 15 \cdot 18 \\ & 14.50 \end{aligned}$	$\begin{array}{r} 12 \cdot 68 \\ 13 \cdot 26 \end{array}$	$\begin{aligned} & 14.46 \\ & 14.08 \end{aligned}$	$\begin{aligned} & 15.66 \\ & 12.78 \\ & 13.48 \end{aligned}$	$\begin{aligned} & h 16 \cdot 06 \\ & h 13.70 \\ & h 14 \cdot 12 \end{aligned}$	$\begin{aligned} M & =13^{\prime \prime} \cdot 97 \\ w & =17 \cdot 20 \\ \frac{I}{w} & =0.06 \\ C & =65^{\circ} 40^{\prime} 13^{\prime \prime} \cdot 98 \end{aligned}$
	14.3	14.08	13.31	13.85	13.44	14.84	12.97	14.27	13.97	14.63	
LXVIII (Jujúrdurgam)   and   LXXII (Chintalapád)	 										$\begin{aligned} M & =41^{\prime \prime} \cdot 52 \\ w & =20 \cdot 74 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =61^{\circ} 56^{\prime} 41^{\prime \prime} \cdot 54 \end{aligned}$
	$41 \cdot 8$	41:34	4 ${ }^{\text {- }}$ I	$41 \cdot 61$	$42^{\circ} 00$	$40 \cdot 67$	42'53	41'79	41*33	4121	

## At LXXI (Anantavaram)

February 1862 ; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24 -inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXIV (Gorantla)   $274^{\circ} 10^{\prime} \quad 94^{\circ} 10^{\prime} \quad 353^{\circ} 22^{\prime} \quad 173^{\circ} 22^{\prime} \quad 72^{\circ} 33^{\prime} \quad 252^{\circ} 34^{\prime} \quad 151^{\circ} 46^{\prime} \quad 931^{\circ} 46^{\prime} \quad 230^{\circ} 58^{\prime} \quad 50^{\circ} 58^{\prime}$									$\boldsymbol{M}=$ Mean of Groups   $w_{0}=$ Relative Weight   C = Concluded Angle
LXXIV (Gorantla) and	 									$\begin{aligned} M & =20^{\prime \prime} \cdot 83 \\ w & =10 \cdot 50 \end{aligned}$
	$19.89 \quad 20.83$	19*26	21•80	21.47	21:28	21:22	21.64	$19 \times 46$	21•46	$C=87^{\circ} \quad 5^{\prime} 20^{\prime \prime} \cdot 83$
LXXIII (Lagadapád)   and   LXXII (Chintalapád)	 									$\begin{aligned} M & =19^{\prime \prime} \cdot 27 \\ w & =21 \cdot 30 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =49^{\circ} 56^{\prime} 19^{\prime \prime} \cdot 27 \end{aligned}$
	$19.83 \quad 18.60$	20.61	18.92	19*39	$18 \cdot 85$	$18 \cdot 6$	$19^{\circ} 22$	19*19	$19 * 45$	



At LXXII (Chintalapád)
*February and $\dagger$ April 1862 ; observed by Captain J. P. Basevi, R.E., with Troughton and Simns' 24-inch Theodolite No. 1.


## At LXXII (Chintalapád)-(Continued).



## At LXXIII (Lagadapád)

$\ddagger$ February, §February and March and \|April 1862; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on $X$ (Ádamsáb)										$M=$ Mean of Groups   wo = Relative Weight   $\boldsymbol{C}=$ Concluded $\Delta$ ngle	
$\begin{gathered} X \text { (Adamsáb) } \\ \text { and } \end{gathered}$   VII (Dhúlipalla)	$\begin{aligned} & h 14.6 \\ & l \\ & l \\ & l \\ & l \end{aligned} 17.97$	$\begin{aligned} & 15: 46 \\ & 17.34 \\ & 16: 38 \end{aligned}$	$\begin{gathered} " \\ l 17.70 \\ l \mathrm{I} .754 \end{gathered}$	$\begin{array}{cc}  & " \\ l & 17.90 \\ 6 & 17 \cdot 62 \end{array}$	$\begin{gathered} " \\ l 17.22 \\ l 15 \cdot 64 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 16 \cdot 62 \\ l \mathrm{I} 7 \cdot 10 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 15.84 \\ l 18.56 \\ l \\ l \end{gathered}$	$\begin{gathered} " \\ l \times 16.64 \\ l \\ 16 \cdot 64 \end{gathered}$	$$	$\begin{array}{ll} l 15: 98 \\ l & 17 \cdot 64 \end{array}$	$\begin{aligned} & M=16^{\prime \prime} \cdot 89 \\ & w=12 \cdot 28 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=80^{\circ} 12^{\prime} 16^{\prime \prime} \cdot 86 \end{aligned}$	
	$17^{1} 1$	16•39	18•12	1776	$16 \cdot 43$	$16 \cdot 86$	16.41	$16 \cdot 64$	16.41	16.81		
$\begin{gathered} \text { \\| } \\ \text { VII (Dhúlipalla) } \\ \text { and } \\ \text { LXXV (Chikri) } \end{gathered}$											$\begin{aligned} M & =33^{\prime \prime} \cdot 63 \\ w & =8 \cdot 54 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =54^{\circ} 57^{\prime} 33^{\prime \prime} \cdot 62 \end{aligned}$	
	$34^{\circ} 2$	34*73	34*70	$32 \cdot 15$	32•78	35*04	$32 \cdot 67$	32-94	$33 \cdot 15$	33.88		
$\begin{gathered} \text { LXXV }{ }_{\text {and }}^{\\|} \text {Chikri) } \\ \text { LXXII (Chintalapád) } \end{gathered}$	 										$\begin{aligned} & M=51^{\prime \prime} \cdot 93 \\ & w=10 \cdot 18 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=59^{\circ} 3^{\prime} 55^{\prime \prime} \cdot 94 \end{aligned}$	
	$51 \cdot 4$	52.50	$50 \cdot 32$	53.59	52.12	51/15	52.60	51-84	51*79	51•96		
$\stackrel{\ddagger}{\ddagger}$LXXII (Chintalapád)andLXXI (Anantavaram)	 										$\begin{aligned} & M=49^{\prime \prime} \cdot 37 \\ & w=35 \cdot 70 \\ & \frac{\mathbf{I}}{w}=0 \cdot 03 \\ & C=78^{\circ} 27^{\prime} 49^{\prime \prime} \cdot 37 \end{aligned}$	
	$49 * 8$	48•94	$49 * 06$	4972	$49^{\circ} 61$	49*73	$49^{\circ} 47$	49*39	48•77	49*09		


At LXXIII (Lagadapad)-(Continued).											
Angle between	Circle readings, telescope being set on X (Adamsáb)										$\boldsymbol{M}=$ Mean of Groups   w - Relative Weight   C = Concluded Angle
$\begin{gathered} \ddagger \\ \text { LXXI (Anantavaram) } \\ \text { and } \\ \text { LXXIV (Gorantla) } \end{gathered}$	$\begin{aligned} & h 52 \cdot 48 \\ & l \\ & l \\ & 53 \cdot 22 \end{aligned}$	$\begin{gathered} n \\ l \\ l \\ 74 \cdot 66 \\ 54.90 \end{gathered}$	$\begin{aligned} & l_{52 \cdot} \cdot 86 \\ & l \\ & 52 \cdot 02 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l_{53} \cdot 02 \end{aligned}$	h $53 \cdot 38$   l53•92	$\begin{aligned} & l 53 \cdot 76 \\ & l \\ & 54 * 94 \end{aligned}$	$\begin{aligned} & 253.94 \\ & 653.74 l \end{aligned}$	$\begin{aligned} & 753^{1} 14 \\ & 753^{\prime} 14 \end{aligned}$	$\begin{gathered} 4 \\ h_{53 \cdot 78}^{l} 53 \cdot 82 \end{gathered}$	$\begin{gathered} " \\ l \\ l \\ 55^{\circ} \cdot 14 \\ 53 \cdot 84 \end{gathered}$	$\begin{aligned} & M=53^{\prime \prime \cdot} \cdot 69 \\ & w=16 \cdot 10 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=45^{\circ} 3^{\prime} 53^{\prime \prime} \cdot 69 \end{aligned}$
	52•85	54.78	$52 \cdot 44$	53*55	$53 \cdot 65$	54*35	$53 \cdot 84$	$53 \cdot 14$	53*80	54*49	
	 										$\begin{aligned} & M=33^{\prime \prime} \cdot 98 \\ & w=7 \cdot 83 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=42^{\circ} 14^{\prime} 33^{\prime \prime} \cdot 97 \end{aligned}$
	$35 \cdot 12$	$32 \cdot 67$	35•88	34•27	$33 \cdot 87$	32-12	$33 \cdot 88$	34'29	33*95	33'73	

## At LXXIV (Gorantla)

February 1862 ; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on $\mathbf{X}$ (Ádamsáb)  								$\mathbf{M}=$ Mean of Groups   ${ }^{0}=$ Relative Weight   $C=$ Concluded Anglo
$\begin{gathered} \text { X (Ãdamsáb) } \\ \text { and } \\ \text { LXXIII (Lagadapád) } \end{gathered}$	 								$\begin{aligned} & M=23^{\prime \prime} \cdot 51 \\ & w=8 \cdot 10 \end{aligned}$
	$24.89 \quad 24.59 \quad 22 \cdot 90$	24*37	24•13	24.25	22.44	21•97	22:37	23'15	$C=67^{\circ} 45^{\prime} 23^{\prime \prime} \cdot 5^{1}$
LXXIII (Lagadapád)   and   LXXI (Anantavaram)	$l 45 \cdot 68 \quad l 46 \cdot 52 \quad l 46 \cdot 30 \quad l 46 \cdot 30 \quad l 44 \cdot 96 \quad l 45 \cdot 36 \quad l 45 \cdot 34 \quad l \quad 45 \cdot 88 \quad h 45 \cdot 66 \quad h 46 \cdot 08$								$\begin{aligned} & M=45^{\prime \prime} \cdot 94 \\ & w=30 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=47^{\circ} 50^{\prime} 45^{\prime \prime} \cdot 94 \end{aligned}$
	$\begin{array}{llll}46 \cdot 06 & 46 \cdot 09 & 46 \cdot 36\end{array}$	45 71	$45 ` 75$	45'14	$45 \cdot 72$	45*56	46•40	$46 \cdot 63$	

## At LXXV (Chikri)

April 1862; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXII (Chintalapad)										$M=$ Mean of Gronps   $w_{0}=$ Relative Weight   C - Concluded Angle
	$107{ }^{\circ} 3$	$287{ }^{\circ} 3$	1860 $44^{\prime \prime}$	$6^{\circ} 43^{\prime}$	$265^{\circ} 55^{\prime}$	$85^{\circ} 55^{\prime}$	$345^{\circ} 7^{\prime}$	$165^{\circ} 7^{\prime}$	$64^{\circ} 19^{\prime}$	$244^{\circ} 19^{\prime}$	
LXXII (Chintalapád)   and   LXXIII (Lagadapád)	-	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=19^{\prime \prime} \cdot 95 \\ & w=9 \cdot 37 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=56^{\circ} 32^{\prime} 19^{\prime \prime} \cdot 95 \end{aligned}$
	20•75	$20^{\circ}$	19.45	19.49	21.68	$20 \cdot 83$	18.75	18.84	20.08	19.66	

## At LXXV (Chikri)-(Continued).



## At VII (Dhúlipalla)

April 1862 ; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXV (Chikri)  										$M=$ Mean of Groups   ${ }^{*}=$ Relative Weight   C $=$ Concluded Angle
```LXXV (Chikri) and. LXXIII (Lagadapád)```	 										$\begin{aligned} M & =61^{\prime \prime} \cdot 7 \mathrm{I} \\ w & =12 \cdot 00 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =74^{\circ} 4^{\prime} 1^{\prime \prime} \cdot 71 \end{aligned}$
	6r:94	62•06	$60 \cdot 49$	61.48	61:27	61.04	60•99	$62 \cdot 54$	$63 \cdot 24$	$62 \cdot 04$	
LXXIII (Lagadapád) and \mathbf{X} (Ādamsáb)	 										$\begin{aligned} & M=35^{\prime \prime} \cdot 44 \\ & w=11 \cdot 25 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=64^{\circ} 22^{\prime} 35^{\prime \prime \prime} \cdot 43 \end{aligned}$
	$35 \cdot 47$	33*94	35*29	36•92	$35^{\circ} 41$	$35 \cdot 27$	35 ${ }^{32}$	35*36	$35 \cdot 25$	$36 \cdot 17$	
April 1862; observed by Captain J. P. Basevi, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on VII (Dhúlipalla) $105^{\circ} 26^{\prime} \quad 285^{\circ} 26^{\prime} \quad 184^{\circ} 38^{\prime} \quad 4^{\circ} 38^{\prime} \quad 263^{\circ} 50^{\prime} \quad 88^{\circ} 50^{\prime} \quad 848^{\circ} 2^{\prime} \quad 163^{\circ} 2^{\prime} \quad 62^{\circ} 14^{\prime} \quad 242^{\circ} 14^{\prime}$										$\mathbf{M}=$ Mean of Groups 2 $\omega_{0}=$ Relative Weight C $=$ Concluded Angle
VII (Dhúlipalla) and LXXIII (Lagadapád)	$\begin{array}{rr} l & 10 \cdot 82 \\ l & 8.54 \\ l & 9 \cdot 78 \end{array}$	$\begin{array}{cc} \wedge \\ l \\ 9 \cdot 86 & l \\ l \\ 9.02 & l \end{array}$	$\begin{gathered} n \\ l 10 \cdot 36 \\ l \\ l 0 \cdot 78 \quad l \\ \\ \\ \end{gathered}$	$\begin{aligned} & 10 \cdot 74 \\ & 8.06 \\ & 7.42 \end{aligned}$	$\begin{gathered} \prime \prime \\ h 8 \cdot 90 \\ h 8.62 \end{gathered}$	$\begin{aligned} & h 8 \cdot 92 \\ & h 7 \cdot 40 \end{aligned}$	$\begin{aligned} & l \text { " } \\ & l 8 \cdot 50 \\ & l 7.66 \end{aligned}$	$\begin{array}{lc} & n \\ l & 5 \cdot 84 \\ l & 6.84 \\ l & 8 \cdot 94 \\ l & 8 \cdot 10 \end{array}$	$\begin{aligned} & h 7.24 \\ & h 8.08 \end{aligned}$	h 8.94 h $9 \cdot 62$	$\begin{aligned} M & =8^{\prime \prime \cdot} \cdot 77 \\ w & =7 \cdot 5^{8} \\ \frac{1}{w} & =0 \cdot 13 \\ C & =35^{\circ} 25^{\prime} 8^{\prime \prime} \cdot 76 \end{aligned}$
	9•71	9*44	10'52	8•74	8.76	8•16	8.08	7•33	$7 \cdot 66$	9-28	

At X (Ádamsáb)-(Continued).											
Angle between	Circle readings, telescope being set on VII (Dhúlipalla)										M = Mean of Groups ${ }^{* 0}$ = Relative Weight
	${ }^{105}{ }^{\circ} 26^{\prime} 2$	$285^{\circ} 26^{\prime}$	$184{ }^{\circ} 8^{\prime}$	$4^{\circ} 38^{\prime}$	$263^{\circ} 50^{\prime}$	$83^{\circ} 60^{\circ}$	$\cdots 348^{\circ} \mathrm{Z}$	$163^{\circ} \mathrm{Z}$	$62^{\circ} 14^{\prime}$	$2488^{\circ} 14^{\prime}$	
$\begin{gathered} \text { LXXIII (Lagadapád) } \\ \text { and } \\ \text { LXXIV (Gorantla) } \end{gathered}$	"	"	"	"	$"$	"		"	"	"	$\begin{aligned} & M=3^{\prime \prime} \cdot 26 \\ & w=12 \cdot 95 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=70^{\circ} 0^{\prime} 3^{\prime \prime} \cdot 26 \end{aligned}$
	${ }_{\text {h }}^{4} 4.56$		l l l 4.58	l $2 \cdot 82$ 4.02	$h 4.04$ $h 3.80$	$h 3.58$ $h 2.64$	$h 2 \cdot 08$ l l	l l 4 4 08	${ }_{\text {l }}^{\text {h }} 3.44$	h2 278 $\boldsymbol{k} 3.42$	
	$3 \cdot 11$	$1 \cdot 52$	3.46	3.42	$3 \cdot 92$	$3 \cdot 11$	3.01	4.42	3.48	$3 \cdot 10$	

[^9]W. H. COLE,

In charge of Computing Office.

In the calculations of the weights of the observed angles by the formula given in Section 4 of Chapter VII of Volume II and illustrated by an example in the foot note to page 342 of the same Volume, it is necessary to employ the squares of the apparent errors of observation and graduation. These data have been employed to ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m.s. of graduation and observation, of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instruments employed were as follows :-
Troughton and Simms' 36 -inch Theodolite, Troughton and Simms' 24 -inch Theodolite No. 1, and Barrow's 24 -inch Theodolite No. 2, all of them having 5 microscopes to read the azimthth circle; observations were taken on 5 pairs of zeros (face right and face left) giving circle readings at $7^{\circ} 12^{\prime}$ apart.

The e.m.s. of observation of a single measure of an angle

$$
=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations }- \text { No. of angles } \times \text { No. of changes of zero. }}}
$$

$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times(\text { No. of changes of zero }-1) .}}$

Group	Observer and Instrument			Number of				e. m. s. of observation of a single measure	e. m. s. of graduation and observation of a single zero
					$\frac{\stackrel{\otimes}{6}}{\frac{6}{4}}$				
I	$\left\{\begin{array}{l} \text { Mr. G. Shelverton, Trough- } \\ \text { ton and Simms' 86-inch The- } \\ \text { odolite. } \end{array}\right\}$	Hills	$\begin{array}{lr} \circ \\ 7 & 18 \end{array}$	8-01	38	964	320	$\left\{\frac{313 \cdot 53}{964-320}\right\}^{\frac{1}{2}}= \pm 0^{\prime} \cdot 698$	$\left\{\frac{214 \cdot 50}{820-32}\right\}^{\frac{1}{3}}= \pm 0^{\prime \prime} \cdot 863$
II	$\left\{\begin{array}{l} \text { Capt. B. R. Branfill, Trough- } \\ \text { ton and Simms' 24-inch The- } \\ \text { odolite No. 1. } \end{array}\right\}$	Hills	712	$2 \cdot 43$	106	2578	1060	$\left\{\frac{1759 \cdot 04}{2578-1060}\right\}^{\frac{1}{2}}= \pm 1 \cdot 076$	$\left\{\frac{691 \cdot 79}{1060-106}\right\}^{\frac{1}{3}}= \pm 0 \cdot 852$
III	Ditto.	Plains	718	$2 \cdot 25$	80	776	300	$\left\{\frac{534 \cdot 48}{776-300}\right\}^{\frac{1}{2}}= \pm 1 \cdot 060$	$\left\{\frac{158 \cdot 75}{300-80}\right\}^{\frac{1}{3}}= \pm 0 \cdot 767$
IV	$\left\{\begin{array}{l} \text { Lieut. J. P. Basevi, Barrow's } \\ \text { 24-inch Theodolite No. 2. } \end{array}\right\}$	Hills	712	$2 \cdot 19$	49	1072	490	$\left\{\frac{398 \cdot 68}{1072-490}\right\}^{\frac{1}{2}}= \pm 0 \cdot 828$	$\left\{\frac{702 \cdot 94}{490-49}\right\}^{\frac{1}{2}}= \pm 1 \cdot 263$
V	Ditto.	Plains	712	$2 \cdot 11$	10	211	100	$\left\{\frac{80 \cdot 64}{211-100}\right\}^{\frac{1}{2}}= \pm 0 \cdot 852$	$\left\{\frac{140 \cdot 90}{100-10}\right\}^{\frac{1}{2}}= \pm 1 \cdot 251$
VI	$\left\{\begin{array}{l} \text { Lieut. J. P. Basevi, Trough- } \\ \text { ton and Simms' } 24 \text {-inch The- } \\ \text { odolite No. 1. } \end{array}\right\}$	Hills	$7 \quad 12$	$2 \cdot 16$	56	1209	560	$\left.\left\{\frac{462 \cdot 38}{1209-660}\right\}^{\frac{1}{2}}= \pm 0 \cdot 844 \right\rvert\,$	$\left\{\frac{350.48}{560-66}\right\}^{\frac{1}{2}}= \pm 0.884$
VII	Ditto.	Plains	712	$2 \cdot 18$	18	256	120	$\left\{\frac{109 \cdot 48}{256-120}\right\}^{\frac{1}{2}}= \pm 0 \cdot 897$	$\left\{\frac{73 \cdot 32}{120-12}\right\}^{\frac{1}{2}}= \pm 0 \cdot 824$
$\underset{\nabla I}{I I} \text { and } \operatorname{VII}$	$\left\{\begin{array}{l} \text { Capt, B. R. Branfill and Lieut. } \\ \text { J. P. Base vi, Troughton and } \\ \text { Simme' 24-inch Theodolite } \\ \text { No. 1. } \end{array}\right\}$	$\begin{gathered} \text { Hills } \\ \text { and } \\ \text { Plains } \end{gathered}$	712	$2 \cdot 86$	204	4819	2040	$\left\{\frac{2865 \cdot 32}{4819-2040}\right\}^{\frac{1}{2}}= \pm 1 \cdot 015$	$\left\{\frac{1274 \cdot 29}{2040-20 t}\right\}^{\frac{1}{3}}= \pm 0 \cdot 833$
IV and ∇	$\left\{\begin{array}{l} \text { Lieut. J. P. Baeevi, Barrow's } \\ 24 \text {-inch Theodolite No. } 8 . \end{array}\right\}$	$\begin{aligned} & \text { Hills } \\ & \text { and } \\ & \text { Plains } \end{aligned}$	712	$2 \cdot 17$	59	1288	590	$\left\{\frac{479 \cdot 32}{1283-590}\right\}^{\frac{1}{2}}= \pm 0 \cdot 832$	$\left\{\frac{843 \cdot 84}{590-59}\right\}^{\frac{1}{2}}= \pm 1 \cdot 261$

October 1883.
W. H. COLE,

MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 39.

* In the tables of the equations between the factors the co-efficiente of the terms below the diagonal are omitted for convenience, the co-eficient of the pth term in the q th line being always the same as the co-efficient of the q th term in the $p t h$ line.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.
Figure No. 40.

Figure No. 41.

Figure No. 42.

Figure No. 43.

Figure No. 44.

- .

MADRAS MERIDIONAL AND COAST SERIES.
Figure No. 44.-(Continued).

Equations between the Factors														
$\begin{gathered} \text { No. of } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { Value of } \\ e \end{gathered}$	Co-efficients of												
		$\begin{array}{ll}\lambda_{1} & \lambda_{2}\end{array}$	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}	λ_{9}	λ_{10}	λ_{11}	λ_{12}	λ_{13}	λ_{14}
1	$+0.285$	+0.25 ...	\ldots	\cdots	\cdots	...	+0.04	... -	1•05	...
2	-0.604	+0.35	\cdots	...	+0.09	$\ldots+$	1.65	...
3	+ 2.244		$+0 \cdot 31$	+0.06	... -	$0 \cdot 11$	\cdots
4	+0.231			$+0 \cdot 3^{8}$	+0.13	+0.14 -	0.54 -	2.80
5	-0.133				+0.39	...	\cdots	+0.20	+0.13 -	$2 \cdot 90+$	0.92
6	- 0.239					+0.24	\ldots	+0.07	$\ldots+$	$0 \cdot 53$...
7	+ 1.036						0. 39	+0.05	... ' +	4.54
8	- 0.279							+0.34	+0.09	...	$2 \cdot 16$
9	-0.179								-0.19	+0.10	...	0.48
10	$+0.238$						*			+0.26	...	+0.08	$\cdots+$	0.64
11	-0.03										+0.59	2.50
12	$+0.18$											+0.59 -	$2 \cdot 82$	
13	-59.2												- 90	14.84
14	$+18 \cdot 8$													63.72
Values of the Factors				Angular errors in seconds										
$\begin{aligned} & \lambda_{1}=+0.1234 \\ & \lambda_{3}=-0.5312 \\ & \lambda_{3}=+7.1748 \\ & \lambda_{4}=+0.7127 \\ & \lambda_{5}=-1.8672 \\ & \lambda_{8}=-0.4154 \\ & \lambda_{7}=+2.5979 \\ & \lambda_{8}=-0.5084 \\ & \lambda_{0}=-0.5373 \\ & \lambda_{10}=+1.1380 \\ & \lambda_{11}=-0.1223 \\ & \lambda_{18}=-0.8375 \\ & \lambda_{13}=-0.2467 \\ & \lambda_{14}=+0.0143 \end{aligned}$					$\begin{aligned} & x_{1}= \\ & x_{8}= \\ & x_{3}= \\ & x_{4}= \\ & x_{6}= \\ & x_{6}= \\ & x_{7}= \\ & x_{8}= \\ & x_{9}= \\ & x_{10}= \end{aligned}$	$+$	$\begin{aligned} & 60 \\ & 66 \\ & 81 \\ & 58 \\ & 74 \\ & 20 \\ & 23 \\ & 23 \\ & 47 \\ & 74 \\ & 21 \end{aligned}$		$\begin{aligned} & =+ \\ & =- \\ & =- \\ & =+ \\ & =- \\ & =+ \\ & =- \\ & =+ \end{aligned}$			$x_{21}=+$ $x_{92}=-$ $\mathbf{x}_{23}=-$ $\mathbf{x}_{24}=-$ $x_{25}=-$ $\mathbf{x}_{26}=-$ $x_{27}=-$ $\mathbf{x}_{28}=+$ $\mathbf{x}_{29}=+$ $\mathbf{x}_{30}=+$	$\cdot 603$ $\cdot 121$ $\cdot 140$ $\cdot 1018$ $\cdot 137$ $\cdot 1018$ $\cdot 024$ $\cdot 024$ $\cdot 144$ $\cdot 070$	

Figure No. 45.

Figure No. 46.

Figure No. 46.-(Continued).

Figure No. 47.

Figure No. 48.

Figure No. 49.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.
Figure No. 50.

Figure No. 51.

Figure No 52.

Figure No. 52.-(Continued).

Figure No. 53.

Figure No. 54.

December, 1883.
W. H. COLE,

In charge of Computing Office.

MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.

Nots.-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations XII (Kándágatla) and XV (Adáligat) appertain to the Bidor Longitudinal Seriea of the South-East Quadrilateral.

PRINCIPAL TRIANGULATION. TRIANGLES.
1_{103}.

NOTE.-Station XXXIII (Nagari) appertains to the Madras Longitudinal Series.

Nots.-1. Stations XXXIII (Nagari) and XXXV (Chĕmbedu) appertain to the Madras Longitudinal Series.
2. Stations XXXIX (Dhâr) and XLI (Sánjib) appertain to the Bider Longitudinal Series of the South-East Quadrilateral.

- .

June, 1887.
W. H. COLE,

In charge of Computing Office.

MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

Station A				Side AB			Station B
Circuit No.	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Asimuth at B	Number and Name of Station
75	XII (Kándágatla)	- 1	- 11	- 1		- 1	
		1717 31.31	793943.95	2544812.26	5*0427993, 1	745339.87	XV (Adáligat)
	"	"	"	3035153.27	5•1907564,8	1235825.39	I (Anantagiri)
	XV (Adáligat)		$7958{ }^{\prime \prime} 3 \cdot 69$	$3392726 \cdot 29$	5*0133926,4	1592916.33	II (Niálamari)
				34988980	5*0701298,8	$169 \quad 91747$	I (Anantagiri)
	" "	"		$292056 \cdot 35$	5-1579209, 1	209172147	II (Niálamari)
76	I (Anantagiri)	$17 \quad 312$	80 I $5^{2 \cdot} 03$	835233.35	4*9693784,4	2634753.48	" "
	" "			349216.03	51149724,6	169221796	III (Miádarsál)
	" "	"	"	31 19 22.84	5'1905323,8	211152211	IV (Sárangapalle)
	II (Niálamari)	$17 \quad 133.63$	7945 56•96	315153720	5-2203028,8	1352126.13	III (Miádarsál)
"				3541831.47	5.0903222,5	17419790	IV (Sárangapalle)
	III (Miádarsál)	$16 \quad 42 \quad 2 \cdot 92$	80 $\quad 5 \quad 59 \cdot 79$	$873635 \cdot 56$	5.0203045,3	$2673126 \cdot 11$	" "
	" "	$"$	"	$223257 \cdot 54$	4.8708078,7	2023133.87	V (Kachalboru)
	IV (Sárangapalle)	16 41" 18.81	7948 " $2 \cdot 58$	316243415	47343008,8	$13626 \quad 2432$	VI (Voruvakallu)
77				310158.67	4.9985399,2	$130 \quad 542.78$	V (Kachalboru)
"	" "	"	"	3392552.94	5•0883393,1	1592758.79	VIII (Mániam)
107	V (Kachalboru)	$163042 \cdot 71$	$80 \quad 1 \quad 7.02$	24559 36.61	4*8579498,5	$66 \quad 249.58$	VI (Voruvakallu)
	" "	"		305 51 45.97	4.6920042,8	125534215	VII (Dhúlipalla)
	" "	"	"	33 2114.14	4.7823253,1	213193730	VIII (Mániam)
	VI (Voruvakallu)	$16 \quad 35 \quad 33.29$	80 1224.38	$24 \quad 752 \cdot 10$	4*8041591,5	$204636 \cdot 03$	VII (Dhúlipalla)
	VII (Dhúlipalla)	$1625 \quad 56.75$	$80 \quad 7 \quad 56 \cdot 77$	732743.89	4.8828335,6	253241157	VIII (Mániam)

Nors,-Stations XII (Kándágatla) and XV (Adáligat) appertain to the Bider Longitudinal Series of the South-Fast Quadrilateral.

Station A				Side AB			Station B
$\begin{array}{\|l} \text { Circuit } \\ \text { No. } \end{array}$	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Number and Name of Station
91	XLI (Kambákamdurgam)	- 1	- 1	- 11		- 11	
		$13 \quad 34 \quad 27 \% 10$	$795413 * 09$	$116 \quad 616.05$	5*0680779,4	$\begin{array}{llll}296 & 2 & 4.64\end{array}$	XLIII (Yerpet)
	" "	"		2945049.54	5-0802490,7	$11455 \quad 7 \cdot 86$	XLIV (Rexttambedu)
	" "	"	"	$531449 \cdot 24$	5.0726030,2	233115063	XXXIII (Nagari)
	" "	"	"	$3401830 \cdot 54$	5.0882262,6	$16020 \quad 7.54$	XXXV (Chěmbedu)
	XLII (Jonangipálěm)	$13 \quad 38 \quad 36 \cdot 46$	$80 \quad 13$ 56'10	$54245 \cdot 61$	$4.8815827,3$	1854227.64	XLIV (Rettambedu)
	XLIII (Yerpet)	$\begin{array}{llll}13 & 42 & 56 \cdot 96\end{array}$	$\begin{array}{llll}79 & 36 & 27 & 39\end{array}$	355 541.09	5•0885927,7	$175 \quad 6 \quad 5 \cdot 97$	XXXIII (Nagari)
	XLIV (Rěttambedu)	$13 \begin{array}{lll}13 & 26 & 5.04\end{array}$	80 12 $1239^{\circ} 30$	$46233^{6 \cdot 13}$	4.9724256,0	$2262057 \cdot 29$	XXXV (Chěmbedu)
92	XXXIII (Nagari)	$\begin{array}{llll}13 & 22 & 45.08\end{array}$	$79 \quad 3^{8} \quad 13 \cdot 62$	288 6 35'92	5'1557144,3	$1081153 \cdot 24$	" \quad
	XXXV (Chěmbedu)	$\begin{array}{llll}13 & 15 & 22.76\end{array}$	80 1 11.17				
94	XXXIX (Dhár)	$17 \begin{array}{llll}17 & 43 & 59\end{array}$	823054.99	3153422'14	5*0307325,3	$1353817 \cdot 28$	XLI (Sánjib)
"	" "	"	"	3445 50'13	4.9650817,5	$21443 \quad 5045$	XLV (Gundálamma)
"		"	"	IOI 5659.30	4*8965786,0	281 $5255^{\circ} 96$	XLVII (Pagulráyi)
	XLI (Sánjib)	$17 \begin{array}{lll}1718.68\end{array}$	$82 \quad 43$ 51*48	$902640 \cdot 74$	5:1063620, 1	27020 3.22	XLV (Gundálamma)
		"	"	$474124 \cdot 70$	5.0028595,6	$2273734 \cdot 51$	XLVI (Kappakŏnda)
95	XLV (Gundálamma)	173127.28	82 21 51.21	32263073	4*9394926,4	142 8 48	" $"$
"	" "	"	"	165 46635	4*9791881,6	$345 \quad 249^{\circ} 27$	XLVII (Pagulráyi)
	" "	"	"	$394227 \cdot 28$	$4 \cdot 8948934,4$	$2193952 \cdot 06$	XLVIII (Nágal)
"	" ${ }^{\prime \prime}$	"	"	$\begin{array}{\|ccc\|}105 & 7 & 5 \cdot 36\end{array}$	4*8750442,9	$285 \quad 319.65$	XLIX (Kalimámidi)
	XLVI (Kappakŏnda)	17 20 $6 \cdot 41$	$82312 \cdot 93$	$9436 \quad 1 \cdot 66$	5.0167005,1	$2743042 \cdot 76$	XLVIII (Nágal)
	XLVII (Pagulráyi)	$17 \quad 46 \quad 40 \cdot 44$	$82 \begin{array}{lllll} \\ 8 & 17 & 37^{\circ} 02\end{array}$	$332258 \cdot 83$	4.9390043,6	$2132028 \cdot 73$	XLIX (Kalimámidi)
96	XLVIII (Nágal)	172128.27	$\begin{array}{llll}82 & 13 & 13 & 34\end{array}$	$1642426 \cdot 82$	4.9190357,2	$3442317{ }^{\prime} 59$	"
	" "	"	"	$76 \quad 521 \cdot 04$	4.9121232,1	$256117{ }^{1} 24$	L (Nallakŏnda)
		"	"	195742.54	5*0671489,6	19955 41.02	LI (Elangoi)
	XLIX (Kalimámidi)	$17 \quad 34 \quad 40 \cdot 83$	$\begin{array}{ll}82 & 9 \\ 22 \cdot 73\end{array}$	$294535^{\prime} 15$	5*0596540,8	20942 38.97	L (Nallak ${ }^{\text {chda) }}$
	" "	"	"	$733059^{\circ} \mathrm{II}$	4-9746393,6	2532617×39	LII (Kappa)
"	L (Nallakŏnda)	$\begin{array}{llll}17 & 18 & 13.09\end{array}$	81 $5934{ }^{\prime} 91$	$3361710^{\circ} 57$	4.9926715,0	1561910.98	LI (Elangoi)
	" "	"	"	$1551443{ }^{\circ} 23$	4.9039927,2	3351259.47	LII (Kappa)
	"	"	"	$174640 \cdot 40$	4.9797495,9	19745 11.67	LIII (Náwilmètta)
		"	"	$782140 \cdot 60$	48745470, 1	$2581755 \cdot 64$	LIV (Pothkŏnda)
	LI (Elangoi)	$17 \quad 3 \begin{array}{ll}17 & 20 \cdot 33\end{array}$	$\begin{array}{lll}82 & 6 & 22 \cdot 56\end{array}$	$891851 \cdot 64$	$4 \cdot 8368982,3$	2691523.98	LIII (Nawilmĕtta)
97	LII (Kappa)	$\begin{array}{lllll}17 & 30 & 14.84\end{array}$	$\begin{array}{llll}81 & 53 & 48 \cdot 02\end{array}$	$241948 \cdot 47$	4-9845407,8	204 1745*89	LIV (Pothkŏnda)
	LIII (Náwilme̛tta)	$17 \begin{array}{lll}17 & 311.84\end{array}$	$\begin{array}{llll}81 & 54 & 34 & 49\end{array}$	14942 II 05	4.9431855,5	$3293956 \cdot 30$	
	"	"	"	$795027 \cdot 25$	5.0132017,5	$2594521^{\circ} \mathrm{O}$	LV (Lachmipuram)
		"	"	$1154128^{\prime} 92$	51711172,2	$2953442 \cdot 52$	LVI (Adakŏnda)
98	LIV (Pothkŏnda)	$171542 \cdot 85$	81 46	$311816 \cdot 32$	5•0413376,4	2111522.83	LV (Lachmipuram)
"		"	"	$8239 \quad 5 \cdot 64$	4*9547367,3	$2623432 \cdot 26$	LVI (Adakð̌nda)
	LV (Lachmipuram)	$17 \quad 0 \quad 10.80$	81 $37 \quad 8.74$	$1583635^{1} 17$	4.9470393,7	$3383457^{\prime} 13$	" "
	" "	"	"	$941643^{\prime} 15$	4.9247136,0	$2741230 \cdot 30$	LVII (Yedlagattu)
		"	"	$562120 \cdot 11$	4.8908340,2	236 18 5'77	LVIII (Aupád)
99	LVI (Adakŏnda)	$171347 \% 99$	$813135 \cdot 61$	$34 \quad 438 \cdot 21$	4:9636228,3	$214 \quad 2 \quad 1 \cdot 82$	LVII (Yédlagattu)

Nots.-Stations XXXIII (Nagari) and XXXV (Chěmbedu) appertain to the Madras Longitudinal Series, and XXXIX (Dhár) and XLI (Sánjib) to the Bider Longitudinal Series of the South-Kast Quadrilateral.

MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, \&c., in pairs of horizontal lines, the first line of which gives the data for the lst or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction and the height of the 2nd station above or below the lst, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results." The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit levelling operations, wherever a junction between the two has been effected. The spirit levelled determinations are always accepted as final, and the trigonometrical heights of stations lying between those fixed by the levelling operations are adjusted by simple proportion to accord with the latter. In the table the spirit levelled values are printed thus, $48^{\circ} 06, \& c$., to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XII from Stn. X, page 117_er, to indicate that one set of adjustments ends and another begins. The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood. Descriptions follow this table, exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights.

When the pillar of the station is perforated, the height given in the last column is that between the upper surface of pillar and the ground level mark-stone in the floor of the passage; otherwise, it is the approximate height of the structure above the ground at the base of the station.

The initial stations of this series are Kándágatla, Adáligat, Dhár and Sánjib of the Bider Longitudinal Series. The heights above Mean Sea Level are given on pages 95 _p $^{\text {. and } 96 — \text {. of Vol. VI of the Account of the Operations, } \& c . \text {; those of the two }}$ former have been corrected by $-6 \cdot 1$ and -5.8 feet respectively to agree with the values of the Bider Base-line stations as determined by spirit-levelling operations in 1880: the heights of the two latter required no correction. The heights now accepted are as follows:-

XII	(Kandágatla)	$1646 \cdot 9$ feet;	XXXIX (Dhár)	4093.0	feet ;
XV	(Adáligat)	971.2	XLI (Sánjib)	2142.0	,

Notr.-Stations XII (Kándágatla) and XV (Adáligat) appertain to the Bider Longitudinal Sories of the South-East Quadrilateral.

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2 nd Station above Mean Sea Level			
1868	Mean of Times of obser－ vation				$\mathbb{J}_{g_{0}}$	蕽		产			Trigonometrical Results			
						菏			¢		$\begin{aligned} & \text { By each } \\ & \text { deduc- } \\ & \text { tion } \end{aligned}$	Mean	Result	
	$h^{2} \mathrm{~m}$		－＇ 1				＂							foet
	217	II（Niálamari）	D ○ $1845^{\circ} \mathrm{C}$	4	$2 \cdot 7$									
Mar．$\quad 30$	214	I（Anantagiri）	E○ 515.8	4	$2 \cdot 7$	$5 \cdot 2$	921	57		－ 3233	8191			
＂ 20	246	XII（Kándágatla）	D $02424{ }^{1} 1$	4	$2 \cdot 7$	$5 \cdot 2$								
Apr． 3	250	II（Niálamari）	E ○ 916.9	4	$2 \cdot 7$	5．2	1020	61		－505＊3	1141．6			
Mar． 25	238	XV（Adáligat）	D o 624．7	4	$2 \cdot 7$	$5 \cdot 2$								
Apn 3	243	II（Niálamari）	D 01437.6	4	$2 \cdot 7$	$5 \cdot 2$	1422	83		＋171．9	$1143{ }^{\circ} 1$	11424	1142	$2 \cdot 0$
Mar． 30	214	I（Anantagiri）		4	27	$5^{\circ} \mathrm{z}$								
Apr． 3	217	II（Niálamari）	D 01845.2	4	$2 \cdot 7$	$5 \cdot 2$	92 I	57	－061	＋3233	$1142 \cdot 6$			
Mar．$\quad 31$	214	I（Anantagiri）	E $\circ 1019.6$	4	$3 \cdot 6$	$5 \cdot 2$								
Apr． 9	215	III（Miádarsál）	D 029 2I．9	4	$2 \cdot 7$	$5 \cdot 3$	1288	77	－ 060	＋ 7523	1571－5			
＂ 3	234	II（Niálamari）	Do 311.4	4	2.6	$5 \cdot 2$								
＂ 9	233	III（Miádarsál）	D $02056 \cdot 3$	4	$2 \cdot 7$	$5 \cdot 3$	1642	100	－061	＋ $428 \cdot 8$	1571×2	$1572 \cdot 5$	1573	$1 \cdot 2$
＂ 15	243	IV（Sárangapalle）	E 02556.2	4	$2 \cdot 6$	$5 \cdot 3$								
＂ 9	242	III（Miádarsál）	D $04121 \cdot 3$	4	$2 \cdot 7$	$5 \cdot 3$	1036	61	－058	＋1025 7	1574.8			
Mar． 81	230	I（Anantagiri）	D 017 28．1	4	$2 \cdot 7$	$5 \cdot 2$								
Apr． 15	231	IV（Sárangapalle）	Do 534.1	4	$2 \cdot 7$	$5 \cdot 3$	1533	79	051	－ 268.5	550＇7			
＂ 8	28	II（Niálamari）	D $02544^{\circ} \mathrm{O}$	4	$2 \cdot 7$	5＊2								
＂ 15	23	IV（Sárangapalle）	E ○ 729.5	4	$2 \cdot 7$	5•3	1217	66	054	－ 595°	$547 * 4$	547＊9	548	$5^{\circ} 0$
＂ 9	242	III（Miádarsál）	D $04121 \cdot 3$	4	$2 \cdot 7$	$5 \cdot 3$								
15	243	IV（Sárangapalle）	E 025 56．2	4	2.6	$5 \cdot 3$	1036	61	058	-10257	$545 *$			
＂$\quad 9$	224	III（Miádarsál）	D 03313.3	4	$2 \cdot 7$	$5 \cdot 3$								
＂ 22	224	V（Kachalboru）	E 02210.6	4	$2 \cdot 6$	5＊3	734	43	－059	－ 598.5	974.0			
＂ 15	218	IV（Sárangapalle）	E 0719.3	4	$2 \cdot 7$	$5 \cdot 3$						974＊1	974	$2 \cdot 0$
22	215	V（Kachalboru）	D 022 5 3	4	$2 \cdot 7$	$5 \cdot 3$	985	55	－056	＋426．3	974＊2			
＂ 9	23	III（Miádarsál）	D $12647^{\circ} \mathrm{O}$	4	$2 \cdot 8$	$5 \cdot 3$								
＂ 25	24	VI（Voruvakallu）	E 11834.6	4	$2 \cdot 6$	$5 \cdot 2$	536	31	059	－1304．9	$267 \cdot 6$			
22	234	V（Kachalboru）	Do 392.8	4	$2 \cdot 8$							268．0	268	1×0
25	234	VI（Vorurakallu）	E 02814.9	4	$2 \cdot 7$	$5 \cdot 2$	713	39	$\bigcirc 55$	－705．8	$268 \cdot 3$			
＂ 22	253	V（Kachalboru）	D $05454^{\circ} 7$	4	$2 \cdot 7$	$5 \cdot 3$								
＂ 27	31	VII（Dhúlipalla）	E $04714^{\prime} 1$	4	$2 \cdot 7$	$5 \cdot 3$	486	24	$\cdot 048$	－731＇1	$243{ }^{\circ}$			
＂25，26	249.	VI（Voruvakallu）	Do 632.7	12	$2 \cdot 7$	5＊2				－ 33.5				
＂ 27	212	VII（Dhúlipalla）	D 0.4004	4	$2 \cdot 8$	$5 \cdot 3$	630	6		－ 23.5	244.5	$243 \cdot 8$	244	$5^{\circ} 0$
	231	VIII（Mániam）	D 049 1．0	12	2.8									
（2）	251	VII（Dhúlipalla）	E $03730 \cdot 9$		$2 \cdot 8$	5．3	754	39		$\mid-96 I \cdot I$	243•8			
＂ 15	254	IV（Sárangapalle）	E 0918.2	4	$2 \cdot 7$	$5 \cdot 3$				$+656 \cdot 6$				
＂ 19	255	VIII（Mániam）	D 027 3r．6	4	$2 \cdot 7$	$5 \cdot 3$	1212	63	－052	＋ $656 \cdot 6$	1204＊5			

[^10]| Astronomical Date | | Number and Name of Station | Observed
 Vertical Angle | Number of observations | Height in feet | | | Terrestrial Refraction | | | Height in feet of 2nd Station above Mean Sea Level | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1868 | Mean of
 Times
 of obser
 vation | | | | | 蓸意品 | | | | | Trigonometrical Results | | Final Rosult | |
| | | | | | | | | | | | $\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$ | Mean | | |
| | $\boldsymbol{h} \boldsymbol{m}$ | | －， | | | | ＂ | | | | | | | feet |
| Apr． 22 | 244 | V（Kachalboru） | E ○ $830 \cdot 3$ | 4 | | | 599 | | | | | | | $1 \cdot 0$ |
| 19 | 241 | VIII（Mániam） | D 01743.6 | 4 | $2 \cdot 7$ | $5 \cdot 3$ | 599 | 31 | 052 | ＋2312 | 12053 | 12049 | 1205 | |
| （1） | 251 | VII（Dhúlipalla） | E $03730 \cdot 9$ | 12 | $2 \cdot 8$ | $5 \cdot 3$ | | | | | 1204．8 | | | |
| $\begin{gathered} (2) \\ 1863 \end{gathered}$ | 231 | VIII（Mániam） | D 049 1－0 | 12 | $2 \cdot 8$ | $5 \cdot 3$ | 754 | 39 | 051 | ＋96r 1 | 12048 | | | |
| Dec． 8 | 255 | VII（Dhúlipalla） | E $\circ 3655.9$ | 8 | $2 \cdot 8$ | 5．4 | 1026 | 66 | － 065 | | | | | |
| ＂14，15 | 255 | IX（Kotapa） | D 05159.6 | 8 | $2 \cdot 9$ | 5.4 | 1026 | 66 | －65 | ＋1338．7 | 1582.5 | | 1583 | 6 |
| ＂ 10 | 29 | VIII（Mániam） | E ○ 619.9 | 8 | $2 \cdot 8$ | $5 \cdot 4$ | | 63 | | | | 1582 | 1583 | |
| ＂ $1862{ }^{15}$ | 26 | IX（Kotapa） | D 02024.6 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | 960 | 63 | | ＋ 3773 | $582 \cdot 2$ | | | |
| Apr． 8 | 128 | VII（Dhúlipalla） | E $04450 \cdot 0$ | 4 | $2 \cdot 8$ | 5．4 | | | | | | | | |
| ＂ 1863 3，4 | 129 | X（Ȧdamsáb） | D 05849.8 | 8 | $2 \cdot 9$ | $5 \cdot 3$ | 938 | 55 | －058 | ＋1431 5 | $1675 \cdot 3$ | | | |
| Dec．${ }^{1863} 14,15$ | 230 | IX（Kotapa） | Do 332．1 | 8 | | | | | | | | 1675 ${ }^{1}$ | 1675 | 1•0 |
| ＂4，5 | 230 | \mathbf{X}（Ádamsáb） | D 0101013 | 8 | $2 \cdot 9$ $2 \cdot 8$ | 54 | 939 | 62 | － 066 | ＋92．6 | 1675° | | | |
| ＂ $1862{ }^{10}$ | 31 | VIII（Mániam） | D o 1028.7 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | | | | | | | | |
| Mar．${ }^{1862}$ 20 | 225 | XI（Yěrrakŏnda） | D $0647 \cdot 0$ | 4 | $2 \cdot 8$ | 5.4 | 1166 | 69 | | － 63.3 | 1141．6 | | | |
| $\text { Dec. }{ }^{1863} 15$ | 146 | IX（Kotapa） | D $02120 \cdot 2$ | 8 | 2.9 | $5 \cdot 4$ | | | | | | 1141．6 | 1142 | 1＊O |
| $\text { Mar. }{ }^{1862} 19,20$ | 149 | XI（Yěrrakŏnda） | E 0412.4 | 8 | $2 \cdot 8$ | 5 | 1169 | 75 | | － $440 \cdot 8$ | 1141．6 | | | |
| ${ }_{\text {Dec．}} 1863{ }^{14,15}$ | | | | | | 54 | | | | | | | | |
| ${ }^{\text {Dec. }}{ }_{1864}{ }^{14,15}$ | 3 II | IX（Kotapa） | D I $447^{\circ} 9$ | 8 | 2.9 | $5 \cdot 4$ | 895 | | | | $48 \cdot 0$ | | | |
| $\text { Jan. }{ }_{1863} \quad 2$ | 314 | XII（Pálapáru） | E 05129.8 | 8 | $2 \cdot 8$ | $5 \cdot 4$ | 895 | 54 | | －1534 4 | | $47 \cdot 9$ | 48.06 | $2 \cdot 0$ |
| Dec． 1864 4，5 | 245 | X（Ådamsáb） | D 12228.2 | 8 | $2 \cdot 9$ | 5.4 | | | | | | | | |
| Jan．${ }^{1864} 4$ | 251 | XII（Pálapáru） | EIII41＇， | 8 | $2 \cdot 8$ | 5.4 | 720 | 43 | 060 | $-1627 \cdot 3$ | $47 \cdot 8$ | | | |
| Dec．${ }^{18,15}$ | 323 | IX（Kotnpa） | D $0445^{\circ} 7$ | 8 | $2 \cdot 8$ | $5 \cdot 4$ | | | | | | | | |
| ＂ 30 | 323 | XIII（Babběpalle） | E 033 0：6 | 8 | $2 \cdot 8$ | $5 \cdot 4$ | 804 | 53 | | －918．5 | 664.0 | | | |
| Jan． 2 | 231 | XII（Pálapáru） | E○ 288.0 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | | | | | | | | |
| Dec．${ }_{1863}{ }^{3} \mathbf{3 0}$ | 230 | XIII（Babběpalle） | D 03749.7 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | 633 | 34 | 053 | ＋ 614.6 | $662 \cdot 7$ | $663 \cdot 5$ | 664 | 1＊0 |
| Mar．${ }_{1862} \mathbf{2 4 , 2 5}$ | 22 | XIV（Dánapa） | D 02219.4 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | | | | | | | | |
| Dec．${ }^{1863} 30$ | 24 | XIII（Babběpalle） | E 01278 | 8 | $2 \cdot 8$ | $5 \cdot 4$ | 680 | 42 | | － 3459 | $663 \cdot 7$ | | | |
| ＂14，16 | 229 | IX（Kotapa） | D 02856.3 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | | | | | | | | |
| ＂ 27 | 229 | XIV（Dánapa） | E 01614.0 | 8 | 2.9 | $5 \cdot 4$ | 864 | 57 | | － $573 \cdot 3$ | 1009 ${ }^{2}$ | | | |
| 1862 Mar．$\quad 19,20$ | 214 | XI（Y̌̌rrakŏnda） | D 01148.8 | 8 | $2 \cdot 8$ | | | | | | | | | |
| ＂24，25 | 216 | XIV（Dánapa） | D ○ $246 \cdot 5$ | ． 8 | $2 \cdot 8$ | 54 54 | 989 | 62 | 063 | －1317 | 1010．0 | $1009{ }^{\circ} 5$ | 1010 | 1•0 |
| Dec．${ }^{1863}$ | | | | | | | | | | | | | | |
| Doc． 1862 | 2 | XIV（Babbépa | EO $1278{ }^{\circ}$ | 8 | $2 \cdot 8$ | $5 \cdot 4$ | 680 | 42 | 061 | ＋ 3459 | 1009 3 | | | |
| Mar．${ }_{1863}{ }^{24,25}$ | 22 | XIV（Dánapa） | D 02219.4 | 8 | $2 \cdot 9$ | 5＊4 | | | | | | | | |
| $\text { Dec. }{ }_{1864}^{1006} \text {. }{ }^{30}$ | 344 | XIII（Babběpalle） | D ○ 1012.6 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | 887 | 58 | | | $567 \cdot 4$ | | | |
| ${ }^{\text {Jan. }}{ }_{1863} 11$ | 343 | XV（Medaramětla） | D 0249.8 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | 887 | 58 | | | | 567＇9 | 568 | 1•0 |
| Dec．${ }_{1864}{ }^{27}$ | 152 | XIV（Dánapa） | D 02513.7 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | 768 | 52 | | －441 2 | 568．3 | | | |
| Jan． 11 | 153 | XV（Medaramêtla） | E ○ 1355.8 | 8 | $2 \cdot 9$ | $5 \cdot 4$ | 768 | 52 | | －4412 | | | | |

Astronomical Date		Number and Name of Station	Observed Vertical Angle	suo！z8axaqq0 jo лequmn	Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1863.64	Mean of Times of obser－ vation				最	若		若			$\underset{\text { Res }}{\text { Trigono }}$	metrical		
						步		¢			$\begin{array}{\|c} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{array}$	Mean	Result	
	$\hbar \mathrm{m}$		－，＂				＂							foet
Dec． 30	31	XIII（Babběpalle）	D 02922.7	8	2.9	5.4								
Jan． 5	32	XVI（Faranguldinne）	E 01425.4	8	$2 \cdot 9$	$5 \cdot 4$	994	53		－ $638 \cdot 8$	$24^{\circ} 7$			
＂ 11	317	XV（Medaramětla）	D 03018.7	8	$14^{\circ} 2$	$5 \cdot 4$						$25^{\circ} \mathrm{O}$	25	2．0
＂5，6	315	XVI（Faranguldinne）	E 01944.8	8	$8 \cdot 9$	$5 \cdot 4$	731	31		－542．5	$25^{\circ} 4$			
Dec． 27	211	XIV（Dánapa）	D $02753{ }^{\circ}$	8	2.9	$5 \cdot 4$	826							
Jan． 15	215	XVII（Peddakaltippa）	E 01543.4	12	$2 \cdot 8$	5．4	826	54		－530＇9	$478 \cdot 6$			
， 11	227	XV（Medaramětla）	D ○ $1032 \cdot 8$	8	2.9	5＊4							9	$1 \cdot 0$
＂ 14	228	XVII（Peddakaltippa）	D $0442 \cdot 2$	8	$2 \cdot 8$	$5 \cdot 4$	1044	69		90°	$477{ }^{\circ} 9$			
＂ 11	211	XV（Medaramětla）	E 14983	8	$2 \cdot 8$	5．4								
＂ 19	210	XIX（Chemakurti）		8	$2 \cdot 8$	$5 \cdot 4$	743	47	－063	＋1525＊	2092．9			
＂ 15	248	XVII（Pěddakaltippa）	E 05955.7	8	$2 \cdot 8$	$5 \cdot 4$						$2092 \cdot 5$		O
＂ 19	249	XIX（Chemakurti）	D $11211 \cdot 2$	8	$2 \cdot 9$	$5 \cdot 4$	832	54		＋1614．0	$2092{ }^{2}$			
＂ 11	250	XV（Medaramětla）	D ○ 19 7\％	8	$2 \cdot 9$	$5 \cdot 4$	845				$248 \cdot 9$			
＂29，31	251	XVIII（Ongole）	E 0636.7	12	$2 \cdot 8$	$5 \cdot 4$	845	54		－ 3190	2489			
＂$\quad 8$	1957	XVI（Faranguldinne）	E 0149.5	8	$10 \cdot 2$	$5 \cdot 4$	887	41			$242 \cdot{ }^{*}$			$2 \cdot 0$
－8	1957	XVIII（Ongole）	D $0145^{2 \cdot 1}$	8	$9 \cdot 8$	$5 \cdot 2$	887	41		＋ 217.7	$242 \cdot 7$	$249 \cdot 2$	24974	2.0
＂ 19	249	XIX（Chemakurti）	$\begin{array}{ll}\text { D } 119 & 7.4\end{array}$	8	2.9	5．4	860	53		－1843．0	249.5			
＂29，31	248	XVIII（Ongole）	E 1622.7	12	$2 \cdot 8$	$5 \cdot 4$	860	53		－1843 0	2495			
31	226	XVIII（Ongole）	D ○ 929.6	8	$2 \cdot 8$	5.4								
Feb．2，4	227	XX（Netivaripálěm）	D $05^{10 \cdot 1}$	12	$2 \cdot 9$	$5 \cdot 4$	909	20		－57．9	191•8			
Jan． 19	321	XIX（Chemakurti）	D 121007	8	$2 \cdot 8$	$5 \cdot 4$						188．2	188	O
Feb．2，4	$\begin{array}{lll}3 & 18\end{array}$	XX（Netivaripálĕm）	$\begin{array}{lllll}\text { E } 1 & 8 & 2.8\end{array}$	12	$2 \cdot 8$	5．4	873	53		－1908．4	184：5			
Jan． 29	319	XVIII（Ongole）	Do12 6．1	8	＋3．1	$5 \cdot 4$								
Mar．2，3	319	XXI（Puripád）	D 025311	8	$2 \cdot 9$	$5 \cdot 4$	963	44		－127 3	122.4			
Feb．2，4	334	XX（Netivaripálĕm）	D 0102.6	16	＋3．1							121．8	121	$9^{\circ} 0$
Mar．2，3	$\begin{array}{ll}3 & 34 \\ \\ 3\end{array}$	XXI（Puripád）	Do 3 50＊O	8	2．9	5	764	－20		－66．9	121．3			
Jan． 19	225	XIX（Chemakurti）	D o $339^{\circ} 7$	8	2.9	$5 \cdot 4$								
＂2t	225	XXII（Nishánkǒnda）	D 010 10．5	8	$2 \cdot 8$	$5 \cdot 4$	937	64		＋87．7	$2180 \cdot 6$			
Feb． 2	243	XX（Netivaripálěm）	E I 434.2	8	2．8							$2182{ }^{\circ}$	2181	1＊0
Jan． 24	243	XXII（Nishánkǒnda）	D 11841.5	8	． $2 \cdot 9$	5.4	945	54	－058	＋1995＊2	2183.4			
Feb．3，4	220	XX（Netivaripálěm）	E 02154.8	16	$2 \cdot 8$	$5 \cdot 4$								
＂8，9	220	XXIII（Picherrla）	D $03946 \cdot 6$	8	$2 \cdot 9$	$5 \cdot 4$	1201	69		＋1091 7	1279＊			
Jan．$\quad 24$	30	XXII（Nishánkŏnda）	D $\circ 3459.8$	8	$2 \cdot 8$	$5 \cdot 4$						$1280 \cdot 4$	1279	1＊0
Feb．8，9	3 －	XXIII（Pichěrla）	E $01757 \cdot 7$	8	$2 \cdot 8$	$5 \cdot 4$	1160	73		－901＊O				
＂${ }^{\prime}$ 2，4	3 0	XX（Netivaripálěm）	E 022581	16	2.8	5.4			． 043					
Mar． 6	259	XXIV（Kuchěrla）	D 02057	8	$2 \cdot 9$	5.4	1113	47	－043	＋ 3769	$565 \cdot 1$			

* Not forthcoming.

Astronomical Date		Number and Name of Station	Observed Vertical Angle	Number of observations	Height in feet			Terrestrial Refraction			Height in foet of 2nd Station above Mean Sea Level			
1864	Mean of Times of obser－ vation				压	若					$\left\lvert\, \begin{array}{r} \text { Trigonor } \\ \text { Ress } \end{array}\right.$	metrical ults		
						訔		:			By each deduc－ tion tion	Mean	Result	
	$h m$		1				＂							feet
Apr．$\quad 10$	250	XXXII（Pallakŏnda）	D 03125.5	8		$5 \cdot 4$	1020				$460 \cdot 5$			
8	249	XXXI（Kistama）	E $016 \quad 1 \cdot 2$	8	$2 \cdot 9$	$5 \cdot 4$		53			$460 \cdot 5$			
Mar．$\quad 30,31$	234	XXVIII（Rájalli）	E 0847.8	8	$2 \cdot 9$	5.4	1209	72						
Apr． 10	235	XXXII（Pallakŏnda）	D $02640 \cdot 5$	8	$2 \cdot 9$	$5 \cdot 4$	1209	72		＋ 6295	$1175 \cdot 2$			
Mar． 25	39	XXX（Yěrrakŏnda）	D 02625.4	8	$2 \cdot 8$	5.4								
Apr． 10	39	XXXII（Pallakŏnda）	E 0654.4	8	$3 \cdot 0$	5.4	1323	80		－ $648 \cdot 0$	$1174{ }^{\circ}$	$1175{ }^{\circ}$	1171	$2 \cdot 0$
＂ 8	249	XXXI（Kistama）	E 0161.2	8	$2 \cdot 9$	$5 \cdot 4$								
＂ 10	250	XXXII（Pallakŏnda）	D 03125.5	8	$2 \cdot 8$	5.4	1020	53		＋7142	$1176 \cdot 1$			
Dec．${ }_{1865} 22$	232	XXXI（Kistama）	Do 316．9	8	$2 \cdot 6$	5＊3								
Jan．${ }^{1864}$－ 9	232	XXXIII（Vutukúr）	D ○ 822.8	8	$2 \cdot 7$	$5 \cdot 3$	788	51	5	$59^{\circ} \mathrm{O}$	$520 \cdot 4$			
$\text { Dec. }{ }_{1005}^{100,31}$	3 41	XXXII（Pallakŏnda）	D 029 8．1	12	$2 \cdot 6$	$5 \cdot 3$						520＇7	517	$3 * 0$
Jan．${ }^{1865}{ }^{18,10}$	341	XXXIII（Vutukúr）	E O 1430	16	2.6	5．3	1029	67		－ $654 \cdot \mathrm{I}$	$52 \mathrm{I} \cdot 0$			
Dec．${ }_{1864}^{1865}{ }^{22}$	257	XXXI（Kistama）	D 0193.5	8	$2 \cdot 8$	$5 \cdot 3$								
Jan．${ }^{1865} 13$	36	XXXIV（Bandalduru）	E 0633.6	8	$2 \cdot 7$	5	835	49		－315．0	$146 \cdot 4$			
9	329	XXXIII（Vutukúr）	D 02129°	8	2．8							$146 \cdot 0$	141×46	$2 \cdot 0$
＂1864 12	328	XXXIV（Bandalduru）	E 09780	8		5．3	83 I	50		－ $375 \cdot 1$	145.6			
${ }_{\text {ec．}}{ }^{1864}{ }_{30,31}$					29	53								
Dec．${ }_{1865}{ }^{30,31}$	331	XXXII（Pallakŏnda）	E $03335^{\circ} 5$	12	$2 \cdot 7$	5．3								
Jan． 4	336	XXXV（Pálchěrla）	D $0455^{2.9}$	8	$2 \cdot 7$	$5 \cdot 3$	840	58		＋979 ${ }^{1}$	2154.2			
＂9，10	256	XXXIII（Vutukúr）	E $05734^{\circ} 4$	8	$2 \cdot 7$	5．3						$2153{ }^{\circ}$	2149	$3 \cdot 0$
＂ 4	257	XXXV（Pálchĕrla）	D 1101311	8	$2 \cdot 7$	$5 \cdot 3$	865	60		＋1631 1	2151．8			
＂ 9	216	XXXIII（Vutukúr）	D 01516.8	8	$2 \cdot 7$	5．3								
Feb．2，3	224	XXXVI（Kayyúr）	E 0245%	12	3＇0	5．3	842	52		－ 222.7	293＊9			
Jan．$\quad 4$	313	XXXV（Pálchěrla）	D $11818: 4$	8	$2 \cdot 7$	5＊3								
Feb． 3	310	XXXVI（Kayyur）	EI $53 \mathrm{I}^{\circ} 9$	8	$2 \cdot 6$	$5 \cdot 3$	876	61		－1855．0	293.5	$293 * 5$	293	$2 \cdot 7$
Jan．28，29	233	XXXVII（Gurramkŏnda）	D 0642.4	8	$2 \cdot 7$	5＊3								
Feb． 2	231	XXXVI（Kayyúr）	D $0244^{\circ} \mathrm{I}$	8	$2 \cdot 6$	$5 \cdot 3$	617	34		－36．2	293.0			
Jan．$\quad 9$	348	XXXIII（Vutukúr）	D ○ 13 39．9	8	$2 \cdot 7$	3								
＂28，29	347	XXXVII（Gurramkŏnda）	D ○ 07.4	12	$2 \cdot 9$	$5 \cdot 3$	935	59		－185．8	$330 \cdot 8$			
＂ 13	333	XXXIV（Bandalduru）	D o 227.7	8	7							330°	329 ＇16	$7 \cdot 5$
＂ 28	334	XXXVII（Gurramkŏnda）	D $014 \begin{array}{ll}1 & 7\end{array}$	8	$2 \cdot 9$	$5 \cdot 3$	1107	63	057	＋ $188 \cdot 0$	329．5			
13	347	XXXIV（Bandalduru）	Do 36.5	8	$2 \cdot 6$	$5 \cdot 3$								
17	347	XXXVIII（Gudali）	D $01240 \cdot 8$	8	$2 \cdot 9$	5．3	1062	63		＋ 1493	$290 \cdot 8$			
28	249	XXXVII（Gurramkŏnda）	D 0649.5	8	$2 \cdot 7$	5＊3						2913	29	6．0
17	250	XXXVIII（Gudali）	D 0253.7	8	$2 \cdot 7$	$5 \cdot 3$	645	39		－ 37.4	291．8			
$\begin{array}{lr}\prime \prime & 28\end{array}$	37	XXXVII（Gurramkŏnda）	D ○ 1434.6	8	$2 \cdot 7$	$5 \cdot 3$				－201•3				
Feb．16，17	36	XXXIX（Āne̛púdi）	E $0 \bigcirc 17.2$	16	$2 \cdot 7$	$5 \cdot 3$	921	38		－201．3	1279			

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Moan Sea Level			
1865	$\left.\begin{array}{\|c\|} \text { Mean of } \\ \text { Times } \\ \text { of obser- } \\ \text { vation } \end{array} \right\rvert\,$				E	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \hline \end{aligned}$		若			$\underset{\text { Resu }}{\text { Trigon }}$	metrical ults		
					∞	男		E			By each deduc- tion	Mean	Result	
	h m		- ' "				"							feet
Jan. $\quad 17$	315	XXXVIII (Gudali)	D o 1324.2	8	$2 \cdot 6$	$5 \cdot 3$					124.0	127.3	128	14%
Feb. 16	316	XXXIX (Âněpúdi)	E O 1 24.0	8	$2 \cdot 7$	$5 \cdot 3$	771			-167 3	1240	1273	128	
" 5,6	332	XL (Pillimedu)	D 02020	12	$2 \cdot 7$	5.3	989							
" 16,17	3 31	XXXIX (Åněpúdi)	E 045011	16	$2 \cdot 6$	$5 \cdot 3$	989			3627	1299			
" $\quad 3$	253	XXXVI (Kayyúr)	E o 653.2	8	2.6	$5 \cdot 3$	593			+ 199.7	$492 \cdot 9$			
" 5,6	252	XL (Pillimedu)	D 0164.6	12	$2 \cdot 7$	$5 \cdot 3$	593		- 50	+ 1997	4929			
Jan. 28	213	XXXVII (Gurramkornda)	E O 2338.8	8	$2 \cdot 6$	5.3								$1 \cdot 5$
Feb. 6,7	213	XL (Pillimedu)	D 0138.8	12	$2 \cdot 6$	$5 \cdot 3$	702			+163.1	$492 \cdot 3$	4913	492	15
" 16,17	33^{1}	XXXIX (Ånĕpúdi)	E O 4 50.1	16	$2 \cdot 6$	$5 \cdot 3$	989			$+362 \cdot 7$	488.7			
" 5,6	332	XL (Pillimedu)	D 02020	12	$2 \cdot 7$	5*3	989			+3627	488			
" 16,17	348	XXXIX (Ȧněpúdi)	E 119 71 1	12	2.9	5.3					2540 7			
Mar. 11,15	346	XLI (Kambákamdurgam)	D $1332 \cdot 0$	16	$2 \cdot 7$	$5 \cdot 3$	954			+24134	2540			
Feb. $\begin{array}{rr}\text { 6,7 }\end{array}$	316	XL (Pillimedu)	E 053002	12	2.9	5.3			-063	+2047 8	$2539{ }^{1}$	$2539 \cdot 0$	2540	$1 \cdot 5$
Mar. 11,13	316	XLI (Kambákamdurgam)	D I $942 \cdot 0$	8	$2 \cdot 6$	$5 \cdot 3$	113	72	O6	+2047	2539	2539	2540	15
May 6	330	XLIV (Ryttambedu)	E 1218.0	12	$2 \cdot 6$	$5 \cdot 3$	1187		-068					
Mar. 11	329	XLI (Kambákamdurgam)	D 119371	8	$0 \cdot 2$	$5 \cdot 3$	1187	81	-68	+2482.4	$2537 \cdot 2$			
Feb. $\quad 5$	39	XL (Pillimedu)		8	2.6	5.3	723		-069	+1736.1	22274			
10	38	XLIII (Yerpet)	D $12651 \cdot 7$	8	$2 \cdot 6$	$5 \cdot 3$	723			+1736		2226.9	2229	1•5
Mar. 11,13	252	XLI (Kambákamdurgam)	D 017 41 1 I	12	$2 \cdot 7$	5.3					26.3			
Feb. $\quad 10$	253	XLIII (Yerpet)	E $004{ }^{\prime} \mathrm{I}$	8	$2 \cdot 9$	$5 \cdot 3$	1154	72		-3127	26			
Mar. $\quad 11,12$	221	XLI (Kambákamdurgam)	D o o 39.6	12	$2 \cdot 7$	$5 \cdot 3$	1168			+ $274{ }^{\circ}$	2813.5			
26,27	243	XXXIII (Nagari)	D ○ 1637.6	12	$2 \cdot 6$	$5 \cdot 3$				+274 5	5	2813.2	2814	1*5
Feb. $\quad 10$	326	XLIII (Yerpet)	E O 729.4	8	$2 \cdot 7$	5.3	1216				12.8			
Mar. 26,27	325	XXXIII (Nagari)	D 025 21.3	12	$2 \cdot 7$	$5 \cdot 3$	1216	77		+ 5859	128			
$\begin{array}{lrr}7 \prime & 14\end{array}$	35	XLI (Kambákamdurgam)	D $11427^{\circ} 6$	8	* $48 \cdot 1$	5.3	1214			$-2284 \cdot 7$	254.3			
May 13,17	245	XXXV (Chěmbedu)	E 05534.5	12	2.6	* $10 \cdot 0$	1214	75		-2284 7	2543			
" 6	423	XLIV (Rětambedu)	D o 1 21.7	8		5.3								
11	423	XXXV (Chĕmbedu)	D 014 21.6	16	11.4	* $10 \cdot 0$	928	- 11	012	+ 1973	2521	253.2	257	70^{\prime}
Mar. $\quad 26$	38	XXXIII (Nagari)	$\begin{array}{llllll}\text { D } 113 & 5\end{array}$	8	* $43 \cdot 8$	5.3	1412			$-2566 \cdot 8$	$246 \cdot{ }_{4}^{+}$			
May 11,13	315	XXXV (Chĕmbedu)	E $05^{1} 43^{\circ} \mathrm{I}$	8	4.6	*10.0	1412			-2566	246			
Mar. $\quad 11$	329	XLI (Kambákamdurgam)	D $11937^{\circ} \mathrm{I}$. 8		$5 \cdot 3$	1187			$-2482 \cdot 4$	$56 \cdot 6$	56•6	5477	$28 \cdot 4$
May 6	330	XLIV (Rěttambedu)	E 1218.0	12	$2 \cdot 6$	$5 \cdot 3$	1187			-24824	56.			
Feb. 16,17	340	XXXIX (Āněpúdi) XLII (Jonangipálěm)	D 01122.3	12	$4^{\circ} 7$	5*3	907			$-106 \cdot 0$	+ 22			
Mar.11,13,15	3 II	XLI (Kambákamdurgam)	$\text { D } 12028 \cdot 2$		13.8	$5 \cdot 3$	1177		-075	$-2512 \cdot 7$	27.7	26.4	26	14.0
	311	XLII (Jouangipálěm)	$\text { E } 1357.5$	8	2.8	$5 \cdot 3$	1177		O75	-25127	27			

Nots.-Stations XXXIII (Nagari) and XXXV (Chěmbedu) appertain to the Madras Longitudinal Series.

- These heights are to be combined with negalive signs because the tower at $X X X V$ (Chĕmbedu) had a subsequent permanent addition made to it of $15 \cdot 4$ feet. $\quad+$ Rejected. \ddagger Assumed.

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			Height of Pillar or Tower
1865	Times of obser－ vation				嗸	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \text { } \\ & \text { 首 } \end{aligned}$		合			$\underset{\substack{\text { Trigonon } \\ \text { Res }}}{ }$	metrical sults		
					∞	兌		$\begin{aligned} & \text { ⿷匚 } \\ & \text { ́ㅗㅇ } \end{aligned}$			By each deduc－ tion	Mean	Result	
			－＇＂				＂							foot
May 6	351	XLIV（Rěttambedu）	D o 7 54．9	8	11．5	$5 \cdot 3$								foot
$\underset{1860}{\text { Mar. }} 6$	354	XLII（Jonangipálĕm）	D $0 \quad 527.2$	8	$6 \cdot 4$	$5 \cdot 3$	755	－33	$\cdot 044$	－ 29.8	25°			
$\left\|\begin{array}{c} \text { Dec. } 18,21,24,25 \\ 1861 \end{array}\right\|$	227	XLI（Sánjib）	D $04256 \cdot 1$	16	$2 \cdot 8$	5•3								
Jan．$\quad 21,22$	225	XLVI（Kappakŏnda）	E 02822.4	8	$2 \cdot 8$	$5 \cdot 3$	995	66	－066	－1044＊${ }^{\text {I }}$	$1097 *$	1097＊9	$1098 \cdot 62$	$1^{\circ} \mathrm{O}$
＂2，3	222	XXXIX（Dhár）	D $05946 \cdot 2$	8	$2 \cdot 8$	5＊3								
＂15，16，17	222	XLV（Gundálamma）	$\text { E } \circ 4617^{\circ} 4$	12	$2 \cdot 8$	5•3	913	58	－063	－1423＇8	$2669^{\circ} 2$			
$\begin{gathered} 1860 \\ \text { Dec. } 18,21,24,24,25 \\ 1861 \end{gathered}$	243	XLI（Sánjib）	E O 4 59．0	20	2．8	$5 \cdot 3$ $5 \cdot 3$	1259	82	－ 065			$2668 \cdot 6$	2668	$2^{\circ} 0$
Jan．12，14，15，16，17	245	XLV（Gundálamma）	D 02322.5	20	$3 \cdot 0$	5＊3	1259	82	． 065	＋ 527 O	$2669{ }^{\circ}$	$2668 \cdot 6$	2668	20
$\# \quad 21,22$	328	XLVI（Kappakŏnda）	E 05536.4	8	$2 \cdot 8$	5＊3	861							
, 12,14,15,17	331	XLV（Gundálamma）	D 1822.2	16	$2 \cdot 8$	5•3	861	53	－062	＋1569．0	2667＊5			
＂2，3	246	XXXIX（Dhár）	D 02033.5	8	$2 \cdot 9$	5＊3								
＂ 8	243	XLVII（Pagulráyi）	E 0843.9	4	$2 \cdot 8$	5•3	777	40	$\cdot 052$	－ $335 \cdot 8$	$3757^{\circ} 2$			
＂12，16	238	XLV（Gundálamma）	E 032190	8	$2 \cdot 9$	5•3						$3758^{\circ} \mathrm{O}$	3757	$2{ }^{\circ} \mathrm{O}$
＂7，8	233	XLVII（Pagulráyi）	D $04617^{\prime 2}$	8	$2 \cdot 8$	5•3	945	59	－062	$+1090 \cdot 2$	$3758 \cdot 8$			
＂14，15，17	319	XLV（Gundálamma）	D O 50 11．3	12	$2 \cdot 9$	5＊3								
＂28，29	320	XLVIII（Nágal）	E $03832 \cdot 9$	8	$2 \cdot 8$	$5 \cdot 3$	776	45	059	－1013＊4	$1655^{\circ} 2$			
＂21，22	242	XLVI（Kappakŏnda）	E O 10 41＇4	8	$2 \cdot 9$	$5 \cdot 3$		60						2＊0
＂28，29	240	XLVIII（Nágal）	D $02555^{\prime} 7$	8	$2 \cdot 9$	$5 \cdot 3$	1024	60	$\cdot 058$	$+553.5$	1652.0	$1654{ }^{\circ}$	1653	$2{ }^{\circ}$
Feb．2，3，14	213	XLIX（Kalimámidi）	D 05421.4	12	$2 \cdot 8$	5＊3								
Jan．28，29	215	XLVIII（Nágal）	E 0426.4	8	$2 \cdot 8$	$5 \cdot 3$	823	50	－061	－1164＊6	$1654{ }^{\circ} 9$			
，12，14，15，17	36	XLV（Gundálamma）	E O 1 23.3	16	$2 \cdot 8$	5＊3								
Feb．2，3	34	XLIX（Kalimámidi）	D O 1228.4	8	$2 \cdot 8$	$5 \cdot 3$	739	44	－059	＋1513	2819．9			
Jan．7，8	313	XLVII（Pagulráyi）	D 043 29．8	8	$2 \cdot 8$	5＊3	860							
Feb．2，3	311	XLIX（Kalimámidi）	E $03046 \cdot 6$	8	$2 \cdot 9$	$5 \cdot 3$	860	54	－063	－938＊9	2819＊1	$2819^{\circ} 1$	2818	1＇5
Jan．28，29	215	XLVIII（Nágal）	E 0426.4	8	$2 \cdot 8$	5＊3								
Feb．2，3，14	213	XLIX（Kalimámidi）	D 05421.4	12	$2 \cdot 8$	$5 \cdot 3$	823	50	061	＋1164．6	2818＊2			
Jan．28，29	254	XLVIII（Nágal）	D $02226 \cdot 8$	8	$2 \cdot 8$	5＊3								
Feb．18，21	254	L（Nallakŏnda）	E 01024°	8	$2 \cdot 8$	$5 \cdot 3$	805	47	$\cdot 059$	－390＊3	1263＊7			
$\because \quad 2,3,14$	242	XLIX（Kalimámidi）	D $05457{ }^{\circ}$	12	$2 \cdot 8$	5＊3						$1264^{\circ} 2$	1263	2＇0
＂19，23	248	L（Nallakŏnda）	E○ 38 II• 8	8	$2 \cdot 8$	$5 \cdot 3$	1136	70	－061	－1554＊5	$1264 *$			
Jan．28，29	228	XLVIII（Nágal）		8	$2 \cdot 8$	5＊3				－1315．5				
Mar．5，7	228	LI（Elangoi）	E $030 \quad 0.5$	8	$2 \cdot 9$	$5 \cdot 3$	1157	66	$\cdot 057$	－1311．5	342＊5			
Feb．18，19，21	217	L（Nallakǒnda）	D 03934.7	12	$2 \cdot 9$	$5 \cdot 3$						$342 \cdot 2$	340	$4^{\circ} \mathrm{O}$
Mar．5，6	216	LI（Elangoi）	E 02454.5	8	$2 \cdot 8$	5•3	974	52		－922．3	$341 \% 9$			－
Feb．$\quad 14$	229	XLIX（Kalimámidi）	Do 7 II＇I	4										
＂9，10	228	LII（Kappa）	Do 6 28．1	8	$2 \cdot 8$	$5 \cdot 3$	930	59		$-\quad 10 \cdot 6$	2808 5	2809＊1	2807	$0 \cdot 0$

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in foet			Terrestrial Refraction			Height in feet of 2 nd Station above Mean Sea Level			
1861	$\left\|\begin{array}{c} \text { Mean of } \\ \text { Times } \\ \text { of obser- } \\ \text { vation } \end{array}\right\|$				雪	$\stackrel{\rightharpoonup}{\overrightarrow{0}}$		淢			Trigonon Resu	metrical ults		
					∞	旨		$\begin{aligned} & \mathbf{0} \\ & \text { 』 } \end{aligned}$	苞票		By each deduc－ tion	Mean	Result	
	$h \quad m$		－，＂				＂							feet
Feb．19，21，22	247	L（Nallakŏnda）	E1 $025^{\circ} 5$	12	$4 \cdot 2$	$5 \cdot 3$	794		－062	＋ $1545 \cdot 6$	2809 ${ }^{\circ} 8$			
＂9，10	245	LII（Kappa）	D 11210°	8	$2 \cdot 8$	$5 \cdot 3$	794	49	062	＋1545	809			
＂19，22，23	311	L（Nallakornda）	D 038 38．0	12	2.9 2.8	$5 \cdot 3$ $5 \cdot 3$	946	54		－876．5	387．7			
Mar．9，10，11，14	314	LIII（Náwilmêtta）	E $02429^{\circ} 9$	16	$2 \cdot 8$	$5 \cdot 3$	946	54	－5	－876 5	387			
＂5，6，7	241	LI（Elangoi）	Do 3 3．5	12	$2 \cdot 9$	$5 \cdot 3$	677	20	－030	$+47.3$	$389 \cdot 5$	$388 \cdot 2$	386	$4^{\circ} \mathrm{O}$
＂10，11，13	242	LIII（Náwilmětta）	D 0747×8	12	$2 \cdot 9$	5＊3	677	2	－3	＋4\％ 3	389			
Feb．28，Mar． 1	222	LIV（Pothkðnda）	D $05042 \cdot 8$	8	$2 \cdot 8$	$5 \cdot 3$	869	52	－ 060		$387 \cdot 4$			
Mar．10，11，14	223	LIII（Náwilmětta）	E $03746 \cdot 2$	12	$2 \cdot 8$	5＊3	869	52		－1129 2	3874			
Feb．18，21，22	21	L（Nallakornda）	E 064 4．1	12	$2 \cdot 8$	$5 \cdot 3$	738	47	－ 063	＋ 2519	1516．1			
Mar． 1	I 59	LIV（Pothkŏnda）	DO17 2．7	4	$2 \cdot 8$	$5 \cdot 3$	738	47	－63	＋ 2519	151			
Feb．9，10	31	LII（Kappa）	D 053 8．2	8	$2 \cdot 9$	5•3	956	56	－ 059	－ $1292{ }^{\circ}$	$15^{17} 1$	$1517{ }^{\circ}$	1515	$2 \cdot 5$
＂，28，Mar． 1	259	LIV（Pothk Onda）$^{\text {a }}$	E $\bigcirc 3857^{\circ} 2$	8	4＊3	$5 \cdot 3$	95	5	－	－1292	1517	151	1515	$2 \cdot 5$
Mar．10，11，14	223	LIII（Náwilmêtta）	E $03746 \cdot 2$	12	$2 \cdot 8$	$5 \cdot 3$	869	52		＋1129＊2	15178			
Feb．28，Mar． 1	222	LIV（Pothkǒnda）	D $05042 \cdot 8$	8	$2 \cdot 8$	5＇3	869	52		＋1129	157			
Mar．9，10，12，14	246	LIII（Náwilmĕtta）	D o $940 \cdot 3$	16	$2 \cdot 8$	5•3	1016	40		$53 \cdot 8$	$334 * 4$			
May6，7，10，11	249	LV（Lachmipuram）	D $065^{\text {1 }}$	14	$2 \cdot 9$	5•3		40			3344			
Feb． 28	314	LIV（Pothkŏnda）	D 04515.3	4	$2 \cdot 9$	5•3	1089	61		－1187＊9	$329{ }^{\circ} 1$	$330 \cdot 8$	328	$4^{\circ} 5$
May 6，7，11	315	LV（Lachmipuram）	E 02859.8	12	$2 \cdot 8$	5•3	1089	61			329			45
June 2，3	2 II	LVI（Adakŏnda）	D $04655^{\circ} \mathrm{O}$	8	$2 \cdot 8$	$5 \cdot 3$	877				329°			
May 7，9，10	218	LV（Lachmipuram）	E $03347^{\circ} 7$	10	$2 \cdot 8$	5•3	877	51			329			
Mar．9，11，13	310	LIII（Nawilmětta）	E O 11 57． 4	12	$2 \cdot 8$	$5 \cdot 3$	1463	89	－ 061	＋980． 1	$1368 \cdot 3$			
June 1，2	33	LVI（Adakŏnda）	D 03329°	8	$2 \cdot 8$	5•3	1463	89	－	＋980	1368			
Feb． 27	243	LIV（Pothkonda）	D 012 20． 2	4	$2 \cdot 8$	$5 \cdot 3$	888	51	$\cdot 057$	－149 ${ }^{\circ}$	1368.0	1369.1	1367	$2 \cdot 5$
June 2，3	241	LVI（Adakŏnda）	D o 0 58．0	8	$2 \cdot 9$	5＊3	888	5	－ 5	－149	，	1369		5
May 7，9，10	218	LV（Lachmipuram）	E $03347 \cdot 7$	10	$2 \cdot 8$	5•3	877	51			$1371{ }^{\circ}$			
June 2，3	211	LVI（Adakornda）	D $04^{6} 55^{\circ} \mathrm{O}$	8	$2 \cdot 8$	$5 \cdot 3$	877	5			371			
May 6，9，10	35	LV（Lachmipuram）	E O 320.6	12	$2 \cdot 9$	5•3	829	33		＋ $239 \cdot 8$	$570 \cdot 6$			
＂ 21	31	LVII（Yědlagattu）	D 01615.8	4	$2 \cdot 8$	$5 \cdot 3$	829	33				$569 \cdot 8$	567	$3^{\circ} 0$
June 2，3	28	LVI（Adakŏnda）	D $03642 \cdot 0$	8	$2 \cdot 9$	5•3				$-800^{\circ} 2$	568．9			
May 22，23	213	LVII（Yědlagattu）	E 023 7．2	8	$2 \cdot 8$	$5 \cdot 3$	910	53			5689			
＂6，9，11	236	LV（Lachmipuram）	D $01227^{\circ} 2$	14	$2 \cdot 9$	$5 \cdot 3$	768	5		$-136 \cdot 5$	194＊3			
＂．14，15	239	LVIII（Aupád）	Do 015．7	8	$2 \cdot 8$	5•3	768	5				194.6	191×45	$7{ }^{\circ}$
＂21，22	256	LVII（Yědlagattu）	D 02850.4	8	$2 \cdot 8$	5•3	524	2		$-374 \cdot 8$	195°			
，14，15，16	256	LVIII（Aupád）	E $01950 \cdot 7$	12	$2 \cdot 9$	$5 \cdot 3$	524	2			1950			
＂21，22	313	LVII（Yědlagattu）	$\text { D ○ } 657 \cdot 9$	8	$2 \cdot 8$	5•3	514	26		$-\quad 44 \cdot 8$	522.2			
＂18，19	318	LIX（Sudkঠnda）	$\text { D } \circ 12.5$	8	$2 \cdot 9$	5＇3	514	26		－ 44	522			

Astronomical Date		Number and Namo of Station	Observed Vertical Angle		Height in feet			Terrestrial Refraction			Height in foet of 2nd Station above Mean Sea Level			
1861-62	Mean of Times of obser- ration				d						${\underset{\sim}{\text { Resu }}}^{\text {Trigonor }}$	metrical ults		
						免		$』$	ob		$\begin{array}{\|c\|} \hline \text { By eeach } \\ \text { deduc. } \\ \text { tion } \end{array}$	Mean	Result	
	\% m		- ' 1				"							foet
May 15,16	225	LVIII (Aupád)	E O $\mathrm{jo}^{20} 0^{\prime} 3$											
" 18	235	LIX (Sudkŏnda)	D 02138.0	4	$5 \cdot 6$	5•3	694	7	- 010	+ 3273	518.8	521.2	521	1'5
" 25,26,28	236	LX (Parampúdi)	D○13 2.2	12	$2 \cdot 8$	$5 \cdot 3$								
" 19	236	LIX (Sudkŏnda)	D ○ 057.6	6	$2 \cdot 9$	$5 \cdot 3$	920	46	-050	- 163.0	$522 \cdot 5$			
June 2	232	LVI (Adakǒnda)	D 03058.5	4	$2 \cdot 9$	$5 \cdot 3$								
May 28	224	LX (Parampúdi)	E $\circ 1625^{\circ} \mathrm{C}$	4	$2 \cdot 8$	$5 \cdot 3$	975	56		- $682 \cdot 1$	$684 \cdot 6$			
" 212	225	LVII (Yědlagattu)	D o 126.7	4	$2 \cdot 9$	$5 \cdot 3$	829				$686 \cdot 4$	684.8	685	
" 25,26,28	223	LX (Parampúdi)	D 01114.5	12	$2 \cdot 9$	$5 \cdot 3$	829	40	-48	+ 119.4	$686 \cdot 4$	684.8	685	$2 \cdot 5$
" 19	236	LIX (Sudkŏndu)	D o 057.6	6	$2 \cdot 9$	$5 \cdot 3$								
" 25,26,28	236	LX (Parampúdi)	D○13 $2 \cdot 2$	12	$2 \cdot 8$	5.3	920	46	$\cdot 050$	+ 163.0	$683 \cdot 5$			
Dec. $\quad 4,6$	157	LIX (Sudkŏnda)	E $028 \quad 1 \cdot 2$	8	$2 \cdot 8$	5.5								
" 9,10	1 57	LXI (Bandanchĕrla)	D 03729.5	8	$2 \cdot 8$	5.3	620	34	055	+ $598{ }^{\circ} \mathrm{I}$	11193			
\# 19,20,21,22	133	LX (Parampúdi)	EO15 7.2	16	5.6	5.3						11	8	$2 \cdot 0$
" 8,9,10	134	LXI (Bandanchðrla)	D 02532.4	12	$2 \cdot 9$	$5 \cdot 3$	725	53	073	+ 4324	$1117{ }^{\circ}$			
„ 19,20,21,22	220	LX (Parampúdi)	E 01528.4	16	$2 \cdot 8$	$5 \cdot 3$								
" 15,16	221	LXII (Nágaldurgam)	D $03040 \cdot 3$	8	2.9	$5 \cdot 3$	1040	69	-066	+ $707 \cdot 4$	$1392 \cdot 2$			
" 9,10	155	LXI (Bandancherrla)	E ○ O 45.9	8	$2 \cdot 8$	$5 \cdot 3$						1391*9	1392	$2 \cdot 0$
16	157	LXII (Nágaldurgam)	D ○ 16 $26 \cdot 5$	4	$5 \cdot 6$	$5 \cdot 3$	1076	70	- 065	+ 273.3	1391.6			
" 4,6	21	LIX (Sudkonnda)	D o 926.4	8	$2 \cdot 8$	5.5								
Jan. 1,2	26	LXIII (Dudugat)	D 0714.2	8	$2 \cdot 8$	$5 \cdot 3$	1126	67		- $36 \cdot 5$	484*7			
Dec. 8,9,10	247	LXI (Bandanche̊rla)	D 027 29.1	12	$2 \cdot 8$	$5 \cdot 3$						$484^{\circ} 0$	484	$1 \cdot 5$
Jan. 1,2	245	LXIII (Dudugat)	E 010 59.0	8	$5 \cdot 6$	$5 \cdot 3$	1127	71	-063	- $635 \cdot 0$	$483 \cdot 3$			
Dec. 8,9,10	235	LXI (Bandanchěrla)	D ○ $2021 \cdot 7$	12	$2 \cdot 8$	$5 \cdot 3$								
" 28,29	236	LXIV (Inupráyi)	E $05^{10} 3$	8	$5 \cdot 6$	$5 \cdot 4$	1033	63		- 387×7	$730 \cdot 6$			
" 15,16	24	LXII (Nágaldurgam)	D $03120 \cdot 5$	8	$2 \cdot 8$	$5 \cdot 3$						731.4	731	2.0
" 28,29	24	LXIV (Inupráyi)	E $\bigcirc 1758.7$	8	$2 \cdot 8$	$5 \cdot 4$	910	60	-066	- 659.6	$732 \cdot 3$			
" 8,9,10	224	LXI (Bandanchěrla)	E 0113.8	12	2.8	5.3								
Jan. 8,10,11	223	LXV (Dálgattu)	D 017000	12	$5 \cdot 6$	$5 \cdot 4$	1074	66	062	+ 289.9	1408 2			
" 1,2	25	LXIII (Dudugat)	E 043 0.6	8	$2 \cdot 8$	$5 \cdot 3$								
" 7,8,10,11	25	LXV (Dálgattu)	D $05250 \cdot 0$	16	$2 \cdot 8$	$5 \cdot 4$	656	41	-063	+ $925{ }^{\circ}$	$1409^{\circ} 0$	$1408 \cdot 7$	1408	1•8
Dec. 28,29	235	LXIV (Inupráyi)	E 0216.8	8	$2 \cdot 8$	$5 \cdot 4$								
Jan. 7,10,11	235	LXV (Dálgattu)	D 03334.5	12	$2 \cdot 9$	5.4	845	54		+ $677 \cdot 6$	$1409^{\circ} 0$			
" 1,2	222	LXIII (Dudugat)	E $\circ 1836 \cdot 2$	8	$2 \cdot 8$	$5 \cdot 3$		62		+ $785 \cdot 2$				
" 17,18	222	LXVI (Yěrragattu)	D $0334^{\circ} \mathrm{O}$	8	$2 \cdot 8$	$5 \cdot 4$	1018	62	-061	+ $785^{\circ} 2$	1269 2			
" 7,10,11	248	LXV (Dálgattu)	D o 12 1.6	12	$2 \cdot 9$					- 141'I				
" 17,18	244	LXVI (Y̌̌rragattu)	D ○ $137 \cdot 8$	8	$2 \cdot 8$	5.4	924	58	-063	- 141'1	$1267 \cdot 6$	$1268 \cdot 4$	1268	1.5

Atronomical Dato		Trumber and Name of Station	Observed Vertical Anglo		Height in feet			Terrestrial Refraction			Height in foef of 2nd Station above Mean Bea Level			
1861－62	$\left\|\begin{array}{c} \text { Mean of } \\ \text { Timee } \\ \text { of obser-- } \\ \text { vation } \end{array}\right\|$					曾年号					Trigonometrical Results		Final Besult	
											$\begin{aligned} & \text { By each } \\ & \text { deduch } \\ & \text { tion } \end{aligned}$	Mean		
	$k m$		－＇$"$				＂							feet
Jan． $\begin{array}{r}22,23 \\ \hline 10,17,18\end{array}$	220	LXVII（Jammalavoidurgam）	D $02646 \cdot 0$		2•8		1041	66		583.9	$1268 \cdot 4$			
＂16，17，18	220	LXVI（Yerragattu）	B 01128.3	12	$2 \cdot 8$	$5 \cdot 4$	1041	6		－ 5839	1268			
Dec．28，29	213	LXIV（Inupráy）	E $03747 \circ$	8	$2 \cdot 9$	5.4	862	52						
Jan．22，23	212	LXVII（Jammalavoidurgam）	D 05035.9	8	$2 \cdot 8$	5.4	862	52			8523			
＂7，8，10，11	143	LXV（Dálgattu）	E 01416.4	16	$2 \cdot 9$	5.4		46	－06r	＋ $443 \cdot 5$	$1852 \cdot 2$	$852 \cdot 3$	1852	1．6
＂22，28	143	LXVII（Jammalavoidurgam）	D 02533.2	8	$2 \cdot 9$	$5 \cdot 4$	755	46		＋ 443 s	1852	252	1852	
＂16，17，18	220	LXVI（Y̌rragattu）	B 011128.3	12	$2 \cdot 8$	$5 \cdot 4$	1041	66		$+583.9$				
＂22，23	220	LXVII（Jammalavoidurgam）	D $02646 \cdot 0$	8	$2 \cdot 8$	$5 \cdot 4$	1041	66		＋ 5839	1852			
＂16，17，18	134	LXVI（Yěrragattu）	R $02018 \cdot 3$	12	$2 \cdot 8$	5.4	685	41			$86 \cdot 4$			
Feb．1，2	I 34	LXVIII（Jujúrdurgam）	D $03046 \cdot 2$	8	$2 \cdot 8$	5.4	685	41						
Jan．22，28	142	LXVII（Jammalavoidurgam）	D o 935.9	8	$2 \cdot 8$	5.4		62						
Feb．1，2	144	LXVIII（Jujúrdurgam）	Do 5 7．3	8	$2 \cdot 9$	$5 \cdot 4$	996	62						
Jan．16，17	213	LXVI（Y̌rragattu）	D 037 31－3	10	$2 \cdot 8$	5.4	587	34			$699{ }^{\circ}$			
Feb．6，7	214	LXIX（B̌zzvada）	E 02833.8	8	$2 \cdot 8$	$5 \cdot 3$	587	34						
＂1，2	227	LXVIII（Jujúrdurgam）	D o 5058.2	8	2.9	5.4						699	698	$0 \cdot 5$
＂6，7	227	LXIX（Bězváda）	B 03838.3	8	$2 \cdot 8$	$5 \cdot 3$	826	49	059	6	\bigcirc			
Jan．22，28	225	LXVII（Jammalavoidurgam）	D 05023.4	8	$2 \cdot 9$	5.4	1022	67	－066	－1293＊2	$559{ }^{\text { }}$			
＂27，28	225	LXX（J̌nnnalagadda）	E 03526.3	8	$2 \cdot 8$	$5 \cdot 4$	1022	67		－1293 2	55			
Feb．1，2	25	LXVIII（Jujúrdurgam）	D 1060	8	$2 \cdot 8$	5.4							559	
Jan．27，28	25	LXX（J̌nnalagadda）	E $0.4852 \cdot 8$	8	$2 \cdot 8$	5.4	765	53			5597			
Feb．1，2	155	LXVIII（Jujúrdurgam）＇	D＇o $5041 \cdot 8$	8	$2 \cdot 8$	5.4		45			$847 * 3$			
＂16，17	I 56	LXXI（Anantavaram）	E 04013.5	8	$2 \cdot 8$	$5 \cdot 3$	704	45		－939 3	8473			
＂6，7	1 37	LXIX（B̌zvada）	$\begin{array}{lllll}\text { E O } & 3 & 8.2\end{array}$	8	2.9	5＊3	634	42	－066	＋ $147^{\prime} 1$	$846 \cdot 1$	$847 * 4$	847	1•5
＂ 17	128	LXXI（Anantavaram）	D○ $1235^{\circ} \mathrm{O}$	8	$2 \cdot 8$	5＊3	634	42		$+147 \times$				15
＂10，11	23	LXXII（Chintalapad）	E $02133^{\circ} 1$	8	$2 \cdot 8$	$5 \cdot 4$	809	46		$+657 \cdot 9$	$848 \cdot 8$			
＂15，16，17	22	LXXI（Anantavaram）	D $03343^{\circ} \mathrm{O}$	12	$2 \cdot 9$	$5 \cdot 3$	809	4		＋6579				
＂1，2	214	LXVIII（Jujárdurgam）	D $11544^{\circ} 5$	8	$2 \cdot 9$	5.4	772	51			189＊7			
＂10，11，12	213	LXXII（Chintalapád）	E I 420.9	12	$2 \cdot 8$	5.4	772	51						
Jan．$\quad 27,28$	146	LXX（J̌̌nnalagadda）	D 02236.0	8	$2 \cdot 9$	$5 \cdot 4$	741			$-367 \cdot 4$	$19^{\circ} 0$	190．2	190	$2 \cdot 3$
Feb．10，11，12	146	LXXII（Chintalapád）	EOII 9．8	12	$2 \cdot 9$	$5 \cdot 4$	741	34		－367 4	192	190	19	2
＂15，16，17	$2 \begin{aligned} & 2 \\ & 2\end{aligned}$	LXXI（Anantavaram）	D o 33 43．0	12	2.9 2.8	5.3	809	46		-657.9	188．8			
＂10，11	23	LXXII（Chintalapád）	E $02133^{\circ} \mathrm{I}$	8	$2 \cdot 8$	$5 \cdot 4$				－6579				
＂15，16，17	219	LXXI（Anantavaram）	D o 37 E 5	12	2.9 2.8	$5 \cdot 3$	645	37			$218 \cdot 4$			
＂25，26，27	219	LXXIII（Lagadapád）	E 0288.3	12	$2 \cdot 8$	$5 \cdot 3$	645	37				221°	220	4＊0
＂10，11，12	236	LXXII（Chintalapád）	D o 334.7	12	$2 \cdot 8$	$5 \cdot 4$	634	3		$+33 \cdot 3$	223.5			
${ }_{n} 24,25,28,278,88$	239	LXXIII（Lagadapád）	Do 7 9．7	20	$2 \cdot 9$	$5 \cdot 3$		3						

Setronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			TerrestrialRefraction			Height in feet of 2nd Station above Mean Sea Level			
1862	Mean of Times of observation										$\begin{gathered} \text { Trigonometrical } \\ \text { Resulte } \end{gathered}$		$\underset{\text { Result }}{\text { Final }}$	
											$\left\|\begin{array}{\|c\|} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array}\right\|$	Mean		
	$h m$		- ' 1				$"$							foot
Feb. 15,16	214	LXXI (Anantavaram)	D o 3711.5			$5 \cdot 3$	620	38						
" 22	213	LXXIV (Gorantla)	E $02751 \cdot 2$	4	$2 \cdot 8$	5•3		38		5914	256			
, 24,25,26,28,	130	LXXIII (Lagadapád)	D o 557.7	20	$2 \cdot 8$	5*3						$254 * 1$	253	1.5
" 20,21,22	127	LXXIV (Gorantla)	D ○ $8 \mathbf{2 4 . 2}$	16	$2 \cdot 9$	$5 \cdot 3$	87			+ 31-3	2523			
Apr. 16,17	130	LXXII (Chintalapád)	E 02646.4	12	$2 \cdot 9$	5*4	648							
" 11	128	LXXV (Chikri)	D $03640 \% 9$	4	$2 \cdot 9$	$5 \cdot 4$	648	35		+ $606 \cdot 6$	$796 \cdot 8$			
, 12.13,14	138	LXXIII (Lagadapad)	E O 2323.3	12	$2 \cdot 9$	$5 \cdot 3$						$796 \cdot 7$	796	1.0
" 10,11	136	LXXV (Chikri)	D $03353 \cdot 7$	8	$2 \cdot 8$	$5 \cdot 4$	682	33		+ 5757	7967			
, 12,13,14	231	LXXIII (Lagadapád)		20	$2 \cdot 8$	$5 \cdot 3$								
" 7,8	226	VII (Dhálipalla)	Do 7 3.9	8	$2 \cdot 8$	$5 \cdot 4$	551			+ 24.3	$245 \cdot 3$			
" 10,11	219	LXXV (Chikri)	D ○ 3645.5	8	$2 \cdot 8$	5.4	583				$245{ }^{\circ}$	244.9	244	$5^{\circ} 0$
" 7,8	225	VII (Dhálipalla)	E $02742 \cdot 7$	8	$2 \cdot 9$	$5 \cdot 4$						2449	244	50
" 3,4	129	X (Ādamsáb)	D 05849.8	8	$2 \cdot 9$	5.3	938							
8	128	VII (Dhúlipalla)	E $0445^{\circ} \mathrm{O}$	4	$2 \cdot 8$	$5 \cdot 4$	938	55		-1431'5	2443			
Feb. $24,28,28$, Mar. 1	225	LXXIII (Lagadapád)	E 05114.4	16	$2 \cdot 8$	5.3	861							
Apr. 3,4	222	\mathbf{X} (Ȧdamsáb)	D $1 \begin{array}{lll}\text { 1 } & 5\end{array}$	8	$2 \cdot 8$	$5 \cdot 3$	861	51		+1457.3	$1678 \cdot 3$			
Feb. 20,21,22	140	LXXIV (Garantla)	E $11230 \cdot 8$	12	$2 \cdot 8$	$5 \cdot 3$					$1673 \cdot 3$			
Apr. 8,4	141	\mathbf{X} (EAdamsáb)	D $12158^{\circ} 4$	8	2.9	$5 \cdot 3$	623	40		+1419*2	$1673 \cdot 3$	$1676 \cdot 1$	1675	1*0
" 88	128	VII (Dhalipalla)	E $04450 \cdot 0$	8	$2 \cdot 8$	5.4			058					
" 3,4	129	\mathbf{X} (Ȧdamsáb)	D $\bigcirc 5849.8$	8	$2 \cdot 9$	$5 \cdot 3$	938	55		+14315	$1676 \cdot 6$			

When determining the Spirit-levelled heights, given on pages 117_ ${ }_{x .}$ to $123 __{E}$, the levelling staff stood on the surfaces hereafter described.

XII (Pálapáru))
XVIII (Ongole)	On the upper mark-stone.
XXXIV (Bandalduru))

XXXVII (Gurramkŏnda) \quad| On a stone at the foot of the station platform, height $=321 \cdot 15$ feet. To this |
| :---: |
| value, $8 \cdot 01$ feet (the height of the upper mark-stone above this stone) being | value, 8.01 feet (the height of the upper mark-stone above this stone) being added, the height of the upper mark-stone was found to be $329 \cdot 16$ feet.

XLIV (Rěttambedu)
On a peg at the foot of the station tower, height $=27.85$ feet. To this value, 26.92 feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $54 \cdot 77$ feet.

XLVI (Kappakŏnda)

LVIII (Aupád)
On a stone at the foot of the station platform, height $=1094 \cdot 21$ feet. To this value, $4: 31$ feet (the height of the upper mark-stone above this stone) being added, the height of the upper mark-stone was found to be $1098 \cdot 52$ feet.

On a peg at the foot of the station platform, height $=185.54$ feet. To this value, $5 \cdot 91$ feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $191 \cdot 45$ feet.

W. H. COLE,

In ohargo of Computing Office.

MADRAS MERIDIONAL AND COAST SERIES.

PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

At VII (Dhúlipalla)

 April and May 1868; observed by Mr. G. Shelverton with Troughton and Simms' 36-inch Theodolite.

Stars observed
Mean Right Ascension 1868.0
Mean North Polar Distance 1868.0
Local Mean Times of Elongation, April 27
e Urse Minoris (East) and B. A. C. 2326 Camelopardi (West).
$\begin{array}{lllll} & 16^{\mathrm{h}} & 59^{\mathrm{m}} & 3^{6^{\mathrm{s}}} \\ & 7^{\circ} & 45^{\prime} & 0^{\prime \prime \prime} \\ \text { Eastern } & 8^{\mathrm{h}} & 45^{\mathrm{m}} & \end{array}$
$\begin{array}{lll}7^{\mathrm{h}} & 3^{\text {m }} & 7^{\text {B }}\end{array}$
$7^{\circ} 20^{\prime} 39^{\prime \prime} \cdot 48$
Western $10^{\text {h }} 30^{\mathrm{m}}$

			3103 nipl				jact bight			
			Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Are to Time of Ellongation	Reduced Observation Ref. Mark - 8tar at Flongation	Observed Horizontal Angle: Diff. of Readings Ref. Mark-Star		Reduction in Arc to Time of Flongation	Reduced Obeervation Ref. Mark-Star at Elongation
Apr. 27	E.	$\begin{array}{r} 0 \\ \& \quad 2 \\ 180 \end{array}$	- 1"		11	- 11	- ,	9	17	- ,
			$\begin{array}{r} +104721 \cdot 72 \\ 4625 \cdot 40 \\ 4339 \cdot 78 \end{array}$	$\begin{array}{rrr}28 & 42 \\ 24 & 49 \\ 2 & 46\end{array}$	1 $-344 \cdot 22$ $247 \cdot 82$ 0 0	+10 $43 \begin{array}{r}37.50 \\ 37.58 \\ \\ 37.68 \\ \\ 39.74\end{array}$	$\begin{array}{r} +104438.50 \\ 4417.62 \end{array}$	$\begin{array}{ll} 14 & 43 \\ 11 & 47 \end{array}$	$\left\lvert\, \begin{array}{r} -059 \cdot 17 \\ 0 \\ 0 \\ 0 \end{array} \frac{18 \cdot 87}{}\right.$	
			43 43 43 39 ${ }^{\circ} 888$	246 043	0 0 0 $2^{2} 10$	$37 \cdot 68$ $39 \cdot 74$	43 44 44 13	$\begin{array}{rrr}818 \\ 11 & 4\end{array}$	$\begin{aligned} & \text { O } 18 \cdot 86 \\ & 0 \\ & \circ \end{aligned}$	$\begin{aligned} & 39 \cdot 48 \\ & 39 \cdot 60 \end{aligned}$
" 27	W.	$\begin{array}{r} 0 \\ \& \\ 180^{2} \end{array}$	$\begin{array}{rrr} +26 & 25 & 41 \cdot 88 \\ 26 & 12 \cdot 28 \\ 28 & 3 \cdot 24 \\ 27 & 59 \cdot 42 \end{array}$	$\begin{array}{ll}23 & 12 \\ 20 & 30\end{array}$	+20021 1 49	2628 $1 \cdot 73$ 1	$\begin{array}{r} +26 \begin{array}{l} 27 \\ 2 \mathrm{I} \cdot 48 \\ 27 \\ 47 \cdot 96 \end{array} \end{array}$	$\begin{array}{rrr}11 & 11 \\ 7 & 42\end{array}$	$\begin{array}{r} \circ 32.55 \\ +15.43 \end{array}$	$\begin{array}{ll} +2628 & 4 \cdot 03 \\ & 3 \cdot 39 \end{array}$
				$\begin{array}{ll} 1 & 4 \\ 3 & 56 \end{array}$	$\begin{array}{lll} 0 & 0.29 \\ 0 & 4.01 \end{array}$	$\begin{aligned} & 3 \cdot 53 \\ & 3 \cdot 43 \end{aligned}$	$\begin{array}{r} 27 \quad 27 \cdot 96 \\ 27 \quad 8 \cdot 90 \end{array}$	$\begin{array}{ll} 11 & 37 \\ 14 & 24 \end{array}$	$\begin{aligned} & 034.94 \\ & 0 \quad 53.66 \end{aligned}$	$\begin{aligned} & 2 \cdot 90 \\ & 2.56 \end{aligned}$
	E.	$\begin{gathered} 79 \text { 12 } \\ \&{ }^{2} 11 \end{gathered}$	$\begin{array}{r} 1045 \quad 5 \cdot 16 \\ 4437 \cdot 08 \\ 4344 \cdot 60 \\ 4356 \cdot 54 \end{array}$	$\begin{aligned} & 1737 \\ & 1421 \end{aligned}$	1 -124.69 056.24 0	+10 $43 \begin{array}{r}40 \cdot 47 \\ 40.84\end{array}$		$\begin{array}{lr} 6 & 8 \\ 3 & 28 \end{array}$	$\begin{array}{rr} -0 & 10.29 \\ -\quad 3.29 \end{array}$	
				$\begin{array}{ll} 4 & 27 \\ 7 & 17 \end{array}$	$\begin{array}{lrl} 0 & 5 \cdot 42 \\ 0 & 14 \cdot 53 \end{array}$	$\begin{aligned} & 39 \cdot 18 \\ & 42 \cdot 01 \end{aligned}$	$\begin{array}{ll} 44 & 41 \cdot 48 \\ 45 & 12 \cdot 88 \end{array}$	$\begin{array}{rrr}15 & 3 \\ 18 & 27\end{array}$	$\begin{array}{ll} 1 & 2 \cdot 14 \\ 1 & 33 \cdot 44 \end{array}$	$39 \cdot 34$ $39 \cdot 44$
" 28	W.	$\begin{gathered} 7912 \\ \& \\ 25911 \end{gathered}$	$\begin{array}{r} +26 \quad 27 \quad 25 \cdot 26 \\ 2743 \cdot 64 \\ 2737 \cdot 06 \\ 27 \\ 22 \cdot 50 \end{array}$	$\begin{array}{rrr}12 & 3 \\ 8 & 50\end{array}$	$+\begin{array}{r} 037 \cdot 74 \\ 020 \cdot 27 \end{array}$	+2628 3.00	+26 28 1.98	- 38	+00.10	+26 $28 \quad 2.08$
				$\begin{aligned} & 1025 \\ & 1250 \end{aligned}$	$\begin{aligned} & \circ \quad 28 \cdot 14 \\ & 0 \quad 42 \cdot 69 \end{aligned}$	5.20	$\begin{array}{rr} 28 & 1 \cdot 14 \\ 26 & 20 \cdot 4 \\ 25 & 55 \cdot 54 \end{array}$	$\begin{array}{r} 259 \\ 1958 \\ 22 \quad 15 \end{array}$	$\begin{array}{rr} 0 & 2 \cdot 32 \\ 1 & 43 \cdot 14 \\ 2 & 8 \cdot 01 \end{array}$	3.46 3.56 3.55
" 29	E.	$\begin{gathered} 158 \quad 24 \\ \& \\ 33^{8} \quad 23 \end{gathered}$	$\begin{array}{r} 1044 \\ +22.30 \\ 44 \\ 5.84 \\ 44 \\ 2.68 \\ 44 \\ 17.24 \end{array}$	1236	-043.38	+ 1043 38.92	+10 43 38.42	152	- - 0.96	+ 104337×46
				941	- 25.64	$40 \cdot 20$	$4339 \cdot 16$	- 36	- $0 \cdot 10$	39.06
				$\begin{array}{rr} 9 & 7 \\ 11 & 43 \end{array}$	$\begin{aligned} & \circ 22 \cdot 77 \\ & 0 \quad 37 \cdot 64 \end{aligned}$	$\begin{aligned} & 39.91 \\ & 39.60 \end{aligned}$	$\begin{array}{rrr} 45 & 24 \cdot 38 \\ 46 & 4 \cdot 58 \end{array}$	19 23 23	$\begin{array}{ll} 1 & 47 \cdot 07 \\ 2 & 26 \cdot 96 \end{array}$	37.31 37.62

			PAOE LEFT				face bight			
			Observed Horizontal Angle ： Diff．of Readings Ref．Mart－Star		Reduction in Arc to Time of Elongation	Reduced Observation Kef．Mark－Star at Elongation	Observed Horizontal Angle ： Diff．of Readings Ref．Mark－Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref．Mark－Star at Elongation
A pr． 29	W．	$\begin{array}{cc} \circ & \prime \\ 15824 \\ \& & \\ 33^{8} 24 \end{array}$	$\begin{array}{rr} 26 & 25 \\ 25 & 7 \cdot 38 \\ 22 \cdot 58 \\ 28 & 1 \cdot 42 \\ 28 & 3 \cdot 32 \end{array}$	m 8	$\left\lvert\, \begin{array}{rrr} +2 & 55^{\prime} & 10 \\ 2 & 19.08 \\ 0 & 1 . & 55 \end{array}\right.$	$\begin{array}{ll} +2628 & 2.48 \\ & 1.66 \\ & 2.97 \end{array}$	$\begin{array}{r} 0 \quad 11 \\ +262715 \cdot 66 \\ 2735 \cdot 12 \end{array}$	$\boldsymbol{m} \quad \boldsymbol{8}$		$\begin{array}{ccc}\circ & \prime \prime \\ +26 & 28 & 3 \cdot 96 \\ . & 5 \cdot 42\end{array}$
				2556				1338	$\begin{array}{r} +048 \cdot 30 \\ 030 \cdot 30 \end{array}$	
				$\begin{array}{rrr}23 & 7 \\ 2 & 27\end{array}$				1048		
				227			27 41＇70	924	－22．93	4.63
				024	$0 \quad 0.04$	$3 \cdot 36$	$2724{ }^{\prime}$	1239	$\bigcirc 41 \cdot 49$	$6 \cdot 41$
＂ 30	E．	$\begin{array}{r} 23736 \\ \& \quad 36 \\ 5736 \end{array}$	$\begin{array}{r} +104422 \cdot 58 \\ 4359.92 \end{array}$	$\begin{array}{r} 1238 \\ 831 \end{array}$	$\begin{array}{r} -043.57 \\ 0 \quad 19.81 \end{array}$	$+1043 \begin{array}{r} 39^{\circ} 01 \\ 40^{\circ} 11 \end{array}$	＋1043 41＇14	221	－0 1．52	＋10 4339.62
				831			104341.44 4345.86	221 427	$-\begin{array}{rr}1 & 1.52 \\ 0 & 5.43\end{array}$	10433^{3962} $40 \cdot 43$
			44 16．98	1134	－ $36 \cdot 72$	$40 \cdot 26$	46 11．50	2335	$232 \cdot 82$	38－68
			44 3I•58	1353	－52．91	$38 \cdot 67$	$4638 \cdot 30$	2532	259.18	$39^{1} 12$
＂ 30	W．	$\begin{gathered} 23737 \\ \& \quad 36 \end{gathered}$		$\begin{array}{ll}25 & 12 \\ 22 & 18\end{array}$	$\begin{array}{r}245.41 \\ \hline 20.49\end{array}$	＋2628 3	$\begin{array}{r} +2627 \\ 27.24 \\ 27 \end{array} 22.94$	$\begin{array}{lr} 15 & 7 \\ 12 & 27 \end{array}$	$\begin{array}{r} +o 59 \cdot 46 \\ 040 \cdot 32 \end{array}$	＋2628 3．70
										$3 \cdot 26$
				$\begin{array}{ll}5 & 2 \\ 2 & 21\end{array}$	$\begin{array}{ll}0 & 6 \cdot 58 \\ 0 & 1.44\end{array}$		$2753 \cdot 38$		－8．93	2．31
				221	0 1＇44		$2744 \cdot 68$	840	－19．47	$4 \cdot 15$
May 1	E．	$\begin{gathered} 31649 \\ \& \\ 13649 \end{gathered}$	104434.184411.06	1413	$\begin{array}{rl} -0 & 55 \cdot 23 \\ 0 & 32 \cdot 10 \end{array}$	$\begin{array}{r}1043 \begin{array}{r}38 \cdot 95 \\ 38 \cdot 96\end{array} \\ \hline 10 \cdot 00\end{array}$	＋ $104341 \cdot 82$	318	－ $0 \quad 2.99$	＋10 $4338 \cdot 83$
				1050	－ $32 \cdot 10$		43 39．04	$\bigcirc 15$	00.02	$39 \cdot 02$
			4357.30	757	$\bigcirc 17.30$	40．00	4537.50	2051	159.31	38－19
			$4436^{6} 42$	1413	－ 55.41	$41^{\circ} \mathrm{OI}$	$4612 \cdot 44$	2341	234.00	$38 \cdot 44$
＂ 1	W．	$\begin{gathered} 31649 \\ \& \\ 13649 \end{gathered}$	$\begin{array}{r} 2624 \\ 25 \\ 27 \\ 27 \\ 27.00 \\ 27 \\ 27 \\ 59 \cdot 90 \end{array}$	$\begin{array}{rr} 29 & 35 \\ 26 & 22 \\ 7 & 10 \\ 3 & 41 \end{array}$	$\begin{array}{rr} 3 & 48 \cdot 15 \\ 3 & 1 \cdot 19 \\ 0 & 13 \cdot 37 \\ 0 & 3 \cdot 54 \end{array}$		$\begin{array}{rrr} +26 & 26 & 41 \cdot 28 \\ 27 & 3 \cdot 54 \end{array}$	1735	$\begin{array}{r} 120.53 \\ 058.46 \end{array}$	＋2628
								1459		
							2755.92	456	－6．30	
							$2747 \cdot 46$	716	O 13．67	

Abstract of Astronomical Azimuth observed at VII（Dhúlipalla） 1868.

1．By Eastern Elongation of ϵ Ursæ Minoris．

Abstract of Astronomical Azimuth observed at VII (Dhúlipalla) 1868-(Continued).
2. By Western Elongation of B. A. C. 2326 Camelopardi.

At XIV (Dánapa)

 December 1863 ; observed by Captain B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1.

Star observed
Mean Right Ascension 1863.0
Mean North Polar Distance 1863.0
Local Mean Times of Elongation, December 22
δ Ursæ Minoris (East) and (West).

			pact izpt				fact bight			
			Observed Horizontal Angle Diff. of Readings Ref. Mark-Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Klongation	Observed Horizontal Δ ngle : Diff. of Readings Ref. Mart - Star		Reduction in Are to Time of Elongation	Reduced Observation Ref. Mark-Star at Elongation
Dec. 22	E.	$\begin{gathered} 33^{8} 25 \\ \& \\ 15824 \end{gathered}$,	\boldsymbol{m} \%	11	- 11	- ,	$\boldsymbol{m} \boldsymbol{8}$	1 "	- ' 1
			$\begin{array}{r} 252917 \cdot 68 \\ 2857 \cdot 78 \\ 2742 \cdot 62 \\ 2737 \cdot 26 \end{array}$	$\begin{array}{rr} 29 & 9 \\ 26 & 6 \\ 7 & 32 \\ 4 & 41 \end{array}$	$\begin{array}{rrr} 1 & 42.21 \\ 1 & 21.98 \\ 0 & 6.85 \\ 0 & 2.65 \end{array}$	$\begin{array}{r} +252735 \cdot 47 \\ 35 \cdot 80 \\ 35 \cdot 77 \\ 34 \cdot 61 \end{array}$	$\left\|\begin{array}{rrr} +25 & 31 & 3.66 \\ 30 & 31.82 \\ 28 & 14.58 \\ 28 & 2.46 \end{array}\right\|$	$\begin{array}{lr} 41 & 19 \\ 38 & 30 \\ 18 & 7 \\ 15 & 27 \end{array}$	$\begin{array}{r} \left.-\begin{array}{rr} 3 & 24.88 \\ 2 & 58 \cdot 00 \\ 0 & 39.55 \\ 0 & 28.77 \end{array} \right\rvert\, \end{array}$	
										35.03
										33.69
\% 23	W.	$\begin{array}{r} 5737 \\ \& \quad 37 \\ 23737 \end{array}$	$\begin{array}{rrr} 3231 & 10 \cdot 10 \\ 31 & 10 \cdot 86 \\ 29 & 8 \cdot 74 \\ 28 & 49.82 \end{array}$	235	+00.81	+3231 10.91	$\begin{array}{r} 323022.54 \\ 3035.04 \end{array}$	$\begin{aligned} & 2014 \\ & 1726 \end{aligned}$	$\begin{array}{r} +049 \cdot 49 \\ 036 \cdot 74 \end{array}$	+.32 $31 \begin{array}{r}12 \cdot 03 \\ 11.78\end{array}$
					$\begin{array}{ll}0 & 0.01 \\ \\ 2\end{array}$	$10 \cdot 87$ 10.40				
				31 34 34	$\begin{array}{rrr}2 & 1.66 \\ 2 & 20 \cdot 25\end{array}$	10.40 10.07	3049.80 3034	$\begin{array}{ll} 1427 \\ 17 & 21 \end{array}$	O $25 \cdot 15$ $036 \cdot 25$	$\begin{aligned} & 14: 95 \\ & 11.13 \end{aligned}$
" 23	E.	$\begin{gathered} 57 \quad 37 \\ \& \quad 87 \\ 23737 \end{gathered}$	$\begin{array}{r} +25 \quad 2814 \cdot 66 \\ 28 \\ 28 \cdot 02 \\ 27 \\ 29 \cdot 86 \\ 27 \\ 45 \cdot 10 \end{array}$	$\begin{array}{ll} 18 & 10 \\ 1511 \end{array}$	$\left\lvert\, \begin{array}{r} -039 \cdot 75 \\ -\quad 27 \cdot 78 \end{array}\right.$	$\begin{array}{r} +2527 \begin{array}{r} 34.91 \\ 35 \cdot 24 \end{array} \\ \hline \end{array}$	$+252925 \cdot 10$29$5 \cdot 80$2729.082737	$\begin{array}{r} 3016 \\ 2718 \\ 5432 \\ 2748 \end{array}$	$\left\lvert\, \begin{array}{rrr} -1 & 50 \cdot 14 \\ 1 & 29.65 \\ 0 & 3.69 \\ 0 & 0.95 \end{array}\right.$	+25 2734.96
										+2527 $36 \cdot 15$ $35 \cdot 39$
				620	$\circ \quad 4 \cdot 85$					35.39
				951	$011 \cdot 73$	$\begin{array}{r} 35.1 \\ 33.37 \end{array}$				36-13
" 24	W.	$\begin{array}{cc} 136 & 49 \\ \& & 49 \\ 316 & 48 \end{array}$	$\begin{array}{r} +323111.90 \\ 31 \\ 27 \\ 27.70 \\ 27 \\ 27.00 \\ 2.44 \end{array}$	$\begin{array}{rr} 4 & 5 \\ 7 & 9 \\ 43 & 42 \\ 46 & 5 \end{array}$		$\left\lvert\, \begin{array}{rr} +3231 & 13 \cdot 92 \\ & 12 \cdot 88 \\ & 14 \cdot 15 \\ & 17.12 \end{array}\right.$	1+3230303029	$\begin{array}{lr} 15 & 2 \\ 10 & 37 \end{array}$	$\begin{array}{r} 027.28 \\ +13.60 \end{array}$	+ $32 \begin{array}{rr}31 & 13.46 \\ 11.84\end{array}$
								$\begin{array}{ll} 23 & 31 \\ 2648 \end{array}$	$\begin{aligned} & 1 \quad 6.62 \\ & 126.48 \end{aligned}$	$\begin{aligned} & 12.94 \\ & 10.46 \end{aligned}$
n 24	E.	$\begin{gathered} 13649 \\ \& \\ 316 \quad 48 \end{gathered}$	$\begin{array}{r} 25 \quad 27 \quad 57 \cdot 36 \\ 27 \quad 46 \cdot 84 \\ 28 \\ 28 \cdot 18 \\ 28 \\ 11 \cdot 04 \end{array}$	$\begin{array}{rrr}13 & 7 \\ 9 & 52\end{array}$	$\begin{array}{r} -020 \cdot 75 \\ -\mathrm{o} \\ \mathrm{O} 1.75 \end{array}$	$\begin{array}{r} 2527 \begin{array}{r} 36 \cdot 61 \\ 35 \cdot 09 \end{array} \end{array}$	$\begin{array}{r} 252849 \cdot 42 \\ 2830 \cdot 52 \\ 2735 \cdot 38 \end{array}$	$\begin{gathered} 2454 \\ 2154 \\ 042 \end{gathered}$	$\left\lvert\, \begin{array}{rrr} -1 & 14.65 \\ 0 & 57.77 \\ 0 & 0.06 \end{array}\right.$	$\begin{array}{r}\text { a } \\ +2527 \begin{array}{r}34 \cdot 77 \\ 32 \cdot 75\end{array} \\ \hline\end{array}$
				$\begin{aligned} & 1522 \\ & 1633 \end{aligned}$	$\begin{aligned} & 028 \cdot 52 \\ & 033.08 \end{aligned}$					$35 \cdot 32$
						$\begin{aligned} & 35.06 \\ & 37.96 \end{aligned}$	2745 40	8 51	- 9.46	35'94
, 25	W.	$\begin{array}{cc} 180 & 1 \\ \& & \\ 0 & 0 \end{array}$	$\begin{array}{r} +323110 \cdot 40 \\ 3110.94 \\ 28 \\ 21.94 \\ 27 \\ \\ 24.74 \end{array}$	$\begin{array}{rr} 4 & 54 \\ 2 & 19 \\ 36 & 38 \\ 40 & 18 \end{array}$			$\left\lvert\, \begin{array}{rrr} +32 & 30 & 23 \cdot 42 \\ & 30 & 36 \cdot 22 \end{array}\right.$	2012	$\begin{array}{r} +049 \cdot 32 \\ 035 \cdot 69 \end{array}$	+3231 $12 \cdot 74$
							$\begin{aligned} & 3031 \cdot 16 \\ & 3018 \cdot 28 \end{aligned}$	$\begin{array}{rr} 18 & 14 \\ 21 & 5 \end{array}$	$\begin{aligned} & 040 \cdot 05 \\ & 053 \cdot 52 \end{aligned}$	$\begin{aligned} & 1121 \\ & 11 \cdot 80 \end{aligned}$

Abstract of Astronomical Azimuth observed at XIV (Dánapa) 1863.

1. By Eastern Elongation of δ Ursæ Minoris.

Face Zero		$\begin{gathered} \mathrm{L} \\ 180^{\circ} \end{gathered}$	\mathbf{R} 0°	$\begin{gathered} \mathbf{L} \\ 259^{\circ} \end{gathered}$	R 79°	$\begin{gathered} \text { L } \\ 338^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 158^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 58^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 238^{\circ} \end{gathered}$	$\begin{gathered} \text { L } \\ 137^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \mathbf{3 1 7} \end{gathered}$
Date		December 25		December 26		December 22		December 23		December 24	
		" "		" \quad		" "		" \quad		"	
Observed difference		$34 \cdot 01$33.67	34.58		$36 \cdot 07$	35.4735.80	38.78	34.9135.24	$34 \cdot 96$	36.61	34.77
of Circle-Readings,			$34 \cdot 01$				$33 \cdot 82$		$36 \cdot 15$		
Ref. M. - Star		$33 \cdot 67$ $34 \cdot 04$	33.47	$34 \cdot 33$	36.48	35.77	$35 \cdot 03$	$35 \cdot 01$	$35 \cdot 39$	35.66	32.75 35.32
reduced to Elongation		$34 \cdot 04$ $33 \cdot 60$	$33 \cdot 1$	$35 \cdot 42$	33.90	$34 \cdot 61$	$33 \cdot 69$	$33 \cdot 37$	36-13	$37 \cdot 96$	35*94
Means		$33 \cdot 83$	$33 \cdot 77$	34•81	$35 \cdot 55$	$35^{\circ} 41$	$35 \cdot 33$	$34 \cdot 63$	$35 \cdot 66$	36-33	34.69
	-	, "		"		"		"		"	
Means of both faces	$+25$	2733	$33 \cdot 80$	35.18							
Az. of Star fr. S., by W.	183	$3149 \cdot 78$		50.09		$48 \cdot 74$		49.11		$49 \cdot 46$	
Az. of Ref. M. "	208	$\begin{array}{lll}59 & 23 \cdot 58\end{array}$		$25 \cdot 27$		24.11		$24 \cdot 26$		24.97	

Abstract of Astronomical Azimuth observed at XIV (Dánapa) 1863-(Continued).
2. By Western Elongation of δ Ursæ Minoris.

Face Zero		$\begin{gathered} \mathbf{L} \\ 180^{\circ} \end{gathered}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$	$\begin{gathered} \mathbf{L} \\ 259^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 79^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ \mathbf{8 3 8} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 158^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 58^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 238^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 137^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \mathbf{3 1 7 ^ { \circ }} \end{gathered}$	
Date		December 25		December 26		December 27		December 23		December 24		
	" "			$\stackrel{\prime \prime}{16 \cdot 67}$	$16 \cdot 01$	"	"	"	"	-	-	
Observed difference	13.31		12.74			15.5212.80	9.6412.19	$\begin{aligned} & 1091 \\ & 10.87 \end{aligned}$	$\begin{aligned} & 12 \cdot 03 \\ & 11 \cdot 78 \end{aligned}$	13.9212.88	$13 \cdot 46$11.84	
of Circle-Readings,			II•91	14.80	14.39							
Ref. M. - Star	11.5913.13		11.21	14.74	14.43	$\begin{aligned} & 13.53 \\ & 13.18 \end{aligned}$	1114	$\begin{aligned} & 10.40 \\ & 10.07 \end{aligned}$	$14.95$$11 \cdot 13$	$\begin{aligned} & 14.15 \\ & 17.12 \end{aligned}$	$\begin{aligned} & 12.94 \\ & 10.46 \end{aligned}$	
reduced to Elongation		9.68	11-80	13.73	14.30							
Means		11'93	11•92	14.98	14.78	13.76	10*66	10. 56	$12 \cdot 47$	14.52	12.18	
	-	1	"	"		"		"		-		
Means of both faces	$\begin{array}{r} 32 \\ +\quad 37 \\ 208 \end{array}$	312859	11.9310.39	14.88		12.21		11.51		13.35		
Az. of Star fr. S., by W.				$10 \cdot 08$24.96		$9 \cdot 76$		11.10		24.06		
Az. of Ref. M. "			$22 \cdot 32$									

(by Eastern Elongation	208	59	24.44
Astronomical Azimuth of Referring Mark ... by Western "	"		23^{18}
Mean	"		$23 \cdot 81$
Angle Referring Mark and XIII (Babběpalle) see page 28 - $_{\text {r. }}$ ante	+ 56	48	11.93
Astronomical Azimuth of Babběpalle by observation	265	47	35•74
Geodetical Azimuth of ", by calculation from that adopted (Vol. II, page 141) at Kalianpur, see page 111_r. ante	265	47	41.78
Astronomical - Geodetical Azimuth at XIV (Dánapa)	-		$6 \cdot 04$

At XXXI (Kistama)

Lat. N. $14^{\circ} 27^{\prime} 14^{\prime \prime \prime} \cdot 56$; Long. E. $79^{\circ} 47^{\prime} 45^{\prime \prime} \cdot 69==_{5}^{\hbar} 1^{m} 191^{\circ} \cdot 0$; Height above Mean Sea Level, 458 feet. December 1864; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Stars observed
Mean Right Ascension 1864.0
Mean North Polar Distance 1864:0
Local Mean Times of Elongation, Dec. 21
δ Ursæ Minoris (West) and Cephei 51 (Hev.) (East). $18^{\mathrm{h}} 16^{\mathrm{m}} 13^{\mathrm{s}}$ $3^{\circ} 23^{\prime} 47^{\prime \prime} \cdot 10$ $6^{\mathrm{h}} 1 \mathrm{I}^{\mathrm{m}}$
$6^{\text {b }} 35^{\mathrm{m}} 39^{\text {a }}$
$2^{\circ} 45^{\prime} 18^{\prime \prime} .86$
Eastern $6^{\text {h }} 3^{8 \mathrm{~m}}$

			facs lept				face might			
			Observed Horizontal Angle： Diff．of Readings Ref．Mark－Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref．Mark－Star at Elongation	Observed Horizontal Angle ： Diff．of Readings Ref．Mark－Star		Reduction in Are to Time of Elongation	Reduced Observation Ref．Mark－Star at Elongation
Dec． 24	W．	$\begin{gathered} \circ \quad 1 \\ 13649 \\ \&^{\prime} \\ 31649 \end{gathered}$	$\begin{array}{r} -304055 \cdot 76 \\ 4120 \cdot 32 \\ 4525 \cdot 48 \\ 4718 \cdot 02 \end{array}$	$\begin{array}{rc}m & 8 \\ 8 & 55 \\ 16 & 21 \\ 48 & 6 \\ 57 & 8\end{array}$	$\begin{array}{r} +09.53 \\ 032 \cdot 00 \\ 4335^{\circ} 40 \\ 6 \\ 67 \end{array}$	$\begin{array}{r} -304046 \cdot 23 \\ 48 \cdot 32 \\ 50 \cdot 08 \\ 50 \cdot 24 \end{array}$	$\begin{array}{rcc} 0 & \prime \prime \\ -3041 & 16 \cdot 48 \\ 40 & 48 \cdot 30 \\ 42 & 33 \cdot 52 \\ 43 & 45 \cdot 02 \end{array}$	$\begin{array}{rr} m & 8 \\ 14 & 44 \\ 0 & 38 \\ 29 & 19 \\ 38 & 4 \end{array}$	$\begin{array}{rc} 1 & \prime \prime \\ +0 & 26 \cdot 02 \\ 0 & 0 \cdot 05 \\ 1 & 42 \cdot 68 \\ 2 & 52 \cdot 86 \end{array}$	$\begin{array}{rc} \circ \quad \prime \\ -30 & 40 \begin{array}{c} 50 \cdot 46 \\ 48 \cdot 25 \\ \\ 50 \cdot 84 \\ \\ 52 \cdot 16 \end{array} \end{array}$
， 24	E．	$\begin{gathered} 13649 \\ \& . \\ 31649 \end{gathered}$	$\begin{array}{rll} -36 & 61 & 37 \cdot 46 \\ 61 & 46 \cdot 56 \\ \text { 61 } & 10 \cdot 36 \\ 60 & 56 \cdot 10 \end{array}$	$\begin{array}{ll} 15 & 45 \\ 13 & 19 \\ 23 & 22 \\ 26 & 12 \end{array}$	$\begin{array}{rr} -0 & 24^{\circ} 15 \\ 0 & 17 \cdot 26 \\ 0 & 53 \cdot 28 \\ 1 & 6.97 \end{array}$	－37 $\begin{array}{r}16 \mathrm{6r} \\ \\ -63 \cdot 82 \\ \\ \\ \\ \\ \\ \\ 63 \cdot 64.07\end{array}$	$\begin{array}{rrr} -36 & 59 & 43 \cdot 04 \\ 60 & 10 \cdot 52 \\ 62 & 1 \cdot 78 \\ 61 & 57 \cdot 64 \end{array}$	$\begin{array}{rr}37 & 59 \\ 32 & 3 \\ 5 & 39 \\ 8 & 15\end{array}$	2 $1.20 \cdot 04$ 1 0	$\begin{array}{rr}-37 \quad 1 & 63 \cdot 08 \\ & 50 \cdot 30 \\ & 64.90 \\ & 64 \cdot 28\end{array}$
， 26	W．	$\begin{array}{cc} 180 & 1 \\ \& & 1 \end{array}$	$\begin{array}{rr} -30 & 41 \\ 41 & 84 \cdot 08 \\ 44 & 30 \cdot 12 \\ 46 & 4 \cdot 78 \end{array}$	$\begin{array}{rr} 12 & 57 \\ 19 & 43 \\ 43 & 7 \\ 51 & 31 \end{array}$	$\begin{array}{r} +0 \quad 20 \cdot 08 \\ 046 \cdot 50 \\ 341 \cdot 52 \\ 5 \\ 5 \end{array}$	$\begin{array}{r} -3040 \quad 48 \cdot 00 \\ 47 \cdot 96 \\ 48 \cdot 60 \\ 49 \cdot 10 \end{array}$	$\begin{array}{r} -304048 \cdot 28 \\ 4049.18 \\ 42 \quad 18 \cdot 68 \\ \cdot \quad 4317.42 \end{array}$	$\begin{array}{rr} 3 & 46 \\ 5 & 3 \\ 27 & 4 \\ 35 & 26 \end{array}$		$\begin{array}{r} -304046 \cdot 58 \\ 46 \cdot 12 \\ 51 \cdot 14 \\ 47 \cdot 59 \end{array}$
＂ 26	E．	$\begin{array}{cc} 180 & 1 \\ \& & 1 \\ 0 & 1 \end{array}$	$\begin{array}{r} -36 \text { 6ı } \\ 68 \cdot 88 \\ 61 \\ 53 \cdot 30 \\ 61 \\ 61 \\ 61 \\ \hline \end{array}$	$\begin{array}{rr}11 & 52 \\ 9 & 42 \\ 18 & 23 \\ 21 & 13\end{array}$		$\begin{array}{rr} -37 \quad 1 \quad 62 \cdot 61 \\ & 62 \cdot 48 \\ & 64 \cdot 30 \\ & 62 \cdot 74 \end{array}$	$\begin{array}{r} -36 \quad 60 \\ 60 \\ 65 \cdot 98 \\ 62 \\ 67 \cdot 04 \\ 61 \\ 69.52 \\ 59.90 \end{array}$	$\begin{array}{rrr}27 & 50 \\ 25 & 15 \\ 2 & 50 \\ 5 & 30\end{array}$	$\begin{array}{rr} -1 & 15.36 \\ 1 & 2.05 \\ 0 & 0.78 \\ 0 & 2.94 \end{array}$	$\begin{array}{rl} -37 & 161 \cdot 34 \\ & 59 \cdot 09 \\ & 63 \cdot 30 \\ & 62 \cdot 84 \end{array}$

Abstract of Astronomical Azimuth observed at XXXI（Kistama） 1864.
1．By Eastern Elongation of Cephei 51 （Hev．）．

Face Zero		$\begin{gathered} \mathrm{L} \\ 180^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 0^{\circ} \end{gathered}$	L 259	$\begin{gathered} \mathbf{R} \\ 79^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 338^{\circ} \end{gathered}$	$\begin{gathered} R \\ 158^{\circ} \end{gathered}$	L 588°	$\begin{gathered} \mathbf{R} \\ 238^{\circ} \end{gathered}$	L 137°	R 317°		
Date		December 26		December 21		December 22		December 23		December 24			
－			＂	＂	＂	＂	＂	＂	＂	＂$"$			
Observed difference			$\begin{aligned} & 6 r \cdot 34 \\ & 59 \cdot 09 \\ & 63 \cdot 30 \\ & 62 \cdot 84 \end{aligned}$	$\begin{aligned} & 62 \cdot 21 \\ & 66 \cdot 04 \\ & 63 \cdot 47 \\ & 66 \cdot 63 \end{aligned}$	$\begin{aligned} & 60 \cdot 03 \\ & 64 \cdot 10 \\ & 62 \cdot 8 \mathrm{I} \\ & 6 \mathrm{I} \cdot 09 \end{aligned}$	$\begin{aligned} & 64 \cdot 21 \\ & 64 \cdot 67 \\ & 6 \mathrm{I} .60 \\ & 70.60 \end{aligned}$		$\begin{aligned} & 63.55 \\ & 63.45 \\ & 62.52 \\ & 62.72 \end{aligned}$	$\begin{aligned} & 57 \cdot 90 \\ & 59 \cdot 22 \\ & 58.22 \\ & 56 \cdot 25 \end{aligned}$	$\begin{aligned} & 6 \mathrm{I} \cdot 6 \mathrm{r} \\ & 63 \cdot 82 \\ & 63 \cdot 64 \\ & 63 \cdot 07 \end{aligned}$	$\begin{aligned} & 63 \cdot 08 \\ & 50 \cdot 30 \\ & 64 \cdot 90 \\ & 64 \cdot 28 \end{aligned}$		
of Circle－Readings，		$\begin{aligned} & 62 \cdot 61 \\ & 62 \cdot 48 \\ & 64 \cdot 30 \\ & 62 \cdot 74 \end{aligned}$											
Ref．M．－Star													
reduced to Elongation													
Means		$63 \cdot 03$	$61 \cdot 64$	64.59	62＊OI	$65 \cdot 27$	$58 \cdot 15$	$63 \cdot 05$	5790	$63 \cdot 04$	$60 \cdot 64$		
	－	－ 1		＂		＂		＂		\prime			
Means of both faces	－ 37	162.34$+\quad 0.83$		$\begin{array}{r} 63.30 \\ +\quad 0.32 \end{array}$		$61 \cdot 71$		$\begin{array}{r} 60.48 \\ +\quad 0.08 \end{array}$		61．84			
Level Corrections				＋ $0 \cdot 72$	＋0．06								
Corrected Means		${ }_{1}{ }^{\text {61．51 }}$				$\begin{array}{r} 0 \cdot 32 \\ 62 \cdot 98 \end{array}$		$60 \cdot 99$58.38		60．40		6x．78	
Az．of Star fr．S．，by W．	182	50	$77^{\circ} \mathrm{O}$	$58 \cdot 70$						57.7355.95			
Az．of Ref．M．＂，				$55 \cdot 72$		57．39		57.66					

Abstract of Astronomical Azimuth observed at XXXI (Kistama) 1864-(Continued).
2. By Western Elongation of δ Ursæ Minoris.

Astronomical Azimuth of Referring Mark		8	$56 \cdot 46$
	\ldots	...	"		$54 \cdot 62$
	...				55.54
Angle Referring Mark and XXXII (Pallakŏnda) see page 42-x. ante	- 65	47	$1 \cdot 76$
Astronomical Azimuth of Pallakǒnda by observation	...		80	1	$53 \cdot 78$
Geodetical Azimuth of ", by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 112_z. ante	...		80	1	58.28
Astronomical - Geodetical Azimuth at XXXI (Kistama)	-.	-		4.50

At LX（Parampúdi）

 December 1861；observed by Captain J．P．Basevi，R．E．，with Troughton and Simms＇ 24 －inch Theodolite No． 1.

	$\begin{aligned} & \text { 品 } \\ & \text { 品 } \\ & \text { 㽞 } \end{aligned}$		pack lipt				fack bight			
			Observed Horizontal Angle ： Diff．of Readings Ref．Mark－Star		Reduction in Are to Time of Elongation	Reduced Observation Ref．Mark－Star at Elongation	Observed Horizontal Angle： Diff．of Readings Ref．Mark－Star		Reduction in Are to Time of Elongation	Reduced Obeervation Ref．Mark－Star at Klongation
Dec． 19	W．	$\begin{array}{cc} 180 & 0 \\ \& & 0 \\ \circ & 0 \end{array}$	－1	\boldsymbol{m} \％	＇ 1	，＂	－ 11	\boldsymbol{m} 8	＇${ }^{\prime}$	－11
			$\left\lvert\, \begin{array}{rrr} -6 & 13 & 14 \cdot 60 \\ 13 & 9 \cdot 38 \\ & 13 & 8 \cdot 22 \\ & 13 & 15 \cdot 86 \end{array}\right.$		$\begin{array}{r} +\quad \begin{array}{r} 18.61 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.6266 \\ 0 \\ 19.59 \end{array} \end{array}$	－ $612 \begin{array}{r}55.99 \\ 56.76\end{array}$	$\begin{array}{r} -61551 \cdot 50 \\ 1339 \cdot 34 \\ 1257 \cdot 36 \\ 1255 \cdot 04 \end{array}$	$\begin{array}{rr} 37 & 50 \\ 19 & 7 \\ 2 & 55 \\ 0 & 50 \end{array}$	$\left\|\begin{array}{ccc} +2 & 54 \cdot & 18 \\ 0 & 44 & 48 \\ 0 & 1 & 04 \\ 0 & 0 \cdot 08 \end{array}\right\|$	
				1242						
＂ 19	E．	$\begin{array}{cc} 180 & 0 \\ \& & 0 \end{array}$	$\begin{array}{rrr} -1318 & 6 \cdot 16 \\ 18 & 21 \cdot 36 \\ 19 & 34 \cdot 46 \\ 19 & 37 \cdot 04 \end{array}$	$\left\|\begin{array}{rr} 27 & 28 \\ 25 & 26 \\ 5 & 14 \\ 2 & 33 \end{array}\right\|$	$\left\lvert\, \begin{array}{rrr} -1 & 31 \cdot 38 \\ 1 & 18.37 \\ 0 & 3.32 \\ 0 & 0.79 \end{array}\right.$	$\begin{array}{r} 131937 \cdot 54 \\ 39 \cdot 73 \\ 37 \cdot 78 \\ 37 \cdot 83 \end{array}$	$\begin{array}{\|rrr\|} -13 & 16 & 38 \cdot 52 \\ 16 & 57.06 \\ 19 & 11.48 \\ & 19 & 19.20 \end{array}$	$\begin{array}{ll} 38 & 45 \\ 36 & 35 \\ 14 & 41 \\ 12 & 20 \end{array}$	$\left\lvert\, \begin{array}{rrr} -3 & 1 \cdot 54 \\ 2 & 41 \cdot 87 \\ 0 & 26 \cdot 16 \\ 0 & 18 \cdot 45 \end{array}\right.$	$\begin{array}{r} -131940 \cdot 06 \\ 38 \cdot 93 \\ 37 \cdot 64 \\ \\ 37 \cdot 65 \end{array}$
\％ 20	W．	$\begin{gathered} 25913 \\ \& \\ 7913 \end{gathered}$			$\begin{array}{rrr} 1 & 17.87 \\ 1 & 3.69 \\ 0 & 0.12 \\ 0 & 0.36 \end{array}$	$\begin{aligned} &-6 \text { i2 } 56 \cdot 65 \\ & 56 \cdot 15 \\ & 56 \cdot 14 \\ & 55 \cdot 98 \end{aligned}$	$\begin{array}{r} -615 \\ -67 \cdot 44 \\ 15 \\ 13 \\ 13 \cdot 32 \\ 13 \cdot 90 \\ 13 \\ 8 \cdot 22 \end{array}$	$\begin{aligned} & 3525 \\ & 32 \\ & 35 \\ & 12 \\ & 1245 \\ & 10 \end{aligned}$	$\left\|\begin{array}{rr} 2 & 32 \cdot 59 \\ 2 & 7.84 \\ 0 & 19.76 \\ 0 & 12 \cdot 93 \end{array}\right\|$	$\text { - } \begin{array}{rl} -12 & 54 \cdot 85 \\ & 56 \cdot 48 \\ & 55 \cdot 14 \\ & 55 \cdot 29 \end{array}$
			－ 61414.52	$\begin{array}{ccc} 25 & 18 \\ 22 & 53 \\ 1 & 0 \end{array}$						
			$1256 \cdot 34$	144						
＂ 20	E．	$\begin{gathered} 25913 \\ \& 813 \\ 79 \quad 13 \end{gathered}$	$\begin{array}{r} 17 \begin{array}{rl} 17 & 17 \cdot 18 \\ 1739.58 \\ 1930.22 \\ 1935.62 \end{array} \\ 19 \end{array}$	$\begin{array}{rr} 34 & 6 \\ 31 & 30 \\ 8 & 10 \\ 5 & 8 \end{array}$	$\left\lvert\, \begin{array}{rrr} -2 & 20 \cdot 81 \\ 2 & 0.22 \\ 0 & 8 \cdot 42 \\ 0 & 3 \cdot 21 \end{array}\right.$	$\begin{array}{r} -131937.99 \\ 39 \cdot 80 \\ 38 \cdot 64 \\ 38 \cdot 83 \end{array}$	$\begin{array}{rr} -13 & 1532 \cdot 14 \\ 15 & 55.36 \\ 1843.44 \\ 18 & 59.64 \end{array}$	$\begin{array}{lr} 45 & 24 \\ 43 & 4 \\ 21 & 45 \\ 18 & 32 \end{array}$	$\begin{array}{r} -4 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{rr\|} -131941 \cdot 14 \\ & 39.54 \\ & 40 \cdot 85 \\ & 41 \cdot 35 \end{array}\right.$
＂ 21	W．	$\begin{aligned} & 33^{8} \quad 25 \\ & \& \\ & 158 \quad 24 \end{aligned}$	$\begin{array}{rll} -6 & 13 & 36 \cdot 36 \\ & 13 & 29 \cdot 16 \\ & 12 & 56 \cdot 04 \\ & 12 & 59 \cdot 16 \end{array}$	$\begin{array}{rr} 18 & 30 \\ 16 & 43 \\ 2 & 11 \\ 4 & 41 \end{array}$	$\left\|\begin{array}{rr} + & 0 \\ 0 & 4 \mathrm{I} \cdot 63 \\ 0 & 33.99 \\ 0 & 0.58 \\ 0 & 2.68 \end{array}\right\|$	$\text { - } 612 \begin{array}{r} 54 \cdot 73 \\ 55 \cdot 17 \\ \\ 55 \cdot 46 \\ 56 \cdot 48 \end{array}$	$\begin{array}{rrr} -6 & 14 & 26.70 \\ 14 & 12.54 \\ 13 & 6.68 \\ 13 & 0.68 \end{array}$	$\begin{array}{rr} 27 & 16 \\ 25 & 1 \\ 9 & 42 \\ 6 & 43 \end{array}$	$\begin{array}{r} 1130.45 \\ 116 \cdot 13 \\ 01143 \\ 05548 \end{array}$	$\begin{array}{rl} -612 & 56.25 \\ 56 \cdot 41 \\ & 55 \cdot 25 \\ & 55.20 \end{array}$
＂ 22	W．	$\begin{gathered} 5737 \\ \& \quad 37 \\ 23737 \end{gathered}$	$\begin{array}{r} -61342 \cdot 68 \\ 1332.02 \end{array}$	$\begin{aligned} & 1951 \\ & 1749 \end{aligned}$		－ 61254.68	－6 14	$\left\|\begin{array}{rr} 31 & 44 \\ 29 & 15 \\ 10 & 5 \\ 7 & 11 \end{array}\right\|$	$\left\lvert\, \begin{array}{rr} 2 & 2.62 \\ 1 & 44.20 \\ 0 & 12.39 \\ 0 & 6.29 \end{array}\right.$	$\begin{array}{r} -61256 \cdot 36 \\ 55.60 \\ 54.49 \\ 55.51 \end{array}$
						53.35				
			1254.28							
			$1256 \cdot 76$	346	－1．72	$55^{\circ} \mathrm{O}$				

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{pact lift} \& \multicolumn{4}{|c|}{jacr bight} \\
\hline \& \& \& Observed Horizontal Angle : Diff. of Readings Ref. Mark-Star \& \& \[
\begin{gathered}
\text { Reduction in } \\
\text { Arc to Time of } \\
\text { Elongation }
\end{gathered}
\] \& Reduced Observation Ref. Mark - Star at Elongation \& Observed Horizontal Angle: Diff. of Readings Ref. Mark-Star \& \& Reduction in Are to Time of Elongation \& \begin{tabular}{l}
Reduced Observation \\
Ref. Mark - Star at Elongation
\end{tabular} \\
\hline \multirow{4}{*}{Dec. 22} \& \multirow{4}{*}{E.} \& \multirow{4}{*}{\[
\begin{array}{r}
5737 \\
. \& \\
23737
\end{array}
\]} \& - 11 \& \(m\) \% \& ' " \& - 11 \& - ' 1 \& \(m\) * \& ' 1 \& - 11 \\
\hline \& \& \& \(\begin{array}{rrrr}13 \& 18 \& 52 \cdot 74 \\ \& 19 \& 5 \cdot 02\end{array}\) \& \(\begin{array}{lll}19 \& 39 \\ 17 \& 24\end{array}\) \& - 0 - \(46 \cdot 86\) \& - \(1319 \begin{array}{ll}19 \& 39.60 \\ 41.77\end{array}\) \& - \(13 \begin{array}{llr}17 \& 48 \cdot 52 \\ \& 18 \& 5.94\end{array}\) \& \(\begin{array}{ll}30 \\ 28 \\ 28 \\ 8 \& 18 \\ 8\end{array}\) \& \& - \(1319 \begin{array}{rr}39.73 \\ \& 42.99\end{array}\) \\
\hline \& \& \& \& \& \& \& \(1931 \cdot 52\) \& 857 \& \(\bigcirc \quad 9.74\) \& 42.99
41.26 \\
\hline \& \& \& 1938.76 \& 1517
417 \& \begin{tabular}{l}
0 \\
\hline
\end{tabular} \& 40•99 \& 1934.72 \& 649 \& - 5.65 \& 40'37 \\
\hline \multirow[t]{3}{*}{" 23} \& \multirow[t]{3}{*}{W.} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 13649 \\
\& \& 1649
\end{aligned}
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
-\quad 61340 \cdot 88 \\
1330 \cdot 46 \\
1256 \cdot 50 \\
1259 \cdot 08
\end{array}
\]} \& 1941 \& + 047.18 \& \multirow[t]{2}{*}{- \(612 \begin{array}{r}53 \cdot 70 \\ 52 \cdot 81\end{array}\)} \& \multirow[t]{3}{*}{\[
\begin{array}{|rrr}
-6 \& 14 \& 50 \cdot 26 \\
1428 \cdot 46 \\
13 \& 7 \cdot 36 \\
\& 1259.94
\end{array}
\]} \& 3027 \& \multirow[t]{3}{*}{\[
\left|\begin{array}{rr}
1 \& 152 \cdot 89 \\
1 \& 32 \cdot 74 \\
0 \& 11 \cdot 26 \\
0 \& 5.55
\end{array}\right|
\]} \& \multirow[t]{3}{*}{\[
\begin{array}{r}
-61257 \cdot 37 \\
55 \cdot 72 \\
56 \cdot 10 \\
54 \cdot 39
\end{array}
\]} \\
\hline \& \& \& \& 1735 \& - \(37 \cdot 65\) \& \& \& \& \& \\
\hline \& \& \& \& \(\begin{array}{ll}4 \& 19 \\ 6 \& 41\end{array}\) \& \begin{tabular}{l}
- 2.27 \\
\hline
\end{tabular} \& \(54 \cdot 23\)
\(53 \cdot 65\) \& \& 937
645 \& \& \\
\hline \multirow[t]{4}{*}{, 23} \& \multirow[t]{4}{*}{E.} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
13649 \\
\& \\
31649
\end{array}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
-131814.42 \\
1825.74 \\
1934.78 \\
1937.26
\end{array}
\]} \& 2622 \& - 124.27 \& \multirow[t]{4}{*}{\[
\begin{array}{|r}
-131938 \cdot 69 \\
38 \cdot 33 \\
38 \cdot 50 \\
\\
\\
\\
\\
\hline 8 \cdot 85
\end{array}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{|rlr}
-13 \& 16 \& 37 \cdot 70 \\
17 \& 0 \cdot 94 \\
19 \& 12 \cdot 46 \\
19 \& 18 \cdot 16
\end{array}
\]} \& 3857 \& \multirow[t]{4}{*}{\[
\left\lvert\, \begin{array}{rrr}
-3 \& 3 \cdot 47 \\
2 \& 38 \cdot 57 \\
0 \& 29.86 \\
0 \& 22 \cdot 79
\end{array}\right.
\]} \& -1319 41'17 \\
\hline \& \& \& \& 2428 \& 112.59 \& \& \& 3612 \& \& 39.51 \\
\hline \& \& \& \& 532 \& - 3.72 \& \& \& 1541 \& \& \(42 \cdot 32\) \\
\hline \& \& \& \& 337 \& - 1-59 \& \& \& 1342 \& \& 40*95 \\
\hline \multirow[t]{4}{*}{, 24} \& \multirow[t]{4}{*}{E.} \& \multirow[t]{4}{*}{\[
\begin{gathered}
33^{8} \quad 25 \\
\& \\
158 \quad 25
\end{gathered}
\]} \& \multirow[t]{2}{*}{- \(\begin{array}{rlll}3 \& 18 \& 24 \cdot 36 \\ \& 18 \& 37 \cdot 26\end{array}\)} \& \& - 116.18 \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
-1319 \& 40 \cdot 54 \\
\& 41 \cdot 42
\end{array}
\]} \& - \(1316 \begin{array}{ll}168.20\end{array}\) \& 3957 \& \& \\
\hline \& \& \& \& 230 \& 14.16 \& \& - \(1654 \cdot 74\) \& 3710 \& - \(\begin{array}{r}313 \cdot 00 \\ 247 \cdot 13\end{array}\) \& \multirow[t]{2}{*}{- 131941.20
41.87

42.03}

\hline \& \& \& 1938.52 \& 443 \& $\bigcirc 2.71$ \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 41 \cdot 23 \\
& 41 \cdot 70
\end{aligned}
$$} \& $1933 \cdot 56$

1937.86 \& 821
5

52 \& | O 4.47 |
| :--- |
| -4.18 | \&

\hline \& \& \& 1934.76 \& 733 \& - 6.94 \& \& \& 552 \& \& $42 \cdot 04$

\hline
\end{tabular}

Abstract of Astronomical Azimuth observed at LX (Parampúdi) 1861.

1. By Eastern Elongation of δ Ursæ Minoris.

Face Zero		$\begin{gathered} \mathbf{L} \\ 180^{\circ} \end{gathered}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$	$\begin{gathered} \mathbf{L} \\ 259^{\circ} \end{gathered}$	\mathbf{R} 79°	$\begin{gathered} \mathbf{L} \\ \mathbf{8 3 8} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 158^{\circ} \end{gathered}$	L 58°	$\begin{gathered} \mathbf{R} \\ 238^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 137^{\circ} \end{gathered}$	R 817°	
Date	December 19			December 20		December 24		December 22		December 23		
	" "			$\prime \prime$37.09	"	"	1	${ }_{3}^{\prime \prime}{ }^{\text {3 }} 60$	"	"	"	
Observed difference	$\begin{aligned} & 37 \cdot 54 \\ & 39 \cdot 73 \\ & 37.78 \\ & 37 \cdot 83 \end{aligned}$		$40 \cdot 06$			$\begin{aligned} & 40 \cdot 54 \\ & 41 \cdot 42 \\ & 41 \cdot 23 \\ & 41 \cdot 70 \end{aligned}$	$\begin{aligned} & 41 \cdot 20 \\ & 41 \cdot 87 \\ & 42 \cdot 0 \\ & 42 \cdot 04 \end{aligned}$		$\begin{aligned} & 39^{\circ} 73 \\ & 42 \cdot 99 \\ & 41 \cdot 26 \\ & 40 \cdot 37 \end{aligned}$	$\begin{aligned} & 38 \cdot 69 \\ & 38 \cdot 33 \\ & 38 \cdot 50 \\ & 38 \cdot 85 \end{aligned}$	$\begin{aligned} & 41 \cdot 17 \\ & 39 \cdot 51 \\ & 42 \cdot 32 \\ & 40 \cdot 95 \end{aligned}$	
of Circle-Readings,			$38 \cdot 93$	$\begin{aligned} & 37.99 \\ & 3980 \\ & 38.64 \\ & 38 \cdot 83 \end{aligned}$	$39 \cdot 54$			$\begin{aligned} & 39 \cdot 60 \\ & 41 \cdot 77 \\ & 42 \cdot 70 \\ & 40.99 \end{aligned}$				
Ref. M. - Star			$37 \cdot 64$		$40 \cdot 85$							
reduced to Elongation			$37 \cdot 65$		41.35							
Means	$38 \cdot 22$		$38 \cdot 57$	$38 \cdot 82$	40•72	41 22	41•79	41-27	41*09	38•59	40•99	
	-	,		"		"		"		"		
Means of both faces	$\begin{array}{r} 13 \\ 183 \\ 170 \end{array}$	193313	$\begin{aligned} & 38 \cdot 40 \\ & 21 \cdot 72 \end{aligned}$	39.77		$41 \cdot 50$		41.18		39'79		
Az. of Star fr. S., by W. Az of Ref. M.				$42 \cdot 32$		$\begin{aligned} & 23 \cdot 39 \\ & 41 \cdot 89 \end{aligned}$		$22 \cdot 76$41.58		23.0843.29		
Az. of Ref. M. "			$43 \cdot 32$				'58					

Abstract of Astronomical Azimuth observed at LX (Parampúdi) 1861-(Continued).
2. By Western Elongation of δ Ursæ Minoris.

Face Zero		L		$\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ 259^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \mathbf{7 9}^{\boldsymbol{}} \end{gathered}$	$\begin{gathered} \text { L } \\ 338^{\circ} \end{gathered}$	$\begin{gathered} R \\ 158^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 58^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 238^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 137^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 817^{\circ} \end{gathered}$
Date		December 19			December 20		December 21		December 22		December 23	
		"		"		"	*		-			
Observed difference of Circle-Readings, Ref. M. - Star reduced to Elongation		$\begin{aligned} & 55 \cdot 99 \\ & 56 \cdot 76 \\ & 57.56 \\ & 56 \cdot 27 \end{aligned}$		$\begin{aligned} & 57 \cdot 32 \\ & 54 \cdot 86 \\ & 56.32 \\ & 54 \cdot 96 \end{aligned}$	$\begin{aligned} & 56 \cdot 65 \\ & 56 \cdot 15 \\ & 56 \cdot 14 \\ & 55 \cdot 98 \end{aligned}$	$\begin{aligned} & 54 \cdot 85 \\ & 56 \cdot 48 \\ & 55 \cdot 14 \\ & 55 \cdot 29 \end{aligned}$	$\begin{aligned} & 54 \cdot 73 \\ & 55^{\circ} 17 \\ & 55 \cdot 46 \\ & 56 \cdot 48 \end{aligned}$	$\begin{aligned} & 56 \cdot 25 \\ & 56 \cdot 41 \\ & 55 \cdot 25 \\ & 55 \cdot 20 \end{aligned}$	$\begin{aligned} & 54 \cdot 68 \\ & 53.35 \\ & 54.07 \\ & 55 \cdot 04 \end{aligned}$	$\begin{aligned} & 56 \cdot 36 \\ & 55.60 \\ & 54.49 \\ & 55.51 \end{aligned}$	$\begin{aligned} & 53.70 \\ & 52.81 \\ & 54.23 \\ & 53.65 \end{aligned}$	$\begin{aligned} & 57 \cdot 37 \\ & 55 \cdot 72 \\ & 56 \cdot 10 \\ & 54^{\circ} \cdot 39 \end{aligned}$
Means		$56 \cdot 65 \cdot 5$		$55 \cdot 87$	56.23	$55 \cdot 44$	$55 * 46$	$55 \cdot 78$	54*29	$55 \cdot 49$	$53 \cdot 60$	55'90
	-	1								"		
Means of both faces Az. of Star fr. S., by W. Az. of Ref. M.	$\begin{array}{r} 6 \\ 176 \\ 170 \end{array}$	122613	$56 \cdot 26$$38 \cdot 45$$42 \cdot 19$		$\begin{aligned} & 55 \cdot 83 \\ & 38 \cdot 12 \end{aligned}$		$\begin{aligned} & 55 \cdot 62 \\ & 37.73 \end{aligned}$		$54 \cdot 89$		54.75	
					$42 \cdot 29$	$42 \cdot 11$		42.51		$42 \cdot 34$		

PRINCIPAI TRIANGUIATION-MADRAS MMRIDIONAI AND COAST SHRIMS.
$\mathrm{F}_{\mathrm{ig} .} \mathrm{No}_{\mathrm{o}} 40$.

Fig. No. 41.

Fig. No. 42.

$\mathrm{F}_{\text {ig. }} \mathrm{Na}_{\mathrm{o}} 43$.

Scale 1 Onch $=12$ Mhiba at yb0320

$\mathrm{F}_{\text {ig. }} \mathrm{N}_{\mathrm{o}} .46$

Fig. No. 47

Scale / Gnch $=12$, thicher of $\frac{1}{460320}$

SOUTH-EAST COAST AND CEYLON BRANCH SERIES.

SOUTH-EAST COAST AND CEYLON BRANCH SERIES.

INTRODUCTION.

The South-East Coast Series of triangulation runs southwards from Madras along the coast to Ramnad (Rámnáthapuram), and thence along the parallel of $9^{\circ} 30^{\prime}$, till it meets the Great Arc. The portion between Madras and Ramnad was formerly known as the Madras Coast Series, and the remaining portion between Ramnad and the Great Arc as the Ramnad Longitudinal Series, but when the reduction of the Southern Trigon was commenced, it was decided to combine the two into one, and designate it the South-East Coast Series. The triangulation connecting the Indian peninsula with the island of Ceylon emanates from a side of one of the polygons of the series under review, and its details are therefore included with those of the main series; it is known as the Ceylon Branch Series, and does not enter into the simultaneous reduction of the Trigon.

Triangulation had been commenced in the southern portions of the peninsula by Colonel Lambton, at the beginning of the present century, and had been carried down the coast from Madras to Negapatam. (Nágapatnam); but it here consisted simply of a narrow chain, following the coast-line, and avoiding the interior, which is flat and covered with trees, and which was found to be altogether too difficult to be touched during those early days of the trigonometrical survey, when as yet no method of taking the operations through tracts of forest had been devised. From Madras to Tranquebar (Tarangambádi) this chain consisted of a principal series, which Colonel Lambton had carried out for the purpose of measuring an arc of meridian and thus determining a value for the radius of the earth. Contemporaneously with this series the sea-port towns of Pondicherry (Puducheri), Cuddalore (Gúdalúr), and Porto Novo (Farangipetai) had been fixed by secondary triangulation, and a minor series had been carried south from Tranquebar to Negapatam, which was also connected by further secondary work on the parallel of $10^{\circ} 50^{\prime}$ with 'lanjore (Tanjávúr). The triangulation on this parallel was produced west to Trichinopoly (Tiruchinnapalli), where it joined the general net-work, which was spread over the interior of the country and from which the Coromandel Coast Series had originally emanated in the neighbourhood of Madras. A complete circuit was thus formed and a base-line of verification measured at Tanjore in 1808, but no triangulation was commenced on the coast-line south of Negapatam, till

Lieut.-Colonel Walker became Superintendent of the Great Trigonometrical Survey. Unfortunately the greater part of Colonel Lambton's operations on the Coromandel Coast are valueless, owing to the stations not having been preserved. A few out of the vast number, he observed at, have been identified and are now incorporated as secondary points with the modern triangulation. In 1873 Lieut.-Colonel Walker decided to commence a principal series at Cape Comorin, which was to follow the line of the coast to Madras, and from which a branch series to Ceylon was to emanate, and he issued orders for the execution of the work to Major Branfill who was about to complete the southern section of the Great Arc. This officer after closing the Great Arc triangulation on the Cape Comorin base-line in February 1874 took advantage of the remaining clear weather by reconnoitring the Straits of Manar with a view to ascertaining the practicability of a trigonometrical connection with Ceylon. The straits were first examined at Adam's Bridge, where they are narrowest; but the islets composing the bridge were found to be sand-hillocks, which for the most part were covered by the sea at high-water, and were only accessible at low-water during fine weather; they were thus most unpromising positions for the construction of suitable stations, and it was soon found necessary to abandon all idea of crossing them. Higher up, on the line be'tween Rámesvaram and Jaffna, are several islands, composed of coral and sand-stone; these were next visited, and found suitable for the erection of stations. The nearest to the Indian coast was Kachi Tívu, a small island not more than a mile in diameter, but standing well

Season 1873-74.

Perbonnel.

Major B. R. Branfill, Dy. Supt., 2nd Grade.
Mr. G. Belcham, Asst. Surveyor, lst "
 out of the water, and visible from the island of Ramesvaram on one side and from that of Neduvan Tíva on the other. Here Major Branfill decided to construct two stations at a distance of about a mile apart, and to fix their positions by observations at them, and at the Rámesvaram stations: finding that no difficulty would be experienced in connecting them with the island of Neduvan Tivu, he returned to the mainland and took up the work of the southern portion of the South-East Coast Series on the parallel of $9^{\circ} 30^{\prime}$. In December 1873, Mr. Belcham had been sent to reconnoitre the country, and to commence laying out the approximate series. He found the line would have to run through an unbroken plain of black soil, generally under cultivation, with high standing crops, and plentifully wooded with groves of mango, tamarind and palm trees, the view being everywhere obstructed by long lines of high banks of tanks and irrigation channels, and after a very careful and detailed examination he reported the country unsuitable for the great triangulation. It was evident that every ray must be tediously traced and cleared in the regular manner, and that high towers would be required even for comparatively small triangles. It was impossible to lay out and prepare any stations of the new series in time for observation before the end of the field season; Major Branfill therefore abandoned the intention and sent the large theodolite into store; he then proceeded to lay out the series himself, directing the assistants to build the new stations, as soon as selected. After a careful examination of the country, he found that, following the most favorable line, namely that bordering the sea on the parallel of $9^{\circ} \mathbf{1 5}$, where advantage of the coast-line sand-hills could be taken, he could not reach Ramnad, distant only 64 miles, by less than 16
triangles, forming a single series. By the addition of three stations, he was enabled to convert this into a double series, and thus concluded the approximate work. The party returned to recess at Bangalore (Běngalúr) on 26th May.

In the next field season Major Branfill's party was deputed to commence the southern

Season 1874-75.

Prrsonnel.

Major B. R. Branfill, Dy. Supt., 2nd Grade. Mr. G. Belcham, Surveyor, 4th Grade.
Mr. G. Belcham,
$"$ C. D. Potter, Asst. Surveyor, 1st Grade.
" E. W. Lasseron, " " 2nd "
the 20th. A week was occupied in building the stations and clearing the rays, and it was not till the 29th of December, that observations were commenced. The first stations visited were those of Kulayanallúr and Koilpati, forming a side on the east flank of the Great Arc, and by the 20th of January final observations at the six stations forming the first two quadrilaterals were completed. Mr. Belcham, who had been hitherto engaged in continuing the approximate series, was then recalled to the main party to take up the observations, whilst Major Branfill himself proceeded to carry on the approximate work. Mr. Potter and Mr. Lasseron were occupied in building stations and clearing rays.

The stations of the north flank and centre of the series were hollow masonry pillars fifteen to twenty feet in height, banked up with earth and gravel as high as practicable to prevent vibration, with a timber scaffolding to support the observatory tent and run up to a much greater height for the signal. The south flank lay along the series of sand-hillocks and ridges, that skirt the coast, enveloped for the most part in dense palm forest. The shifting hillocks of drift-sand were not suitable for permanent principal stations; but by means of temporary stations composed of wooden piles, all the permanent buildings on the coast, which could be observed, were fixed, and the series rendered double throughout. Large mark-stones were buried deep in the sand, which will be recoverable for many years to come, as a pile of coral stones was placed over each to mark the site more permanently in case the sand shifted.

It was found by experience that a considerable reduction of expense might be effected by the adoption of only low masonry pillars and platforms, no larger than absolutely necessary for the sake of permanence, in place of the usual high towers. The South-East Coast Series was commenced by building scaffoldings, ten of which with a mean height of 21 feet cost Rs. 1,750; in addition to this the cost of the observatory platform was Rs. 40 at each pillar, so that the average expenditure amounted to a total of Rs. 215 per station, exclusive of supervision : a different plan however was adopted after the series had been extended for 30 miles, and log or pile stations were constructed for the sand-hills, and low masonry piers for the ordinary soil, with lofty scaffolds for the signals. The average cost of eleven observatory signal scaffolds with a mean height of 27 feet was found to be only Rs. 30, and that of low masonry platform stations about Rs. 20, making a total of Rs. 50, and shewing a saving of Rs. 165 per station. The station, that was found best adapted for this series and most economical, consisted of a masonry pillar, $3 \frac{1}{8}$ feet in
diameter-in which were placed two mark-stones-surrounded by an annular wall from 13 to 18 inches thick : outside the annular wall three pillars of masonry were built for the support of a portable wooden stand, strongly braced, and 17 feet high, to carry the instrument : at the level of the top of this stand, the first platform was built, 10 feet by $8 \frac{1}{2}$ feet, the platform was supported at its four corners by scaffolding poles, 40 feet high, on the top of which a second platform was constructed to carry the signal lamp. One disadvantage of these lofty scaffolds was the difficulty of plumbing the signal apparatus in a high wind; this was obviated by using heavier plummets supported by fine brass wire, and by protecting the plumb-line by a long strip of cloth or matting spread on the windward side. The stations at which the braced tripod stand was used have been designated "trestle stations."

By the end of the first week in March the approximate series on the south flank and centre was complete as far as Ramnad. The south coast from the land's end (Toniturai = " boat ferry") opposite Pámban, for 50 miles to the westward, was fringed with a belt of dense palmyra forest, intermixed with groves of cocoa-nut trees, through which it was very difficult indeed to carry on the series, but there was no alternative feasible. To traverse or "trace" each ray through the forest was possible, but to "clear" it quite impracticable; to overlook it was the only thing to be done, although the palms grew to a height of 60 feet and the ground was generally quite flat. At a distance of a mile or so inland from the seashore there was a ridge or series of hillocks, rising from 10 to 50 feet above their base, formed probably by the constant action of the sea breezes blowing the dry surface sand of the beach inland, and depositing it in the palm forest, where it is sheltered from farther action of the wind. The most promising of these sand-hillocks having been selected for stations and high flags having been erected on them, the line between them had to be traversed, and the height of the intervening hillocks and palm trees carefully noted. This, it was found, could only be done by climbing the highest palms and examining the height of the forest in the direction of the ray. About midway the most prominent palm in or near the line was sought for and marked with a flag, whence the flags of the two station sites at the ends of the line could be seen; a sextant was then used to measure the angle contained by the rays to the station flags, which, with the traversed distances, gave the approximate position of the true ray, and by examining the top of the forest, it could be then judged, whether the ray was likely to prove practicable or not, and where most clearing was necessary. The direction of the ray having been found apparently feasible, a trial line had to be carried from one or both ends over the palm-tops, the leaves of which had to be cut off, so as to make a clear gap of 10 or 12 feet in the forest. If the trial line proved all right, it had to be widened by cutting down some scores of trees, the price of which (from one to four shillings each) was settled and paid to the owners. As the sand-hillocks did not attain the height of the palms by 15 or 20 feet, the eye and signals had still to be raised, and for this purpose Major Branfill prepared the portable braced stand of wood, which has been already described. The long scaffolding poles which were required to support the upper platform, so as to give the additional height to the signals, that was necessary, were easily obtainable, and the stalks of the palmyra leaves furnished the rope, by which the scaffold was put together and made fast.

In one instance Major Branfill met with a great disappointment and the loss of several
days. The lofty gopuram, or entrance tower, of the Tirupullani temple, a sacred Vishnu fane, offered a tempting site for a station, 80 feet above the ground, by which five rays to adjacent stations over the palm forest were well commanded. He visited the place and was allowed to mount and observe with a small theodolite from the summit of the tower without demur, and was informed, that he might use it as a station, if he engaged to do no damage, that he would not make good. When however he came subsequently to prepare the station, and had taken the necessary measurements for the platform, \&c., the brahmans attached to the temple, and the inhabitants of the village, that profit by the temple funds, turned out to the number of some hundreds, and surrounded his tents in a state of much excitement, protesting against his again entering the tower, unless he was prepared to pay many thousands of rupees for its purification, whilst some of them demanded money for the pollution that had already occurred through his presence. Major Branfill, describing this incident, writes :-"I tried for "sometime to conciliate them but without effect; they refused me further access, locked the "door, and kept a watch to prevent by force any attempt on my part to effect an entrance, " which of course I did not make, though it was with much reluctance that I felt obliged to "abandon so advantageous a site. I afterwards learnt, that on the day of my first visit a " subscription was made and a sum of one or two rupees collected to enable the priests to "perform certain purification ceremonies on account of my visit. On hearing this I sent "word to the temple manager, that I was ready to pay a rent equal to the amount of any "such expiatory sacrifices, as they deemed absolutely necessary, for as long as we occupied " the tower, but they refused. They added, that they had already caused the unhallowed " Government telegraph wire to be removed from passing too near their holy building to a "distance of some hundreds of yards, and that they could not let me use their tower at any " price. No anger or ill-will was displayed on either side, but I was not prepared for such "persistent obstructiveness, considering I had already established a station on the unfinished "gopuram at Uttarakoshamangai, a celebrated Shiva temple only a few miles distant, with"out any difficulty. The gopuram, or entrance tower, of any Indian temple, is perhaps of " less use, from a religious point of view, than the ordinary tower of an old English church ; "and in this instance, as is common in Hindu temples, the tower, being only the resort of " monkeys and bats, and seldom or never cleaned, was in a most filthy state, and so disgust"ingly loathsome as to be almost unendurable to any one passing through it. That my "presence should be thought a greater pollution to the temple than that of these unclean " beasts and birds reveals a state of mind, that is somewhat remarkable. I lost no time in "searching for another point, but the delay caused by the abandonment of this cost me about " a week in the busiest time of the season".

Major Branfill's next occupation was to extend the series to Rámesvaram with a view to the Ceylon connection. After a careful examination of the country to the south-east of Ramnad, he found that the increasing density of the palm forest and the rapid narrowing of the land would make it necessary to utilize the islets of the coral reef, which lie parallel to the shore of the main-land at the distance of 4 or 5 miles. He accordingly threw out a quadrilateral to the southward based on the south-easternmost side of the triangulation, which lay convenient for the purpose, and found no great difficulty in extending the series by a succession of quadrilaterals as far as the land's end.

The islands were scarcely above the sea at high-water of spring tides, and were composed of coral and sand; they were devoid of fresh water or any thing to live upon, but were covered with grass, bushes and trees, the last being planted by the fishermen who resort there from the main-land: several of them were densely covered with high tangled shrubs, that caused much trouble in clearing the rays. Labor, material, food and water had to be transported thither by boat, and as constant communication by open boats or canoes had to be maintained, there were only about three months, February, March, and April, between the monsoons, during which this work could be carried on. High scaffolds were required at all of the island stations, and in building these only one accident occurred throughout. This was a matter of congratulation, as all the party were inexperienced in the kind of work, and their materials and implements were of the most unwieldy and roughest description. An ordinary palmyra freshly cut down weighs about $1 \frac{1}{4}$ tons, and each half tree, over 40 feet in length, probably $\frac{1}{8}$ a ton, to raise which there was only a working party of from 12 to 20 common coolies, and 3 or 4 klassies. A few stout bamboos for sheers, props, \&c., a set of tackle and plenty of cocoa-nut fibre rope were all the implements available, but they proved sufficient for the purpose. The one accident, alluded to, occurred by a faulty beam, injured in the felling of the tree, having been inadvertently used on the top of the scaffolding to support the signal platform : whilst it was being removed, it gave way, and two klassies were precipitated to the ground from a height of 30 feet, but neither was seriously hurt.

Major Branfill completed these stations and cleared all the rays by the middle of April, when he found it necessary to desist, as it was useless to prepare the remaining stations in advance, some of which, being situated on hillocks of drift-sand, were necessarily temporary stations. He then visited the islands of Kachi and Neduvan (or Delft) and ascertained that there would be no great difficulty in any of the remaining rays.

Mr. Belcham meanwhile had been pushing on the final observations with vigour and success and except for one or two days, when he overtook the building parties, had' experienced no interruption. He closed work on the 1st of May, as the entire party was much exhausted, and a large portion of it sick.

The district passed over is as flat as possible, with a slight slope downwards towards the sea of a few feet per mile. Inland the surface of the country is generally deep black soil which is immediately succeeded near the coast by deep sand. The black soil is extremely rotten, and becomes impassable in wet weather: it is covered with dense woods, and intersected by a net-work of bunds, dykes, supply-channels, and tanks; crops of corn growing to a height of ten feet are to be seen in all directions, and every tank bed is overgrown with a dense thicket of thorns of a kind of hard and matted "bábul" (Mimosa Arabica), that is exceedingly tedious to clear. Except for the occasional sand-hillocks, the vicinity of the coast offers no advantage over the inland tract, being overgrown with palm forest, thorn jungle, and cocoa-nut groves.

Compared with former work, when hill stations were available, the signals were diffused and the observations wild. Excepting the first few, nearly all the rays were unavoidably low, grazing within ten or fifteen feet of the ground, and a few much closer still. Eleven of the rays were more or less clear over the land, giving a mean factor of
positive refraction $=+023$ of the contained arc. Thirty-six rays grazed the surface more or less badly, giving a mean factor of negative refraction $=-111$; the largest of these was - $\cdot 289$, and there were several others about one-fourth of the contained arc. Of sixteen rays over the sea, some clear and some grazing, only one gave negative refraction, $-\quad 037$, the rest were all positive, and generally lay between $+\cdot 020$ and $+\circ 040$, the mean being 032 of the contained arc, or about half that of an ordinary series of hill stations.

Work was resumed in the next field season. The main body of the party to the number

Season 1875-76. Personnel.
Major B. R. Branfill, Dy. Supt., 2nd Grade. Mr. G. Belcham, Surveyor, 4th Grade.
" C. D. Potter, Asst. Surveyor, 1st Grade.
" E. W. Laseron, " " 2rd "
of 70, under the Tindal and Daffadár, left recess quarters at Bangalore, and marched by the usual route for Madura on the 13th of October 1875, but on entering Salem (Selam) on the 22nd, were putin quarantine by the District Collector in consequence of cholera of a virulent type having broken out amongst them, three cases proving fatal. On hearing this, Major Branfill at once proceeded to join the party by train with medical aid, and found the men in a state of panic and deserting rapidly. All those newly engaged refused to go on, demanding their discharge or to be taken back to their homes and families at Bangalore at once. Cholera being very prevalent in the Dindigul (Tindukal) and Madura districts ahead, and worse in rear on the route by which they had come, it became absolutely necessary to take them by railway to Mysore territory, as they positively refused to remain where they were; no fresh cases occurring after this, the party obtained a clean bill of health, and was marched into Bangalore under Mr. Bryson on the 2nd of November. On the 15th November, the entire party, recruited in numbers and re-established in morale, again left Bangalore for the field, proceeding by rail as far as Madura, and commenced operations on the approximate series at Ramnad on the 1st of December, having left the 24-inch theodolite in deposit at Madura until actually required for the final observations. The remaining portion of the island series for the Ceylon connection could not be begun till the end of January, when the violent wind of the north-east monsoon moderates. Before this open boats, the only craft that funds admitted of, were not able to ply between the islands of Palk's Straits to the east of the Pámban Channel and Adam's Bridge, and keep the signal and observing parties furnished with water and supplies. The following arrangements and disposition of the party for the prosecution of the work were therefore made:-The country to be traversed being low, flat, and much wooded, like that of the last season, and very few stations and no rays being ready for observations, the entire party was placed upon the approximate series, and divided into five equal working detachments. Mr. Belcham kept to the east flank stations and rays, Mr. Potter to those of the west flank, while Major Branfill, Mr. Laseron, and Mr. Bryson prepared the centre of the Series.

From the unusually heavy rains of the autumn the country was at first barely passable, causing great hindrance. On the east flank and centre however work proceeded fairly well; but on the west Messrs. Potter and Laseron were greatly delayed on their first rays, although they were between stations which they had themselves selected and built at the close of the last season. By the end of January, after two months incessant hard work, only two hexagons were completed, and on the 9th of February Major Branfill commenced

X_{F}.

the final observations. He next proceeded to the centre station of Maněgandi, and observed the usual azimuth of verification, in which he found no inconvenience, want of stability, nor any unusual tendency to dislevelment in the theodolite from the use of a tripod stand, 17⿺辶 $\frac{1}{2}$ feet high. Mr. Belcham was then called in to take up the final observing on the Ceylon Branch Series, leaving Messrs. Potter and Laseron to continue the approximate series on the south-east coast in advance for the next season, whilst Major Branfill proceeded to Ramesvaram island to complete the approximate work for the Ceylon connection, which he found no difficulty in doing during the month of March. The two stations on the small island of Kachi Tívu served as a base to determine the positions of the two next stations which were erected at the extremities of Neduvan Tívu, an island seven miles long belonging to Ceylon. The Ceylon Government constructed towers of a sufficient height to overlook the dense growth of palm trees with which the island was covered, and to command the requisite view all round and serve as stations of triangulation. The positions of these towers, as well as the stations on the island of Kachi Tívu, were fixed from the side of India by Mr. Belcham with one of the first-class theodolites of this Survey: the acuteness of several of the angles involved in the triangulation, necessitated the employment of the best instruments which could be provided for the measures of the angles: in this respect the instrumental equipment of the Indian Survey was much superior to that of Ceylon. Colonel Fyers, R.E., the Surveyor General of Ceylon, evinced great interest in the operations, and heartily cooperated with the Superintendent of the Great Trigonometrical Survey of India, Lieut.-Colonel Walker, R.E., in the matter. Mr. Belcham was considerably delayed by contrary winds and foul weather, but succeeded in completing the observations of the final angles by the 25th of April : at one station he obtained the first night's observations, but could get no more for some days, until he had raised the instrument on piles about 8 feet higher, because the setting in of an unusually high southerly wind caused the waves of the intervening sea to obstruct the view. The station on the sand hill near Rámesvaram, which was observed in the previous season, could not be found, having been buried deep in the shifting sand, and it was necessary to establish a new one. This station caused much anxiety, and a great deal of time was spent in watching it during the observations lest it should be blown away or buried again. It consisted of a long 10 -foot pile of hard wood driven into the sand at the top of the highest hillock, where there remained just below the surface some of the moisture of the preceding autumn's rains: but as fast as the sun evaporated the moisture the wind, which was uncommonly high for the season, blew away the surface sand daily to the depth of 4 or 5 inches or more; and it was only by continually replacing it, and by freely watering and beating it to a smooth and compact mass, that the pile and mark were preserved.

After seeing the completion of the island series Major Branfill, having obtained furlough to England, proceeded to Bangalore to make over charge of the party to Captain W. M. Campbell, R.E. The work performed during the season consisted of two hexagons on the South-East Coast Series, and of a hexagon and quadrilateral on the Ceylon Branch, forming in all a chain of triangles 80 miles in length, and including observations at 21 principal stations. An azimuth of verification was also observed at Manĕgandi station.

During the following recess Captain Campbell took steps for obtaining greater elevation
at the stations in order to gain clearer rays. Hitherto the height of the telescope of the theodolite had been about 30 feet from the ground, and that of the signal platform 40 feet, and it seemed better to raise the latter, if possible, than to alter the tripod stand. Accordingly a trial signal platform was erected to a height of 58 feet without serious trouble. Mr. Belcham watched the behaviour of this platform by observing the lamp on the top through a theodolite at a convenient distance, and found that under a strong breeze blowing in gusts the extreme deflection was not above an inch, the platform recovering itself when the wind dropped. This shewed that such a platform might well be trusted for rays averaging 10 miles in length, on which one inch subtends an angle of about 0.33 of a second.

One point in the reduction of this work called for special notice, viz.:-the remarkable and rapidly increasing difference between the sea level and that deduced from the trigonometrical heights of the triangulation running along the coast with one flank on islands and latterly entirely on islands, for the purpose of the Ceylon connection. By spirit levelling connecting the tide-gauge at Tuticorin (Tútugudi) with the Cape Comorin base the error of the trigonometrical heights there was -7 feet. In the season 1874-75 when the series first struck the coast 110 miles from the base-line, the error was found to be -10.7 feet, increasing to $-12 \cdot 4$ feet in a farther distance of 30 miles. In the season 1875-76, this error of -12.4 feet, after two figures extending 40 miles over sea and islands, had increased to -14.7 feet. The progression is by no means regular, as there were cases of -18.7 feet and -17.2 feet between the initial and closing errors of $-12 \cdot 4$ feet and -14.7 feet respectively. These facts tend to show, that the refraction affecting grazing rays over the sea is so irregular as to make vertical angles untrustworthy.

The charge of the South-East Coast Party was taken over by Captain Carter on

Season 1876-77.

 Pbrbonyrid.Captain T. T. Carter, R.E., Dy. Supt., 3rd Grade. Mr. G. Belcham, Surveyor, 4th Grade.
" C. D. Potter, Asst. Surveyor, lat Grade.
" A. H. Bryan, " " ${ }^{\text {Brd }}$ " his return from furlough, on November 20th 1876, from Captain Campbell, R.E., who had held it as a temporary measure during the preceding recess. As soon as all arrangements were made the party left Bangalore and arrived at Tanjore on December 1st. Work was commenced on the Ǒkkúr polygon: the angles at the two stations of continuation had been already observed during the preceding season, but the scaffoldings which formed the platforms for the observer and signallers at the three next stations required considerable repairs before they could be used: the platforms for the remaining three stations of the figure had to be constructed, and the rays finally opened out. With reference to the Merpanaikad or second hexagon selected in advance, there was still some uncertainty as to whether the two last stations would be visible from the central station, and Mr. Belcham was directed to proceed there and at once satisfy himself that mutual visibility could be obtained and if not to select other sites. Mr. Belcham set to work with his usual zeal and luckily it was found that there was no obstacle to obtaining rays between these stations.

Owing to the famine prevailing in Southern India there was a difficulty in procuring provisions; rice was selling at five seers for a rupee, the people had migrated in large numbers to Ceylon, and those that were left seemed little inclined to part with their grain; moreover there was a threatening of a water famine, the tanks by the middle of December
being nearly dried up. However, by suitable arrangements, the difficulty of feeding the camp was got over; and when on the 23rd of December heavy rain fell continuing for three days all fear of a water famine was over.

Observations were begun at Sembalavayal Station on the 27th of December, and completed on the 30th. By the end of January the final angles at six more stations had been observed, Captain Carter and Mr. Belcham working together. On arriving at Merpanaikád Station, the latter was deputed to continue the approximate work on which he was employed till the close of the field season. His progress was greatly retarded by the unfavourable nature of the ground and the heavy cutting that had to be got through, and from the 5 th of February to the 14th of April he only succeeded in completing the selection and building of three stations and the clearing of the rays between them: the aspect of the country consisted of paddy fields hedged round with babul trees very difficult to get through, and the ground was much cut up with watercourses.

As the triangulation was approaching that of Colonel Lambton's executed in the year 1800, Captain Carter endeavoured to find out if any marks were to be seen on the different pagodas shewn on the old chart, which were evidently used by the Colonel as stations of observations. The pagodas of Manárgudi, Álangudi, Kumbakonam, and Tanjore were examined for this purpose, as well as the gopuram or "gateway" leading into the enclosure in which the pagoda stands; the general description given of these stations in the old records, is "on the pagoda," though in all probability the instrument was placed on some part of the gopuram which is usually a far loftier structure than the pagoda or temple. In no instance was a mark found. An endeavour was also made to discover the terminal points of the Vellum base-line in case it was thought desirable to connect it with the new triangulation, but without success: as far as the work had been carried this season the only station of Colonel Lambton's triangulation, the exact position of which could be identified, was that at "Boodilloor," the mark-stone of which was protected and kept in repair by the Civil authorities.

Troughton and Simms' 24 -inch Theodolite No. 2 was the instrument used during the season; it gave good results, though there was a tendency for the readings to diminish on the return to the same point, and this whether the telescope was moved from right to left or left to right; it was particularly perceptible when the azimuth at Pátharankota Station was being observed, where the referring mark was constantly intersected. Captain Carter attributed this to the expansion and contraction of the $17 \frac{1}{2}$ feet tripod stand which had in this Series taken the place of the ordinary masonry pillar. In the beginning of the season the stand was protected from the prevailing wind from the north-east; the extremes of temperature were not so great, and it was not till March that this peculiarity became apparent. By protecting the stand on all four sides, though there was still a tendency for the readings to diminish, the decrements were much less. The most curious feature in the case was that the levels attached to the body of the instrument, (and one of them was a particularly sensitive one) remained very constant. The triangular errors were large, but this could be accounted for by the rays being grazing and often passing over tanks and rice-swamps; the signals were steady, and only on one occasion had work to be stopped on account of unsteadiness, and then it was due to the lamp-man neglecting to isolate his lamp from the part of the platform on which he sat.

During this field season Captain Carter extended the principal triangulation from the
south, to the edge of the great plain of Tanjore, which is commonly known as the Cauvery (Káveri) delta, and selected the stations for another hexagonal figure in advance; he was relieved on the 1st of June by Lieut.-Colonel Branfill.

Work was resumed in the following November, and for the first month the whole

Season 1877-78.

Prrsonnex

It. Colonel B. R. Branfill, Dy. Supt., 2nd Grade. Mr. G. Belcham, Surveyor, 4th Grade. " C. D. Potter, Asst. Surveyor, 1st Grade. " A. H. Bryson, " " 3rd " strength of the party was brought to bear on the operations for the selection of additional stations in advance. Heavy rain fell at this time and the country became a vast paddy (rice) swamp, which, though bright and green, and a glorious sight for the eyes of persons just arrived from the dried-up and famine-stricken province of Mysore, was deplorable from a Surveyor's point of view; the ground was saturated with water, and thus to quit the high roads without sinking deep in mud was practically impossible; every square yard moreover excepting only the surfaces occupied by the villages, towns and roads, was under rice cultivation.

The triangulation was carried over the Cauvery delta and into the valley of the Coleroon (Kolladam) river; but this was done with great difficulty, and only after much careful examination of the ground, with a view to finding the lines which presented fewest obstacles and greatest advantages; for the country was much wooded and intersected by numerous waterchannels. Colonel Branfill writes :-" But for the existence at Kumbakonam of a lofty tower, " appertaining to the Provincial College, which afforded a sufficient height (72 feet) to overlook " most of the cocoa-nut and other trees-of which there are dense groves in and around the "tower, and which are so valuable as to make their removal prohibitory, even were their pro"prietors at all willing to allow them to be cut down at any valuation-the passage of the delta " might not have been effected". Further on at Tirupanandál, a "mandap" or detached open temple was met with, the flat roof of which was also found to be a suitable site for a principal station. In all other cases stations had to be specially constructed on the general level of the ground; and the selection of suitable sites, with the minimum of trees and other obstacles on the lines between them, was a most difficult and trying operation.

The out-turn of work by the close of the field season, whether measured by the area covered or the length of line spanned by the final triangulation, was in consequence small. The number of principal angles measured with Troughton and Simms' 24 -inch theodolite was 38, fixing ten new principal stations, arranged so as to form two hexagonal figures, which covered an area of 408 square miles.

The operations of this season were mainly confined to the tract of country, known as the Cauvery delta, which consists of an even plain of alluvial deposit, containing a comparatively large proportion of sand, and having a good slope of 3 or 4 feet per mile. According to the levels of the South India Railway the bed of the Cauvery from Karir to within 30 miles of the coast has a pretty even fall of near 4 feet a mile; in the next 10 miles the gradient decreases to about 3 feet a mile, and in the vicinity of the coast it does not exceed 2 feet a mile. Continuing this examination of the declivity by means of the Government Marine charts, the fall out at sea increases in the first 14 miles to 5 or 6 feet per mile, to 8 or 9 feet per mile for the next 9 miles, to 24 feet for the next 6 , and
to 38 feet for the last 10 examined up to 37 miles from the coast. This rapid deepening of the sea is a noticeable fact, but it seems only natural, if the present coast-line is of purely fluviatile formation. The character of the alluvium alters and generally deteriorates in fertility as the distance from the head sluices of the Cauvery channels increases. It varies from a rich red or black loam to a pale sandy clay, the sand increasing and the clay diminishing from west to east, and but for the annual fertilizing floods would be anything but rich and productive. Without artificial manure the land usually bears but one crop yearly.

The sea-board flats are well raised above sea-level, and further protected from high tides and storm-waves by a high sand-ridge along the coast. Cyclones have been frequent, but have never made any great devastating inroad. The formation of this coast-ridge appears to be explained by the strong sea breezes which prevail in the hot and dry season, and, blowing strongest at the hottest part of the day, when the sand of the sea-beach is driest and most easily raised, continually drift it up inland to accumulate under the shelter of the coast vegetation. It is thus formed into a ridge, or line of hillocks, parallel to the shore-line at the inner and upper edge of the beach, frequently standing at a steep slope on both seaward and landward sides. The sand-drift does not appear to extend far inland, being kept down by the fringe of palms and other vegetation that usually grows near the coast. This advanced vegetation equally protects the sand-ridge from being blown out to sea in the violent winds of the south-west monsoon.

As to whether the coast-line of the Cauvery delta is altering, it may be well to consider the elements of change at work. The first to be noticed are the silt-bearing floods of the autumnal rains, which are doubtless yearly raising the level of the land generally and tending to make it encroach on the sea, extending the coast-line eastwards and shoaling the sea-bed, a slow but unceasing process, which may wax and wane and seem even sometimes to contradict the effects which must inevitably occur sooner or later. The process of new landformation may be much slower now than it was before the great irrigation works were begun, but so long as fresh silt is brought down by the annual floods, it cannot cease altogether. The heavier sand is dropped first as the current slackens, while the lighter is carried on till the river current is lost in the quiet depths of the open sea.

The next element of change is the wind, which acts both directly and indirectly, and in various ways. First there is the north-east monsoon, acting indirectly by means of the southward, 'long-shore current which carries the silt-bearing floods more or less down the coast and causes them to deposit their heaviest burden to the south of the river outlets, thus commencing the sand-banks, which help to shift the river mouth northwards. This wind cannot act directly on the shore sand to the north of the river mouths, because the sand is then moist by the recent autumnal rains, the heaviest rain of the year. But the southward set of the rollers and beat of the surf must tend to drift the shore-sand, loosened by its violence, southward across the river mouths, which it shoals, helping to form the bar of sandbanks and islands usually found in such situations.

In January and February the north-east monsoon gradually changes into land- and seabreezes, which increase as the spring advances with clear weather and a hotter sun. The sand of the sea-shore rapidly dries and is drifted by the sea-breezes to the top of its slope, as long as there is loose sand to drift and nothing to shelter it. The sea-breezes veer gradually
to the south-east and southward until in May they become strong 'long-shore winds from the south, directly transporting northward much of the blown sand collected along the coast-ridge, in clouds which settle in the hollows and tend to fill up and choke the southern edges of the river out-falls and so to shift them northwards.

With the change of wind from the north-east in January to the south-east and south in April and May, the 'long-shore current changes from south to north, latterly running rapidly northwards and bringing in the heavy sea-rollers obliquely to the coast from the south-east, to dash in lines of roaring surf on the shore, washing the sand of the beach northwards at every stroke. This double action drives the river mouths northwards.

Whether this is the right explanation or not, the fact remains that the mouths of the rivers of the Coromandel Coast are continually shifting northwards. This is best seen in the Mahánadi and Cauvery, but is also noticeable in the Pĕnner, Nagari, Kŏrtalayár, Kuam, Pálár and Baigai. It is not so prominent in the Godávari, Bellar and Tamrapani, the first of which has one outlet apparently to the south of its delta, and the Kistna (Krishna) seems to contradict this tendency; but these apparent exceptions probably admit of some explanation. On the west coast the débouchement of the Nětrávati exhibits a similar tendency to shift to the north; this is probably due to the set of the current, and the violent beat of the breakers during the south-west monsoon which has nothing to counterbalance it. The same tendency of the river mouths to shift northwards may be observed in Ceylon.

After shifting to the north for an indefinite period, during which it seems probable that the bed of the river must be silting up, especially near the outfall where the current is less, some unusually high flood may be expected to top the bank and thus form a new outlet to the south. This may possibly occur near the head of the delta, and the new channel may take its course along the southern edge or border and recommence the process of shifting its mouth northward again. This may be the explanation of the Kistna apparently flowing along the southern border of its delta; it also points to a possibility of the Cauvery doing the same thing some day.

When a river has opened a new mouth and abandoned the whole or a portion of its course, especially that which ran parallel to the coast, it seems only likely that a lagoon or back-water will be formed, which will sooner or later silt up and eventually be entirely reclaimed from the sea.

Having thus considered the causes of the northward shifting of the river mouths on the Coromandel Coast, to which the Cauvery has been subject continually during the formation of its delta to the east of Trichinopoly, the probable history of its more recent inland course offers itself for consideration.

Dr. Burnell of the Madras Civil Service states, he has met with no mention of the Coleroon, which is now the principal bed of the lower Cauvery, by the early geographers, and thinks that the channel which passes by Kumbakonam and Máyavaram and enters the sea at Kaveripatnam having retained the name of Cauvery throughout its course, was the main channel of the river till the 10th or 12th century.

From Ptolemy's map of the coast of India it would appear that 2,000 years ago there was a spit of land jutting out into the sea at the Cauvery mouth near "Chabin's Emporium" (Káveripatnam), of which there is now no trace, either above or below the
sea-level contour line. Such a spit or shoal would, however, naturally disappear, if the river mouth shifted, or if any thing stopped the deposition of silt which formed it; and this must have happened, when the great irrigation works at the head of the delta were constructed.

At present the Káveripatnam mouth of the Cauvery is nearly silted up, and the principal outlet of the surplus flood-water is now by the mouth of the Coleroon, where according to recent maps, a new deltaic projection and shoal are forming. The great irrigation works are supposed to have been constructed in the 10 th and 12 th centuries, but local traditions represent them as early as the year 200 A.D. In any case the delta has been under irrigation from time immemorial. The story of the Cauvery main channel would seem to be somewhat thus:-After some long period of silting up from the deposit left by the annual floods, the river in some unusual inundation must have overflowed its banks, and found a new and easier course.

The survey operations in this district were resumed in November, 1878, at the Cole-

Season 1878.79

Prrsonnel.

Lt.-Colonel B. R. Branfill, Dy. Supt., 2nd Grade. Mr. G. Belcham, Burveyor, 4th Grade.
„ C. D. Potter, Asst. Surveyor 1st Grade.
" A. H. Bryson, " " 3rd " roon river, a few miles north of Kumbakonam in Tanjore, where the work of the preceding season had been concluded. Passing through the north-east corner of the Trichinopoly district, the principal series traversed South Arcot, running parallel to the coast-line at a distance of 15 to 35 miles inland through a country hitherto devoid of trigonometrically fixed points. During the field season the direct distance spanned by the principal series was 77 miles, and the area covered by triangulation was 1,887 square miles. 17 principal stations were fixed, and 1,900 square miles in advance were reconnoitred for the triangulation remaining to complete the series. Two azimuths of verification were observed.

The country actually operated over lay in the alluvial flats of the Coleroon, Bellar and South Pěnner rivers, and the upland plateaux between them. One of these plateaux presented an undulatory surface covered with low bush and devoid of any prominent elevations; it was very difficult to traverse and necessitated a long and careful examination before a system of mutually visible points could be discovered suitable for stations of the great triangulation.

In the following season, 1879-80, the South-East Coast Series was completed. The clos-

Season 1879-80.

Prebonnel.

It.-Colonel B. R. Branfill, Dy. Supt., 2nd Grade. Mr. C. D. Potter, Assistant Surveyor $1_{\text {st }}$ " " A. H. Bryson, " " 3rd " ing operations lay in the plain of the Carnatic (Karnatik), which, being studded with hillocks and mounds of rock, was eminently favourable for the triangulation. Lieut.-24-inch theodolite at Kaniyanúr on the 5th of December, and continued without interruption, except the long round-about marches obliged by want of roads and two or three bouts of rainy weather, until the work was finished at St. Thomas's Mount, the fifteenth station visited, on the 26th of February. In the interval he had fixed 13 new principal stations, and closed upon two other previously fixed stations, Mávandúr and Malaipedu, which appertain now
to the Madras Longitudinal Series. Two sets of observations for azimuth were taken at Injambákam and St. Thomas's Mount Stations.

The greater part of the districts of the south-east coast of India was taken charge of by the British Government in 1836, and since then the land has undergone but few changes owing to the great regulating works that have been constructed for keeping the floods under control. Near the coast and more especially at Point Calimere (Kalimigar Munai), there are extensive salt-swamps with patches of jungle and desert. The Kudikarai salt-marsh covers nearly 100 square miles, being about 20 miles long east and west and 5 miles wide north and south. It is used as a vast salt-pan under Government supervision. The two highest spring tides of May and June (called by the natives 'Chittrai Parvam' 'full-moon of May' and 'Visakha Bellam' 'June flood') overflow the sea-wall and fill the swamp with brine, which is, in favourable seasons, soon crystallized under the evaporation from the sun and the dry west winds. The south-east and southerly breezes that prevail in May probably combine to make the spring tides of this season unusually high.

A considerable degree of sanctity is locally attributed to Vedaranyam (veda-forest) and to Kudikarai (promontory-shore) from a tradition that here, as subsequently at the Rámesvaram promontory, the mythic hero Ráma tried to make a causeway to Ceylon. There is now daily postal communication by open boat between India and Ceylon at this place.

An impression exists that Palk's Bay is silting up, but this process must be exceedingly slow, as no large rivers now discharge any great proportion of their silt into this receptacle. The Vegavati outlet scarcely ever discharges, and as more irrigation works are introduced, the proportion diminishes. Still this is to a great extent an inland sea surrounded by a sandy shore from which the land-breezes and strong southerly and westerly winds must bear some drift to deposit. Moreover the northward beat of the surf along the north-east coast of Ceylon from April to September, and the southward beat along the east coast of Tanjore from November to January, must tend more or less to shoal the entrance to Palk's Bay from the Bay of Bengal.

This sea was known to the old Geographers as Sinus Argaricus, or, according to Colonel Yule's map of ancient India, as Sinus Argalicus. The early Arabian voyagers called it 'ma abar' i.e., the ford, ferry, or passage, and thence the country beyond, now known as Malabar, received its name.

It is an interesting question, whether the line of sand-banks and islets forming Adam's Bridge, between Rámesvaram and Manár, is undergoing any permanent change. There exist traditions, that at one time it was possible to walk across at low-water dry-shod, but this does not seem to have occurred within modern historic times. On the other hand it appears that there was a considerable trade carried on between Arabia and China through these straits, and one can hardly suppose that it could have been done in such small vessels as can have alone passed through the passages in Adam's Bridge previous to the excavation of the Pámban channel by the British Government, unless there were passages that have silted up since. In a Portuguese manuscript of 1685, by a Captain Ribeiro, which Colonel Branfill believes to be reliable, it is stated that there was then "no passage, except two narrow

XVIII-T.

"canals, one by Ramanacor and the other by Manaor", and that "a small 'sumaca' only can "pass by either at high-water."

At the present time there is a single channel at Manár answering this description, and none elsewhere, except the new passage at Pámban, which has been cut artificially through the rocky reef at a place where, in quite recent times, the old stone causeway had been breached by storm-waves, which also destroyed the adjacent town on the spit of land west of Pámban between Toniturai and Bettilai Mandapam. The surf beats heavily along Adam's Bridge during both monsoons, and a strong current sets constantly the same way as the wind; at other times the current varies with the tide, and one would suppose that no sand-banks could withstand the violence of the wash over them at every change of tide. Still the islets and sand-banks do remain as a whole, albeit probably in a state of frequent change individually. The growth of coral is active here, and new islets are said to be forming where there were none, and old ones increasing.

Tanjore appears to have been occupied from very early times by Tamil people, over whom the Cholan or Soran dynasty held sway for many centuries prior to the 16th, and whose country was known as the "Choramandalam" (Coromandel). The Cholan capital was at different times at Conjeeveram (Kánchívaram), Uraiyúr near Trichinopoly, Tanjore and Kumbakonam. The Telugu Nayaks succeeded the Cholan kingdom and ruled in Tanjore for more than a century up to 1675 , when the Mahratta princes superseded them, and reigned there until they were themselves superseded by the British Government.

Secondary Triangulation.

South of the parallel $10^{\circ} 30^{\prime}$ but few secondary points or land-marks could be fixed owing to the flat and wooded state of the country; in a few cases ray-traces had to be carried between contiguous principal stations, and whilst these were being executed, observations were taken to all visible points in the vicinity that might be useful hereafter for topographical purposes.

In the field season of 1876-77 a considerable number of masonry buildings, chiefly temples, were fixed by a theodolite and chain traverse to serve as points from which the position of the principal stations could be recovered in case the pillar and mark-stones above ground should at any time have been removed; these points being known would also be useful in any future survey of the country, as they were buildings likely to endure for a considerable time.

In 1877-78 the plain of Tanjore was reached, which was known to have been triangulated by Colonel Lambton in the year 1800. The country was not so thickly wooded and therefore more suitable for secondary work, than it had been to the south, and several points were fixed, including the great pagoda at the town of Tanjore. Unfortunately, though this very place had formed one of Lambton's principal stations, and a base-line had been measured in its vicinity, the original mark could not be found, and Tanjore was thus useless as a connection between the ancient and modern survey.

In the two following years a great deal of secondary work was carried out, the country becoming more open after the Coleroon river had been crossed. The original design of making the series follow the trend of the coast being abandoned, the principal work was carried between the old Coromandel Coast Triangulation and the more general net-work to the westward (shewn on Colonel Lambton's chart), and thus several points of this old triangulation were able to be connected on either side by secondary work. Moreover a tract of country previously devoid of fixed points was now well covered and a great gap was filled up, which had baffled the efforts of the earlier Surveyors.

The coast-town of Porto Novo on the eastern flank, and the two hill stations of Tiyága Drug and Tiruvannámalai on the western, were observed and fixed from principal stations; but the positions of the light-houses of Pondicherry and Negapatam were too far away from the main series to be thus determined, and secondary chains had to be carried westward for the purpose. The work was entrusted to Mr. Potter who first occupied himself with the Pondicherry connection. This he found a matter of no difficulty necessitating only the introduction of three secondary points. He then moved on without delay to the larger and more important work of laying out the minor series to Negapatam. Kumbakonam-Álangudi was chosen as the side of origin, and a chain of eight single triangles was required to complete the connection. This series passed over a thicklywooded country and could not have been executed at a moderate cost, had it not been that there were lofty temples-commonly called gopurams-in some of the intermediate villages, from the summits of which mutual observations could be taken. These temples are tall, ricketty brick structures, consisting of an oblong basement, usually of stone, pierced for the gateway, surmounted by a pyramidal spire of many storeys tapering up to a narrow ridge and profusely covered with stucco ornaments. They are seldom or never used except by bats and vermin, and the many floors and stages within them have been allowed to fall in, so that access to the summit is dangerous, and when attained, is quite unsuited to observe from with a theodolite. Mr. Potter overcame these difficulties by means of temporary staging, long ladders, and a portable striding platform, which he devised and carried with him, and with which he was able to set up the 8 -inch theodolite on seven gopurams and thus complete the series.

By means of this minor triangulation three points were fixed in Negapatam, and four others on the coast to the north, including the spire of the Roman Catholic Church at Kárikal. By observations from three stations on the north of the series the position of the Mayavaram gopuram was also determined.
S. O. BURRARD.

July, 1885.

Addendum to Introduction.

On the completion of the Simultaneous Reduction of the Southern Trigon it was found that the errors which had actually been dispersed over the South-East Coast Series, between the origin Mávandúr-Avirimodu and the terminus Koilpati-Kulayanallúr, were as follows :-

In Latitude of Koilpati + 0.174
,, Longitude ", - 0.472
, Azimuth of latter side +8.882
" Side $\left\{\begin{array}{l}\text { Logarithm of latter side } \ldots . \quad \ldots \quad+0 \cdot 000,0042,3 \\ \text { giving a ratio of about } 0.62 \text { of an inch per mile. }\end{array}\right.$
The trigonometrical heights above sea level are checked at sixteen stations by Spiritlevelling operations, the average correction applied to each section being $1 \cdot 4$ feet.

The Ceylon Branch Series forms a pendant to the South-East Coast Series and therefore did not enter the general reduction. The corrections which it has received in latitude, longitude, azimuth and side are only such as are due to the change produced by the reduction in the side of origin, viz., Kánjarangudi-Yervadi. The trigonometrical heights above sea level are checked at three stations by Spirit-levelling operations, and at four stations by noting the level of the sea at certain times for at least two days at each station while the trigonometrical operations were in progress, the average correction applied to each section being 1.3 feet.
W. H. C.

SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.

> SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.

CEYLON BRANCHERRIES.

SOUTH-EAST COAST SERIES.

DESCRIPTION OF PRINCIPAL STATIONS.

The Principal Stations of the South-East Coast and Ceylon Branch Series are in part situated on hills, high mounds, sand hillocks or sand ridges, and in part in low ground of black cotton soil, in sandy flats, along the coast and on islands; a few are placed on lofty buildings.

The first are of two kinds, those on hills and high mounds consist of solid, circular isolated pillars of masonry, $3 \frac{1}{3}$ feet in diameter, surrounded by annular walls of masonry 13 to 18 inches thick, and a platform of earth and stones for the accommodation of the observatory tent. In the centre of the upper surface of the pillar a mark (circle and dot) engraved on stone, is imbedded in the normal of one or two other similar marks previously inserted within the pillar. Those on sand hillocks or sand ridges, where no solid foundation for a pillar could be found, are usually defined by a wooden pile driven deep into the sand, carrying a mark engraved on its summit, whilst the theodolite stand and the observatory tent were supported on other piles similarly driven.

The stations other than hill stations are of various forms. Those named trestle stations from the fact of the theodolite having been supported on a trestle, either 171 $\frac{1}{2}$ or 24 feet high, during the observations are sometimes small isolated pillars of the same construction as those at hill stations, sometimes they consist of solid or perforated pillars from 7 to 16 feet high built in rectangular blocks surmounting one another, each succeeding block being contracted so as to leave a plinth at its base, the uppermost block being in some cases circular and $3 \frac{1}{3}$ feet in diameter: these pillars rest on solid blocks of concrete or masonry forming a firm foundation. When the pillars are perforated two mark-stones are imbedded, the upper in the surface of the foundation about a foot above the ground level to which access is obtained by an aperture on the east side. When the pillars are solid they contain two or more marks one at the surface and the others vertically below. The stations XXXI, XXXII, LIV and LV are of exceptional construction and are fully described.

At stations where a trestle was not used perforated pillars were sometimes built to a height of from 11 to 26 feet for the theodolite to rest on and around them a timber scaffolding was erected for the observatory tent, these are called tower stations.

Stations situated on high buildings need no general description, as they are fully described in all cases.
At all stations where a mark-stone was inserted in the upper surface of the pillar, a small protecting pillar in the form of a frustum of a pyramid, 28 inches square at base, 20 inches at top and $3 \frac{1}{\frac{1}{2}}$ feet high, was built over it having another mark-stone in its surface in the normal of the mark below; at some stations the protecting pillar was built before the observations were taken, i.e., both the theodolite and signal were referred to the mark at the top of the protecting pillar.

On the completion of the observations most of the low pillar stations were covered over with high pyramidal mounds of earth about 16 yards square at base.

The following descriptions have been compiled from those given by the Officers who executed the Series, supplemented in a few instances as regards adjacent villages from the Madras Revenue Survey Maps (scale 1 inch $=1$ mile) of the country traversed, and corrected, so far as the local sub-divisions in which the several stations are situated, from the Annual Returns furnished by the district Officers to whose charge the stations are committed. Such reports are wanting for the Chingleput and South Arcot districts. The orthography is in accordance with the official list of names of places in the Madras Presidency, dated 4th November 1879, with this difference that the long e is shewn without an accent, in conformity with the rales for spelling names in Northern India, and the short e as \check{C} and o is treated in the same manner. Final vowels and those in well-known terminals are unaccented. When a name has acquired a popular spelling, the correct transliteration is given in parenthesis where the name occurs for the first time.
XXXIV.-(Of the Madras Longitudinal Series). Mávandúr or Mámandúr Hill Station, lat. $12^{\circ} 45^{\prime}$, long. $79^{\circ} 42^{\prime}$-observed at in 1865 and 1880 -is situated on the summit and towards the N. extremity of the southern portion of the rocky ridge, about 150 feet high, at the southern end of the artificial bund of the Dúsi Mámandúr (or Chenna Ságaram) tank, and about 7 miles S.S.W. of Conjeeveram (Kánchívaram). It is in the lands of the village of Narsamangalam, taluk Arcot (Árkádu), district North Arcot.

This station was built in 1865 presumably on or near the site of Colonel Lambton's station of "Doosh Maumdoor", but no station mark was found except a pile of stones round the base of an old staff fixed in a crevice of the rock and cut off flush with the surface. A mark was first made on the stump of the staff, and over this was built a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter carrying a mark engraved on stone imbedded in its upper surface 1.5 feet above the lower mark. The pillar was surrounded by the usual annular wall and platform. When the station was visited in 1880, the circular pillar and its upper mark were found apparently just as left in 1865, and no alteration in its construction was made. The directions and distances of the following villages are :-Mamandúr N.E. by E., miles $1 \frac{1}{2}$; Dúsi N.N.E., miles 3; and Narsamangalam S.E., mile $\frac{1}{2}$.
XXXIX.-(Of the Madras Longitudinal Series). Avirimodu Hill Station, lat. $12^{\circ} 27^{\prime}$, long. $79^{\circ} 57^{\prime}$ observed at in 1880-is situated on the western and highest point of the rocky hill which rises about 340 feet above its base, 4 miles S.S.E. of Madurántakam, and $1 \frac{1}{2}$ miles E. of the Chúnámpet road. The station is in the lands of the village of Avirimodu, taluk Madurántakam, district Chingleput (Chëngalpatu).

The station consists of a platform of stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other $1 \cdot 6$ feet above it on a stone imbedded in the upper surface of the pillar. The azimuths and distances of the following places are:-Avirimodu 45°, mile $\frac{1}{\frac{1}{3} \text {; Eindattúr }}$ 292°, miles $1 \frac{1}{2}$; Chitrávadi 164°, mile $\frac{1}{2}$; Karunguli (a small temple on a hill 2 miles N. of Madurantakam) $166^{\circ} 22^{\prime}$, miles 5.75; and Tiruvapádi (a rock temple) $85^{\circ} 39$.
I. Pŏnnúr Hill Station, lat. $12^{\circ} 30^{\prime}$, long. $79^{\circ} 34^{\prime}$-observed at in 1879 -is situated on one of the highest boulders forming the summit of a small rocky hill which rises about 250 feet above its base, immediately S. of the road to Chetpat, and about 6 miles W. by S. of the taluk town of Wandiwash (Vandavási). It is in the lands of the village of Pŏnnúr, taluk Wandiwash, district North Arcot.

The station consists of a platform of stones and earth, 15 feet by 11 feet, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other $3 \cdot 0$ feet above it on a stone imbedded in the upper surface of the pillar. The azimuths and distances of the following places are :-Pornnúr 322°, miles $1 \frac{1}{\frac{1}{2} \text {; }}$ Tirumanitángal 111°, mile 1 ; Vangaram 287°, miles $1 \frac{1}{4}$; Áráchúr 230°, miles $1 \frac{1}{1}$; and Kúttampat (temple W. of the village) $38^{\circ} 20^{\prime}$, miles $1 \frac{1}{4}$.
II. Kaniyanúr Hill Station, lat. $12^{\circ} 47^{\prime}$, long. $79^{\circ} 24^{\prime}$-observed at in 1879 -is situated on the S. end of the summit of a rocky hill rising about 150 feet above the adjacent high ground, about $8 \frac{1}{2}$ miles S . by E. of the old Arcot town, and $4 \frac{1}{2}$ miles S.E. of Timri on the high road from Arcot to Árni. It is in the lands of the village of Kaniyanúr, taluk Arcot, district North Arcot.

The station consists of a platform of stones and earth, 3 feet high, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in sitd and the other $3 \cdot 0$ feet above it on a stone imbedded in the upper surface of the pillar. The directions, azimuths and distances of the following places and objects are :-Kaniyanur 154 ${ }^{\circ}$, mile 1 ; Pudúr 267°, mile $\frac{3}{4}$; Nambitángal S.S.E., mile $\frac{1}{2}$; Chèmbed (temple) $230^{\circ} 16^{\prime}$, miles $1 \frac{3}{4}$; Arcot old town (southern of two
 pillar at S.E. foot of the hill $302^{\circ} 40^{\prime}$; and Trijunction boundary stone pillar at E.N.E. foot of the hill $240^{\circ} 26^{\prime}$.
III. Narasingapuram Hill Station, lat. $12^{\circ} 31^{\prime}$, long. $79^{\circ} 19^{\prime}$-observed at in 1879 -is situated on the highest part of the rugged hill locally known as Pěriyamalai which rises some 400 feet above its base, on the
high ground between the villages of Narasingapuram and Murugamangalam, nearly 11 miles \mathbf{S}. of Árni, and 10 miles E. of Polúr. It is in the lands of the village of Narasingapuram, taluk Polúr, district North Arcot.

The station consists of a platform of stones and earth, 3 feet high, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other $\mathbf{3 \cdot 2}$ feet above it on a stone imbedded in the upper surface of the pillar. The lower mark a circle and dot, is engraved within a similar mark found cut on a large high boulder. Another old mark of a partly defaced circle and dot was found cut on an adjacent boulder to the N.E., distant 10.8 feet and nearly a foot lower than the new station mark. The azimuths and distances of the following places are :Narasingapuram 100°, mile $\frac{1}{4}$; Murugamangalam 275°, mile $\frac{1}{2}$; Othalapadi (temple) $178^{\circ} 19^{\prime}$, miles 3 ? ; Polúr (N. minaret of a mosque) $86^{\circ} 16^{\prime}$, miles 10 ? ; and Devikapuram (spire of a conspicuous hill temple) $41^{\circ} 0^{\prime}$, miles $2 \cdot 12$.
IV. Pěrumukkal Hill Station, lat. $12^{\circ} 12^{\prime}$, long. $79^{\circ} 47^{\prime}$-observed at in March and December 1879-is on the roof over the east and innermost doorway (about 14 feet above the ground level) of the small cubic temple (14.3 by 14.3 by 14.0 feet) attached to the W. side of the great temple built on the last considerable mass of the isolated rocks to the S.E., which stud the great plain of the Carnatic (Karnatik) lying to the S. and S.W. of Madras. The hill consists almost entirely of solid, dark granitic rock surrounded by a profusion of great and small pieces that have separated and fallen from it; the main rock rises to a height of 350 feet above the surrounding fields, and has on it a large stone temple and stone built walls of an old fortress. The station is $29 \cdot 9$ feet west, and $3 \frac{1}{2}$ feet higher than the position evidently occupied formerly by the flag-staff on the roof of the great temple which appears to have been the site of Colonel Lambton's survey station "Permacoil" of 1803 . On excavating the roof to a depth of about 3 feet, no sign of a station mark was found, a part of a cylindrical stone pillar was set up to mark as nearly as practicable the site of the old flag-staff. It is in the lands of the village of Pěrumukkal, taluk Tindivanam, district South Arcot.

The station consists of a solid circular pillar of masonry $3 \frac{1}{\frac{3}{3}}$ feet in diameter and contains three mark-stones, the upper on the surface of the pillar and the second and third 2.27 and 4.05 feet respectively below the upper. The azimuths and distances of the following villages are:-Rámanáthapuram $148^{\circ} 47^{\prime}$, mile 1 ; Prrumukkal (centre of the village temple) $169^{\circ} 5^{\prime}$, mile 1 ; Nalmukkal or Naumukkal $246^{\circ} 46^{\prime}$, miles 1.95 ; and Nallalam 325°, mile $\frac{4}{4}$. When again visited in December 1879, it is presumed from the absence of any remarks in the original records that the station was found in good order and no alteration was made in its construction.
V. Gingee (Chĕnji) Hill Station, lat. $12^{\circ} 15^{\prime}$, long. $79^{\circ} 26^{\prime}$-observed at in 1879 -is on the highest part of the famous rock fortress in the plains of the Carnatic, 17 miles W. of Tindivanam : the rock which forms the capitol or citadel of the fortress is a conspicuous and remarkably large single block of gneiss with precipitous sides and rounded summit, rising boldly from amidst the surrounding masses of broken rocks to a height of about 700 feet above the general level of the country. The great rock is generally called Rajagedi, but is locally known as Valukupárai, and completely dominates the other associated rocks of the fortress. The station is a little below the floor level in the spacious flat roofed building called Kavattu Mandapam occupying the eastern part of the terrace or summit of the rock lying between the great vaulted Kalanjiyam (granary) and the old native flag-staff tower to the E.N.E. and near the precipice. It is in the lands of the village of Valukaparai, taluk Tindivanam, district South Arcot.

[^11]VII. Mallipat Hill Station, lat. $11^{\circ} 58^{\prime}$, long. $79^{\circ} 25^{\prime}$-observed at in 1879 -is on the summit of the higher of two isolated rocks rising to a height of 50 feet above its base and locally known as Mallipat Kunnu;
the other rock called Ponnáttakbil from a small shrine on its summit, is 111 yards to the S.E. by E. The station is about 4 miles N. from the S. bank of the Pennar, and within a mile east of the old line of the road from Tiruvěnanallúr to Gingee. It is in the lands of the village of Mallipat, taluk Villupuram, district South Arcot.

Abstract

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter which contains two marks, one engraved on the rock in sitđ and the other 1.67 feet above it on a stone imbedded in the upper surface of the pillar. The azimuths and distances of the following villages are:-Mámpalapat 11°, mile $\frac{1}{2}$; Kaduvétil 59°, miles 2; Chěnnakunnam 98°, miles 2 ; Mallipat 143°, miles 1.06 ; and Kánganúr 246°, miles $1 \frac{1}{4}$.

VIII. Chĕndamangalam Trestle Station, lat. $11^{\circ} 44^{\prime}$, long. $79^{\circ} 25^{\prime}$-observed at in 1879 -is situated on the high and somewhat isolated bluff of red soil and conglomerate forming a prominent eminence on the south bank of the Pŏnniár river, about 1 mile S.W. by S. of the high road from Madras to Trichinopoly (Tiruchinápalli) and Salem (Sělam), at the 115th milestone from Madras. The station is built on the highest part of the bluff and only a few yards from the declivity which is steep to the north and west but very gradual to the east and south-east. It is in the lands of Pádúr village, taluk Tirukoilúr, district South Arcot.

Abstract

The station consists of an earthen platform 3 feet high, enclosing a solid circular and isolated pillar of masonry, built on a foundation of solid masonry, in which three mark-stones are imbedded, one in the surface of the pillar, the second at the ground level 3.0 feet below the upper, and the third in the foundation $2 \cdot 0$ feet below the second. The azimuths and distances of the following places are:-Chěndamangalam (temple W. of the village) 203 ${ }^{\circ}$, miles $1 \cdot 18$; Vandipálaiyam (chattram on the high road) $137^{\circ} 39^{\prime}$, mile 1; Timmarěddipalaiyam (shaft at the village temple) $276^{\circ} 28^{\prime}$, miles $1 \cdot 10$; and 'Tirunámanallúr (centre of the gopuram or

 spire) $223^{\circ} 20^{\prime}$, miles $2 \frac{1}{2}$.IX. Kiliyúr Hill Station, lat. $11^{\circ} 48^{\prime}$, long. $79^{\circ} 17^{\prime}$-observed at in 1879 -is situated on the highest and to the N. E. end of a small group of scattered rocks, which, attaining a height of 75 feet above the base or 100 feet above the more general level of the adjacent ground, lies about a mile to the S . of the village of Kiliyúr and 2 miles W.S.W. from the conspicuous rocky hill of Kunnattúr. It is in the lands of Raghunáthapuram village, taluk Tlirukoilúr, district South Arcot.

The station consists of an irregular platform of stones in a retaining wall of brick, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in sitl and the other 3.0 feet above it on a stone imbedded in the upper surface of the pillar. The azimuths and distances of the following places are:-Kiliyúr 182°, mile 1; Raghunáthapuram 155°, mile $\frac{1}{2}$; Ëllaigrámam 77°, miles 2 ; Tengunam 36°, miles $1 \frac{1}{4}$; and Naivanai (temple) $11^{\circ} 52^{\prime}$, milea 2.0.
X. Vallam Trestle Station, lat. $11^{\circ} 39^{\prime}$, long. $79^{\circ} 34^{\prime}$-observed at in 1879 -is situated near the western end of the stony eminence named Kallumalai, one of the highest points of the elevated ground which extends inland in a W.S.W. direction from Cuddalore (Gúdalúr), between the Gadilam and Paravanár rivers, nearly $2 \frac{1}{2}$ miles W. of the high road from Madras to Kumbakonam, at the 119th milestone from Madras, and 8 miles S. by W. of Panruti. It is in the lands of the village of Vallam, taluk Cuddalore, district South Arcot.

The station consists of a rectangular perforated pillar of masonry 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one at the ground level and the other 1.8 feet below it. The azimuths and distances of the following villages are:-Vallam 100°, miles 1.39 ; Nadukuppam 139°, miles 1.08 ; Kilěkuppam 173°, mile 0.39 ; and Marangúr 296°, miles 2.
XI. Ulundúrpet Tower Station, lat. $11^{\circ} 41^{\prime}$, long. $79^{\circ} 19^{\prime}$-observed at in 1879 -is situated on the rising ground 1 mile S.S.E. from the public offices at the head quarters of a Magistrate's sub-division at Ulundúrpet, about midway between the high roads leading from Ulundúrpet to Vriddháchalam and to Salem, each of which passes within half a mile of the station, near the 12th milestone from Vriddháchalam on the former road, and the 123rd milestone (from Madras) on the latter. It is in the lands of Kíranúr village, taluk Tirukoilúr, district South Arcot.

The station consists of a rectangular perforated pillar of masonry 11 feet high, capped with a circular granite slab 38 inches in diameter, having an aperture in the centre and the name Nárayanaswámi engraved on it in Telugu. This pillar stands over a foundation of solid masonry in which two mark-stones are imbedded, one at the ground level and the other 2.0 feet below it. The azimuths and distances of the following places are:-Ulundúrpet (Kacheri building) 206 22^{\prime}, miles $1 \cdot 17$; Němili (temple) $353^{\circ} 6^{\prime}$, mile 0.91 ; Pillúr 32°, miles 1.71 ; and Kuppam 127°, miles $1 \cdot 11$.
XII. Koilánkuppam Trestle Station, lat. $11^{\circ} 37^{\prime}$, long. $79^{\circ} 27^{\prime}$-observed at in 1879-locally known as Vedakoil, is situated near the western edge of the laterite plateau which runs in a W.S.W. direction from Cuddalore, 25 miles distant; the ground is nearly flat and covered thickly with evergreen bush, and lies between Vriddháchalam and Panruti. The station is about 700 yards E.N.E. of a tank on the W. side of a hamlet called

Mudukuli or Mutukulikulam. It is in the lands of the village of Shemakota, taluk Vriddháchalam, district South Arcot.

The station consists of a rectangular perforated pillar of masonry 7 feet square and 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one in its upper surface at the ground level and the other 2.0 feet below it. The azimuths and distances of the circumjacent places are :-Vedakoil (R.C. Chapel) 64 ${ }^{\circ}$, mile 0.16 ; Koilankuppam 281°, mile 0.97 ; Manakøllai 130°, miles 1.52 ; Irulakurchi 146°, miles 1.85 ; and PY̌riyakápánkulam 317°, miles 2.
XIII. Seppalánattam Trestle Station, lat. $11^{\circ} 33^{\prime}$, long. $79^{\circ} 34^{\prime}$-observed at in 1879 -is situated on the high ground called Kallankád between the Yendalodai and Chěngálodai water-courses, 172 yards S . of milestone No. 24 on the road from Cuddalore to Vriddháchalam, nearly 5 miles W. of Kurinjipadi, $1 \frac{8}{4}$ miles W. of the remarkable building called variously Pardesimadam, Rámalingapillaisálai, \&c., and $\frac{1}{2}$ mile N. of the Chěnkulam or Chĕngáleri tank bund. It is in the lands of the village of Seppalánattam, taluk Vriddháchalam, district South Arcot.

The station consists of a rectangular perforated pillar of masonry 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one on its upper surface at the ground level and the other $2 \cdot 1$ feet below it. The azimuths and distances of the following villages are :-Seppalánattam 40°, mile 0.58 ; Puliyanattam 89°, mile 0.77 ; Múlaikuppam 189°; miles 1.59 ; and Vadavallúr 269°, miles 1.64.
XIV. Kánádakǒndán Trestle Station, lat. $11^{\circ} 33^{\prime}$, long. $79^{\circ} 24^{\prime}$-observed at in 1879 -is situated on the high waste land used as a burial ground, about 3 miles N.E. of Vriddháchalam on the Manimukta river, 100 yards E. of the little hollow called Savuriyákulam, and 550 yards N. of a large pond named Udayambarankulam. It is in the lands of the village of Kánádakŏndán, taluk Vriddháchalam, district South Arcot.

The station consists of a rectangular perforated pillar of masonry 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one at about the ground level and the other $2 \cdot 6$ feet below it. The aximuths and distances of the following places are :-Pavalangudi (centre of the white pointed roof of the temple) $164^{\circ} 2^{\prime}$; Kánádakơndan 123°, mile 0.17 ; Kuppanattam 336°, mile 0.96 ; Narimadam 262°, miles $1 \frac{1}{1}$; and Kopurapuram (centre of the fine gopuram of a temple) $141^{\circ} 27^{\prime}$, miles $1 \cdot 19$.
XV. Pŏdaiyúr Trestle Station, lat. $11^{\circ} 21^{\prime}$, long. $79^{\circ} 33^{\prime}$-observed at in 1879 -is situated on rising ground, a dry sandy field called Mutuköllai, which appears to have been built over in former times, 550 yards S.S.E. from the ruined temple of Valaipuri Isvaran, and about $\frac{1}{2}$ a mile E. of and nearly midway between milestones 139 and 140 on the high road from Madras to Kumbakonam. It is in the lands of the village of Pŏdaiyúr, taluk Chidambaram, district South Arcot.

The station consists of a rectangular perforated pillar of masonry 11 feet high, the upper 1 foot of which is circular and 81 $\frac{1}{8}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one in its upper surface at the ground level and the other 1.5 feet below it. The azimuths and distances of the following villages are:-Pbdaiyúr 212 ${ }^{\circ}$, mile 0.10 ; Cholataram 128°, mile 0.75 ; and Mannárgudi 338°, miles 6.2.
XVI. Ayyampet Trestle Station, lat. $11^{\circ} 22^{\prime}$, long. $79^{\circ} 27^{\prime}$-observed at in 1879 -is situated on the high ground bordering the Věllár valley, on one of the small outlying clearings in the evergreen jungle called Melkáduvettukŏllai and Káchánpallam, about $\frac{8}{4}$ mile N.W. of the large Roman Catholic (Goa) Church of Ayyampet. The station is 115 yards N.W. and 130 yards N.E. by E. of two boundary pillars which are 191 yards apart. It is in the lands of the village of Ádivaraganallúr, taluk Chidambaram, district South Arcot.

The station consists of a rectangular perforated pillar of masonry $11 \cdot 2$ feet high, the upper 1 foot of which is circular and $3 \frac{1}{5}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one at the ground level and the other 2 feet below it. The azimuths and distances of the following villages are:-Ayyampet 316, mile 0.74 ; Áthanúr 194°, mile 1; Srímushnam 172°, miles $2 \frac{1}{2}$; and Pálaiyamkota 275°, miles $3 \frac{1}{\frac{1}{2}}$.
XVII. Salpai Trestle Station, lat. $11^{\circ} 15^{\prime}$, long. $79^{\circ} 29^{\prime}$-observed at in 1879 -is situated in the S.E. corner of a field called Něllimarakŏllai, midway between the homestead of Pattavarti and the Áyanár temple of Salpai towards the Chattram, $\frac{1}{4}$ mile S.E. of the junction of the Alliyeri tank bund with that of the Salpai tank, which is a portion of the great Pönnerikarai, a channel bank running N. and S. between the Coleroon (Kŏlladam) and the Věllár rivers. It is in the lands of the village of Salpai, taluk Udayarpalaiyam, district Trichinopoly.

The station consists of a rectangular perforated pillar of masonry 7 feet square at base and 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{\frac{3}{s}}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one at about the ground level and the other $2 \cdot 5$ feet below it. The azimuths and distances of the following villages are :-Pattavarti
137°, mile 0.14 ; Salpai 179°, mile 0.66 ; Anjarámpálaiyam 205°, miles 1.01 ; Págalmodu 3°, mile 1 ; and Větiyárpattu 86°, mile 0.93.
XVIII. Kuchár Trestle Station, lat. $11^{\circ} 13^{\prime}$, long. $79^{\circ} 35^{\prime}$-observed at in 1879 -is situated on a small mound on the N. edge of the rice fields called Punjaveli, $\frac{1}{4}$ mile W.S.W. of the village of Kuchúr, and 316 yards in the same direction of the new temple of Lukshmináráyana Pěrumál between the village and the Melkulam tank. It is in the lands of the village of Kuchúr, taluk Chidambaram, district South Arcot.

Abstract

The station consists of a rectangular perforated pillar of masonry 7 feet square at base and 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one in its upper surface about $4 \frac{1}{2}$ feet above the surrounding rice fields and the other $2 \cdot 2$ feet below it. The azimuths and distances of the circumjacent places are :-Kunnavásal (Ammankoil temple) $352^{\circ} 22^{\prime}$, mile l.0; Omámpuliyúr (temple) $297^{\circ} 32^{\prime}$, mile 0.95 ; Mannárgudi (centre gopuram of the Pěrumál temple) $183^{\circ} 51^{\prime}$, miles 3.78 ; Kuchúr 231°, mile 0.34 ; and Áyangudi

 64°, mile $\frac{1}{4}$.XIX. Kulattúr Trestle Station, lat. $11^{\circ} 17^{\prime}$, long. $79^{\circ} 23^{\prime}$-observed at in 1878 -is situated on the N . edge of the Káchánpallam evergreen jungle and $\frac{1}{4}$ mile S. from the E. end of the Villaipurandáneri tank. It is in the lands of the village of Kulattúr, taluk Udayárpálaiyam, district Trichinopoly.

The station consists of a rectangular perforated pillar of masonry 7 feet square at base and 10 feet high, the upper 1 foot of which is circular and $3 \frac{1}{s}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one in its upper surface 0.5 foot above the ground level and the other 2.27 feet below it. The directions, azimuths and distances of the circumjacent villages are :-Kulattúr 138°, mile 0.54 ; Devanúr 219°, miles $4 \frac{1}{2}$; and Ělaiyúr S.S.W., miles 5.
XX. Kachipèrumál Trestle Station, lat. $11^{\circ} 12^{\prime}$, long. $79^{\circ} 21^{\prime}$-observed at in 1879 -is situated in the midst of the evergreen jungle, 280 yards $\mathbf{S} . W$. by \mathbf{W}. of the nearly obliterated depression in a field called Narikulipalam, and $\frac{8}{4}$ mile N.N.W. of the village temple of Kachiperrumal. The station is in the lands of the village of Kachipërumál, taluk Udayárpálaiyam, district Trichinopoly.

The station consists of a rectangular perforated pillar of masonry 7 feet square at base and 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one in its upper surface 0.5 foot above the ground level and the other 2.5 feet below it. The azimuths and distances of the circumjacent places are:-Kallimangalam (centre of the dome of the temple) $99^{\circ} 7^{\prime}$; Udayarpalaiyam (centre of the tower of the zamindar's house) $42^{\circ} 18^{\prime}$, miles 1.74 ; Udayárpalaiyam (centre of the chief gopuram or spire) $55^{\circ} 16^{\prime}$, miles 1.43 ; Kachipěrumál 344°, mile 0.73 ; Elamangalam 182°, mile 0.78 ; and Élaiyúr 175°, miles $1 \frac{1}{2}$.
XXI. Tirupanandál Mandap Station, lat. $11^{\circ} 6^{\prime}$, long. $79^{\circ} 30^{\prime}-$ observed at in 1878 -is on the top of the principal mandap (cupola or dome) of the large Sivan temple. This mandap is 130 yards distant on the northern side of the street running due west from the great gopuram or entrance tower of the temple and on the west side of the high road from Madras to Tanjore (Tanjávúr), exactly opposite milestone No. 158 from Madras, 10 miles N.E. by N. of Kumbakonam, and 3 miles S. of Anaikarai, the Coleroon lower anicut. The station is in the lands of the village of Tirupanandál, taluk Kumbakonam, district Tanjore.

The station is denoted by a mark-stone imbedded on the top of the cupola or dome of the building, after the removal of the finial (or kalasam), very nearly 7 feet higher than the centre of the terrace-roof which is $27 \cdot 7$ feet square and 25 feet above the ground level. The station mark is 21.06 feet from each of the four corners of the roof. The 24 -foot trestle was employed for the theodolite. After the observations were completed the finial was restored.
XXII. Nayinipiriýn Trestle Station, lat. $11^{\circ} 8^{\prime}$, long. $79^{\circ} 23^{\prime}$-observed at in 1878 and 1879 -is situated on a sand ridge or small mound in a field called Mŏtaiköllai close to the open scrub jungle, about 935 yards N.E. of the village temple, nearly 7 miles W. of Anakarai, the Coleroon lower anicut, 5 miles S.E. of the town of Udayárpálaiyam, and 6 miles S. by W. of Jayankŏndacholapuram, the present head quarters of the taluk. It is in the lands of the village of Nayinipiriyán, taluk Udayárpálaiyam, district Trichinopoly.

The station consists of a rectangular perforated pillar of masonry 7 feet square at base and 10 feet high, the upper portion being circular and $3 \frac{1}{8}$ feet in diameter, standing on a foundation of solid masonry in which three mark-stones are imbedded, the upper flush with its surface about 6 inches above the ground level and the second and third 1.0 and 3.4 feet respectively below the upper. When again visited in 1879, the station was found in perfect order and no alteration in its construction was made. The azimuths and distances of the following places are :-Nayinipiriyan (Sivan or Isvaran temple W. or N.W. of the village) 53°, mile 0.54 ; Vándrámpatnam (Vimánam of the Sivan temple) $177^{\circ} 22^{\prime}$, miles 1.84 ; and Murtiyan (old masonry chattram on the old way from Udayárpalaiyam to Kumbakonam) $345^{\circ} 18^{\prime}$, miles $1 \cdot 48$.
XXIII. Kumbakonam Station, lat. $10^{\circ} 58^{\prime}$, long. $79^{\circ} 25^{\prime}$-observed at in 1878 -is on the middle of the flat roof of the square central tower of the Provincial College, built in 1873-74, on the left bank of the

Cauvery (Káveri) and 500 yards E. of the bridge over this river. The station is 10 feet E. of the cupola over the spiral stone stairs. It is in the lands of the village of Perrumpandi, taluk Kumbakonam, district Tanjore.

The station consists of a solid circular pillar of brick masonry $3 \frac{1}{s}$ feet in diameter and 6 inches high, built on the centre of the terrace-roof which is 44 feet above the floor of the building and 51 feet above the adjacent ground level. The azimuths and distances of the following objects are :-Cauvery bridge (south abutment) $59^{\circ} 18^{\prime}$, mile 0.31 ; Karupúr village temple $214^{\circ} 48^{\prime}$, miles 1.46; Kumbakonam (tower of the Protestant Church, E. of the town) $289^{\circ} 19^{\prime}$, mile 0.93 ; Ávúr (temple) $37^{\circ} 22^{\prime}$, miles 6.2 ; and Kumbakonam (ridge of the Sarangapani great temple at the E. entrance of the Vishnu temple) $81^{\circ} 19^{\prime}$, mile 0.86 . The $17 \frac{1}{2}$ foot trestle was employed for the theodolite.
XXIV. Putagaram Trestle Station, lat. $10^{\circ} 57^{\prime}$, long. $79^{\circ} 32^{\prime}$-observed at in 1878 -is situated on the N.W. corner of the small patch of artificially raised ground used for threshing, called Pudukalam, in the midst of extensive rice fields between the Kírímán and Arasillár rivers or irrigation supply channels, 550 yards \mathbf{E}. of the village of Putagaram, 4 miles E.S.E. from Tirunágesvaram, and 7 miles E. of Kumbakonam. It is in the lands of Putagaram village, taluk Kumbakonam, district Tanjore.

The station consists of a rectangular, perforated pillar of masonry 7 feet square at base and 11.2 feet high, the upper portion being circular and $3 \frac{1}{\frac{1}{8}}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one in its upper surface (at the threshing ground level, a couple of feet or so above the rice fields) and the other $1 \cdot 9$ feet below it. Three outer rectangular pillars of masonry are built up to the level of the central pillar for the support of the high trestle. The azimuths and distances of objects in the following places are:-Putagaram (point or dome of the Sivan temple) $108^{\circ} 35^{\prime}$, mile 0.3 ; Rěndánkatalai (point or dome of the Sivan temple) $136^{\circ} 44^{\prime}$, mile 0.67 ; Tukáchi (temple) $358^{\circ} 25^{\prime}$, miles 1.06 ; Tandáulotam (Sivan temple) $83^{\circ} 6^{\prime}$, miles $1 \cdot 61$; and Ammangudi (Pěrumál temple) $233^{\circ} 32^{\prime}$, miles $1 \cdot 05$.
XXV. Mutuvancheri Trestle Station, lat. $11^{\circ} 2^{\prime}$, long. $79^{\circ} 19^{\prime}$-observed at in 1878 -is situated on the S.S.E. part of the Sáttambádi Sittamalli upland waste covered with gravel and scrub jungle here called Padarkallupottai, half a mile N.E. by N. from the hamlet of Nágapanallúr, and 2 miles N.W. of the Coleroon river. It is in the lands of the village of Mutuváncheri, taluk Udayárpálaiyam, district Trichinopoly.

The station consists of a rectangular perforated pillar of masonry 7 feet square at base and 10 feet high, the upper 1 foot being circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one in its upper surface $\frac{1}{2}$ a foot above the ground level and the other 2.6 feet below it. The azimuths and distances of the following villages aud objects are :-Kunjuveli or Nágapanallúr 39°, mile 0.64 ; Kødamangalam (Sivan temple) $57^{\circ} 39^{\prime}$, miles 1.36 ; Sáttambádi 300°, miles 1.60 ; Mutuváncheri 342°, miles $1 \cdot 31$; Strípurandán (temple) $258^{\circ} 29^{\prime}$, miles 3 ; Sámimalai (large temple) $323^{\circ} 53^{\prime}$, miles 7 ; Tútúr (temple) $14^{\circ} 13^{\prime}$, miles 3 ; and Vikramangalam (temple) $100^{\circ} 38^{\prime}$, miles 3.
XXVI. Alangudi Trestle Station, lat. $10^{\circ} 50^{\prime}$, long. $79^{\circ} 27^{\prime}$-observed at in 1878 -is situated on the mound called Mŏtaiýntèdal marking the site of the old village of Tirumanamangalam, half a mile N.W. of the large village of Álangudi and 200 yards W. of the high road from Kumbakonam to Mannárgudi, the former being about 9 miles N . of the station. It is in the lands of the village of Alangudi, taluk Kumbakonam, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{\frac{3}{z}}$ feet in diameter at top which contains six mark-stones, one in its upper surface and five others $2 \cdot 2,6 \cdot 0,9 \cdot 0,10 \cdot 0$, and $11 \cdot 0$ feet respectively below it, the lowest being 1 foot below the ground level. Three outer rectangular pillars of masonry are built up to the level of the central pillar for the support of the high trestle. The directions, azimuths and distances of the following places are:-Alangudi (spire of the Vardarajulu Perumal temple S.W. of the village and near the high road) $316^{\circ} 15^{\prime}$, mile 0.26 ; Valangimán village 170°, miles 3.5 ; Nídamangalam town and Railway Station S. bv E., miles 4.5 ; Alangudi (Pillaiyar temple on the W. side of the high road and W.N.W. of the village) $251^{\circ} 4^{\prime}$, mile $0 \cdot 13$; and Âlangudi (centre of the ornamental ridge of the Káli Amman Pidari temple) $234^{\circ} 40^{\prime}$, mile 0.15 .
XXVII. Víramangalam Trestle Station, lat. $10^{\circ} 52^{\prime}$, long. $79^{\circ} 21^{\prime}$ —observed at in 1878 -is situated 70 yards N. of the Větár river channel, on the Nattam land of Sittálattúr (S.E. end of Víramangalam), 130 yards S. of the south-easternmost house, 7 miles S.W. of Kumbakonam town and $2 \frac{1}{2}$ miles E. of Tirukalé-ur bridge on the Pápanásam-Sáliyamangalam road. It is in the lands of the village of Víramangalam, taluk Kumbakonam, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{\frac{1}{8}}$ feet in diameter at top which contains six mark-stones, one in its upper surface and five others $3 \cdot 0,6 \cdot 0,9 \cdot 0,10 \cdot 0$ and $11 \cdot 1$ feet respectively below it, the lowest being 1 foot below the ground level. Three outer rectangular pillars of masonry are built up to the level of the central pillar for the support of the high trestle. The azimuths and distances of the following places are: - Álattúr 87°, mile $0 \cdot 43$; Víramangalam 145°, mile 0.14 ; Ãvúr (temple) $216^{\circ} 49^{\prime}$, miles $2 \cdot 19$; Eri (Áyanár temple) $171^{\circ} 48^{\prime}$, mile 0.94 ; and Uttakád (Pěrumál temple) $212^{\circ} 9^{\prime}$, mile 0.80 .
XXVIII. Arasapat Trestle Station, lat. $10^{\circ} 44^{\prime}$, long. $79^{\circ} 21^{\prime}$-observed at in 1878 -is situated on the east side and near the eastern boundary of a large open sandy field called Manakollai, 280 yards W. of the Vadavar river channel, $\frac{3}{4}$ mile N.N.W. of the Public Works Department little lodge at the head-sluice of the

Mannárgudi Vaykál (supply channel), $\frac{1}{4}$ mile N. of the centre of the Settiyankaleri (tank), $1 \frac{8}{4}$ miles N. of the high road to Mannárgudi, opposite the 13th milestone, and 5 miles S.S.W. from the Ammápet station of the South Indian Railway. It is in the lands of the village of Arasapat, taluk and district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter at top which contains six mark-stones, one in its upper surface and five others $2.8,6 \cdot 0,9.0,10.0$ and $11 \cdot 0$ feet respectively below it, the lowest being 1 foot below the ground level. Three outer rectangular pillars of masonry are built up to the level of the central pillar for the support of the high trestle. The azimuths and distances of the following places are:-Arasapat 68°, mile 0.48 ; Panaiyakota (S . point of the Vélakachi Amman temple) 84°, miles 1.53 ; Kambaiyanattam 157°, miles 2.03 ; and Vada-úr (spire of the Perrumal temple) 824° 4^{\prime}, miles 2.35; and Vada-úr (centre pier of the bridge of four arches on the Tanjore-Mannárgudi high road, about $13 \nmid$ miles from Tanjore) $340^{\circ} 22^{\prime}$.
XXIX. Parutikota Trestle Station, lat. $10^{\circ} 42^{\prime}$, long. $79^{\circ} 27^{\prime}$-observed at in 1878 -is situated in the N.E. corner of a field called Kátán Manikamkŏllai, about 100 yards E. of a sand bank which forms a field boundary running N. and S. across the ridge of comparatively high ground dividing the Pámba nodai and Válamaduvu valleys, nearly half a mile to the N.W. of the Pudueri tank, about $3 \frac{1}{2}$ miles N.W. by W. of Mannárgudi town, and $5 \frac{1}{2}$ miles S. of Nídámangalam station of the South Indian Railway. The station is in the lands of the village of Parutikota, taluk Mannárgudi, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter at top which contains six mark-stones, one is its upper surface and five others $3.0,5.4,9.0,10.0$ and 11.0 feet respectively below it, the lowest being 1 foot below the ground level. Three outer rectangular pillars of masonry are built for the support of the high trestle. The azimuthn and distances of the following places are:-Parutikota 124°, miles $1 \cdot 10$; Múvanallúr (temple outside and west of the village ${ }^{\circ}$ $304^{\circ} 28^{\prime}$, 2930 feet; Mannargudi (ridge of the temple) $307^{\circ} 36^{\prime}$, miles $3 \cdot 17$; and Nágalpúudi (Náganáthaswami temple) 166) 27', miles 1-76.
XXX. Rárámutiraikota Trestle Station, lat. $10^{\circ} 46^{\prime}$, long. $79^{\circ} 15^{\prime}$-observed at in 1878 -is situated in the western field or enclosure called Melaikŏllai or Sĕvaköllai, about $\frac{1}{4}$ mile W. of the village centre, and $\frac{1}{8}$ mile E.S.E. of the boundary of Katirinattam. The station is nearly $\frac{1}{8}$ mile S. of the South Indian Railway station, about 5 miles E. from the Tanjore Railway station towards Negapatam (Nágapatnam) and nearly 2 miles S.E. of Mári Ammankoil on the high road from Tanjore to Negapatam, and 5 miles E. by S. of the Tanjore fort. It is in the lands of the village of Rárámutiraikota, taluk and district Tanjore.

The stationconsists of a solid, central and circular pillar of masonry 10 feet high and $3 \frac{1}{8}$ feet in diameter at top, built on a foundation 8 feet in diameter, and contains five mark-stones, one in its upper surface and four others $4.7,9.0,10.0$, and 11.1 feet respectively below it, the last but one being at the ground level. Round this pillar three outer rectangular masonry pillars are built to support the high trestle. The azimuths and distances of the following places are:-Ráramutiraikota (Áyanárkoil temple) 240°, mile $0 \cdot 49$; Katirinattam (Sivankoil temple) 122°, mile $0 \cdot 47$; and Kulichapat 54°, mile 0.76 .
XXXI. Púvatúr Trestle Station, lat. $10^{\circ} 35^{\prime}$, long. $79^{\circ} 21^{\prime}$-observed at in 1877 and 1878 -is situated in a large open plain covered with scrub jungle called Maikanköllai, about $\frac{1}{3}$ a mile S.W. of the tank called Tirumateri, and 10 miles N. of Patukota. It is in the lands of the village of Púvatúr, taluk and district Tanjore.

The station, as built in 1877, consisted of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter-surrounded by an annular wall 18 inches thick-and contained three mark-stones, one in its upper surface, the second $1 \cdot 13$ feet below it at the ground level, and the third 1.03 feet below the second. Over this pillar a rectangular pillar of masonry $3 \frac{1}{2}$ feet high was built, carrying a markstone in its upper surface. Outside the annular wall three pillars of masonry 8 feet high were built for the support of the high trestle. When again visited in 1878, the station was found perfect and the mark-stone on the rectangular pillar intact; the central circular pillar together with the annular wall and the three outer pillars were then raised to a height of 10 feet above the ground level, enclosing the original rectangular pillar, a central vertical shaft and a horizontal aperture being specially constructed for access to the mark on the rectangular pillar. The azimuths and distances of objects in the following villages are :-Thðudarapat (\odot on a stone drain on the N. side of a temple W. of the village) $322^{\circ} 54^{\prime}$, mile 0.95 ; Tirumangalamkota (\odot on a brick at the S.E. corner of the projecting basement of the Pidári temple S.W. of the village) $236^{\circ} 59^{\prime}$, mile 0.84 ; Púvatúr (tamarind tree marked with a + , near a temple) $154^{\circ} 7^{\prime}$, miles 1.32 ; Pekarumbukota (centre of the dome of the Shevukan Prumal temple) $115^{\circ} 46^{\prime}$, miles $1 \cdot 65$; and Melavělúr (○ on a stone drain on the N. side of the Subramanya Swami temple, the N.W. temple of the group) $40^{\circ} 1^{\prime}$, mile 0.88 .
XXXII. Kakkrákota Trestle Station, lat. $10^{\circ} 36^{\prime}$, long. $79^{\circ} 15^{\prime}$-observed at in 1877 and 1878 -is situated in the N.E. corner of the field called Rágamvetikád, 266 yards S.E. of the hamlet of Mannanpunjaitop, 31 $\frac{1}{2}$ miles W.S.W. of the Oruttannád Chattram at Muttammálpuram on the high road from Tanjore to Patukota, and $\frac{1}{2}$ a mile W. or S.W. of the Vědapuri-vaykal river bed or watercourse. It is in the lands of the village of Kakkrákota, taluk and district Tanjore.

The station, as built in 1877, consisted of a solid circular pillar of masonry $3 \frac{1}{8}$ feet in diameter-standing on a circular foundation 8 feet in diameter and surrounded by an annular wall 18 inches thick-and contained three mark-stones, one in its upper
surface, the second 1 foot below it at the ground level, and the third $1 \cdot 1$ feet below the second. Over this pillar a rectangular pillar of masoury $3 \frac{1}{2}$ feet high was built carrying a mark-stone in its upper surface. Outside the annular wall three pillars of masonry 8 feet high and 2 feet square were built for the support of the high trestle. When again visited in 1878, the station was found perfect and the mark-stone on the rectangular pillar intact ; the central circular pillar together with the annular wall and the three outer pillars were then raised to a height of 10 feet above the ground level, enclosing the original rectangular pillar, a central vertical shaft and a horizontal aperture being specially constructed for access to the mark on the rectangular pillar. A fifth mark is engraved on the masonry of the second circular pillar 9 feet above the mark of 1877 on the rectangular pillar. The azimuths and distances of objects in the surrounding villages are:-Kakkrákota (centre ornament of the Puti Amman temple) $56^{\circ} 49^{\prime}$, mile 0.92 ; Něduvakota (\odot on the ledge at base of the S . side of the Kárialagar temple) $244^{\circ} 52^{\prime}$, miles 1.84 ; Pinnaiyúr (centre of the top of the highest dome of the Paramunisvara temple) $350^{\circ} 8^{\prime}$, miles $1 \cdot 60$; Ayankudi (tamarind tree marked with a + in the centre of the village) $185^{\circ} 20^{\prime}$, miles $1 \cdot 49$; and Karukadipet (tamarind tree marked with a + at the N.W. end of the village) $55^{\circ} 10^{\prime}$, miles 1.57 .
XXXIII. Pátharankota Trestle Station, lat. $10^{\circ} 28^{\prime}$, long. $79^{\circ} 15^{\prime}$-observed at in 1877 -is situated in a large sandy plain at the S.W. end of the village lands of Kŏllukad, about $\frac{8}{4}$ of a mile W. of the village. The station is 0.40 of a mile S. of a masonry pillar on the boundary line between Puduviduthi and Kŏllukad villages. It is in the lands of the village of Kŏllukád, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter, built on a masonry foundation 1 foot deep and surrounded by an annular wall 18 inches thick: it contains three mark-stones, one in its upper surface, the second 0.90 foot below it at the ground level, and the third 1.14 feet below the second. Outside the annular wall three pillars of masonry 8 feet high are built for the support of the high trestle. The azimuths and distances of objects in the following places are :-Patharankota (Kanagammal temple in the hamlet of Ananta Gopalpuram) $290^{\circ} 53^{\prime}$, mile 0.75 ; Køllukad (mango tree marked with a + over the village temple) $291^{\circ} 16^{\prime}$, mile $0 \cdot 74$; Větuvákota (spire of the Mutu Mári Amman temple) $107^{\circ} 45^{\prime}$, miles $1 \cdot 12$; and Kaya-úr (piunacle at the S . end of the temple) $337^{\circ} 25^{\prime}$, miles 3.08 .
XXXIV. Patukota Trestle Station, lat. $10^{\circ} 26^{\prime}$, long. $79^{\circ} 21^{\prime}$ —observed at in 1877 -is situated at the extreme E. end of a hamlet in a plantation of young mango trees, about a mile N.W. of the taluk town of Patukota, and about 900 yards \mathbf{W}. of the main road from Tanjore to Patukota. It is in the lands of Santhánkád village, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{s}$ feet in diameter, built on a foundation 1 foot deep and surrounded by an annular wall 18 inches thick : it contains three mark-stones, one in its upper surface, the second 1.04 feet below it at the ground level, and the third 0.98 foot below the second. Outside the annular wall three pillars of masonry 8 feet high are built for the support of the high trestle. The azimuths and distances of objects in the following villages are :-Patukota (\odot on the wall of the Mutu Mari Amman temple on the left side of the road from Tanjore to Patukota) $305^{\circ} \mathbf{5 7}$, mile 0.73 ; Patukota (N.W. corner of the Adaikulam Káthán temple on the right side of the road from Tanjore to Patukota) $329^{\circ} 58^{\prime}$, miles $1 \cdot 49$; Aladikumulai (\odot on the basement at the S .W. corner of the Mayisolliappan temple) $171^{\circ} 50^{\prime}$, mile 0.70 ; Palamuti (\odot on the dome of the Subramanya Swami temple S.W. by W. of the village) $121^{\circ} 47^{\prime}$, miles $1 \cdot 54$; and Patukota (cross on the dome of the R. C. Church) $323^{\circ} 16^{\prime}$, miles $1 \cdot 53$.
XXXV. Kallakota Trestle Station, lat. $10^{\circ} 31^{\prime}$, long. $79^{\circ} 10^{\prime}$ —observed at in 1877-is situated in a large open plain, about $\frac{1}{2}$ a mile N.E. by E. of the large zamindari village of Kallakota and between the villages of Mayilangapati and Maruthangonviduthi, and 290 yards S. of the main road between Patukota and Kallakota. The station is in the lands of Mayilangapati village, taluk Alangudi of the Pudukota Raja's territory, district Trichinopoly.

The station consists of a solid circular pillar of masonry 2 feet high and $3 \frac{1}{3}$ feet in diameter, built on a foundation 8 feet square and 1 foot deep and surrounded by an annular wall 18 inches thick: it contains three mark-stones, one in its upper surface, the second a foot lower at the ground level, and the third at the foundation level and a foot below the second. Outside the annular wall three pillars of masonry 8 feet high are built for the support of the high trestle. The azimuths and distances of objects in the following villages are :-Chŏkanter (mango tree marked with a + at the N.W. side of the village) $311^{\circ} 16^{\prime}$, mile 0.29 ; Mayilángipati (mango tree marked with a + at the N.E. corner of the Toti hamlet) $359^{\circ} 9^{\prime}$, mile $0 \cdot 43$; Kallakota (centre of the oruament at the E . end gable of the zamindar's house) $97^{\circ} 41^{\prime}$, miles $1 \cdot 15$; Ambukoil (centre of the gateway of the temple) $28^{\circ} 41^{\prime}$, miles 1.81 ; Maruthangonviduthi (tamarind tree marked with a + at the S. side of the village) $162^{\circ} 58^{\prime}$, mile 0.40 ; and Válakuttiyantop tope (mango tree marked with a + , in the hamlet of Maruthangonviduthi) $\mathbf{7 3}^{\circ} 53^{\prime}$, mile 0.28
XXXVI. Kalórunikád Trestle Station, lat. $10^{\circ} 20^{\prime}$, long. $79^{\circ} 15^{\prime}$-observed at in 1877 -is situated in the cultivated lands and on the W. side of the village of this name, about 0.6 mile N . by E. of Nádankád, the same distance \mathbf{S}. by \mathbf{E}. of Náráyankád village, and about $\frac{1}{8}$ a mile \mathbf{S}. of Valasakád. It is in the lands of Kalúrunikád village, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter, built on a foundation and surrounded by an annular wall 18 inches thick: it contains two mark-stones, one in its upper surface about l foot above the ground level and the other 3.83 feet below it. Outside the annular wall three pillars of masonry 8 feet high are built for the support of the high trestle.

The azimuths and distances of objects in the following villages are:-Kalúrunikad (spire of the Karudaiyar new temple) $1^{0} 28^{\prime}$, mile $0 \cdot 25$; K 万latúr (circle and dot on the sill of the doorway of the Subramanya temple on the E. side of the village) $59^{\circ} 51^{\prime}$, miles 1.09 ; Tirusitambalam (spire of the highest building in the Puráthana Isvara temple enclosure) $146^{\circ} 54^{\prime}$, miles 1.88 ; and Kayá-úr (pinnacle at the S . end of the temple) $188^{\circ} 26^{\prime}$, miles 5.96 .
XXXVII. Kárakkurchi Trestle Station, lat. $10^{\circ} 23^{\prime}$, long. $79^{\circ} 9^{\prime}$-observed at in 1877 -is situated in a large open plain covered with scrub jungle, $0 \cdot 29$ mile \mathbf{S}. by \mathbf{E}. of a large mango tree marked with a + on the \mathbf{S}. side of Terrkutĕr village. It is in the lands of the village of Kárakkurchi, taluk Alangudi, district Trichinopoly.

The station consists of a solid circular pillar of masonry $3 \frac{1}{y}$ feet in diameter, built on a foundation and surrounded by an annular wall $18 \frac{1}{2}$ inches thick: it contains two mark-stones, one in its upper surface and the other 0.96 foot below it, at the ground level. Outside the annular wall three pillars of masonry 10 feet high are built for the support of the high trestle. The azimuths and distances of objects in the following villages are:-Chðkankudiruppu (tamarind tree marked with a +) 21°, mile
 1.04 ; Kílaterr (\odot on the W . side of a parapet surrounding the dome of the Vêtaiyalagar temple) $271^{\circ} 16^{\prime}$, miles 1.78 ; and Vadaterr (\odot cut on the roof of the Virappan temple) $127^{\circ} 58^{\prime}$, miles 1.39 .
XXXVIII. Merpanaikád Trestle Station, lat. $10^{\circ} 15^{\prime}$, long. $79^{\circ} 9^{\prime}$-observed at in 1877 -is situated in an open plain, at the \mathbf{S}. \mathbf{W}. corner of the large chattram village of Merpanaikad, and 470 feet S.S.E. from a pipal tree at the trijunction of the villages of Merpanaikád, Ayangudi and Nivatháli. It is in the lands of Ayangudi village, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{\mathrm{f}}{\mathrm{f}}$ feet in diameter, built on a foundation and surrounded by an annular wall $13 \frac{1}{2}$ inches thick: it contains two mark-stones, one in its upper surface and the other 1.06 feet below it at the ground level. Outside the annular wall three pillars of masonry 8 feet high are built for the support of the high trestle. The azimuths and distances of objects in the following villages are;-Merpanaikád (centre of the S.E. minaret of the mosque) $223^{\circ} 55^{\circ}$, mile 0.68 ; Nivatháli (centre of the dome of the Mári Amman temple, higher of the two) $62^{\circ} 21^{\prime}$, miles $1 \cdot 21$; and Válavari (Pillaiyar temple) $28^{\circ} 18^{\prime}$, miles $2 \cdot 16$.
XXXIX. Rětavayal Trestle Station, lat. $10^{\circ} 13^{\prime}$, long. $79^{\circ} 15^{\prime}$-observed at in 1877 -is situated on waste land \mathbf{E}. of the village of this name, 0.65 of a mile from a large iruppai (mowa) maran tree marked with $a+$ over the mud temple called Mári Amman at the S. end of the village, and about $1 \frac{1}{4}$ miles S.W. of Pásala Koili village. It is in the lands of the village of Rudra Sindamani, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{y}{s}$ feet in diameter, built on a foundation and surrounded by an annular wall 18 inches thick: it contains two mark-stones, one in its upper surface about 1 foot above the ground level and the other 3.83 feet below it. Outside the annular wall three pillars of masonry 6 feet high are built for the support of the high trestle. The azimuths and distances of objects in the following villages are :-Rudra Sindamani (tamarind tree marked with a +) 298°, mile 0.56 ; Sígankád (jumblum tree marked with a +) 356°, mile 0.72 ; Vélálankád (tamarind tree marked with a +) 22°, mile 0.53; Omathainad (centre of the dome of the Pillaiyar small temple at the S.W. corner of the Sivankil temple enclosure) $236^{\circ} 9^{\prime}$, miles $2 \cdot 32$; and Retavayal (Kanayiran Murthi temple on a tank bund at the N . end of the village lands) $152^{\circ} 38^{\prime}$, miles $1^{\prime} 43$.
XL. Kulamangalam Trestle Station, lat. $10^{\circ} 17^{\prime}$, long. $79^{\circ} 5^{\prime}$-observed at in 1877 -is situated between the S.W. hamlet of Kulamangalam village and the N.E. hamlet of Tirunallúr village, close to the boundary between these two villages, 460 feet N.W. by N. of a mango tree at the most southerly hamlet of Kulamangalam village, and 941 feet S.W. of the most easterly mango tree at the hamlet of Tirunallúr village; each of these trees is marked with a + . It is in the lands of the Kulamangalam village, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter, built on a foundation and surrounded by an annular wall $13 \frac{1}{2}$ inches thick: it contains two mark-stones, one in its upper surface and the other 0.96 foot below it at the ground level. Outside the annular wall three pillars of masonry 12 feet high are built for the support of the high trestle. The azimuth and distance of Kulamangalam spire of the Perrunkara-Mudayar temple are $292^{\circ} 35^{\prime}$, mile 0.70.
XLI. Mánúr Trestle Station, lat. $10^{\circ} 7^{\prime}$, long. $79^{\circ} 9^{\prime}$-observed at in 1877 -is situated in a large open plain between the villages of Mánúr and Áladikád, 630 yards S. by E. of a large Aichiamaram tree (marked with a +) at the E. end of the former village, and 678 yards N. by W. of a large tamarind tree (marked with a +) in the latter. It is in the lands of the village of Mánúr, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter, built on a foundation and surrounded by an annular wall 18 inches thick: it contains two mark-stones, one in its upper surface about 1 foot above the ground level and the other 3.92 feet below it. Outside the annular wall three pillars of masonry $3 \frac{1}{4}$ feet high are built for the support of the high treatle. The azimuths and distances of objects in the following villages are:-Ichankudi (tamarind tree marked with a +) 90°, miles 1.05 ; Mayivayal (tamarind tree marked with a +) 219°, mile 0.64 ; and Véttanúr (tamarind tree marked with a +) 318°, milea $1 \cdot 81$.
XLII. Pallathivayal Trestle Station, lat. $10^{\circ} 9^{\prime}$, long. $79^{\circ} 3^{\prime}$-observed at in 1877 -is situated in an open plain between the villages of Virapavayal and Pallathivayal, about 2 miles E.S.E. of the Arantangi fort, and in an almost direct line between a large mango tree at the S.W. corner of Virapavayal village and a large tamarind tree at the N.W. corner of Pallathivayal village, 341 yards from the former and 358 yards from the latter, each of the trees being marked with a + . It is in the lands of the village of Pallathivayal, taluk Patukota, district Tanjore.

Abstract

The station consists of a solid circular pillar of masonry $3 \frac{1}{\frac{3}{g}}$ feet in diameter, built on a foundation and surrounded by an annular wall $13 \frac{1}{2}$ inches thick: it contains two mark-stones, one in its upper surface and the other 0.71 foot below it at the ground level. Outside the annular wall three pillars of masonry 8 feet high are built for the support of the high trestle. The azimuths and distances of objects in the following villages are :-Wamni (temple spire) $68^{\circ} 46^{\prime}$, mile 0.78 ; Mínakshi (temple spire) $74^{\circ} 38^{\prime}$, mile $0.9 \overline{\text { j }}$; Arantángi fort (spire of the Viramákali Amman temple) $116^{\circ} 41^{\prime}$, miles 2.07 ; and Arantangi fort (centre of the gateway tower) $116^{\circ} 57^{\prime}$, miles 2.05 .

XLIII. Ǒkkúr Trestle Station, lat. $10^{\circ} 1^{\prime}$, long. $79^{\circ} 3^{\prime}$ —observed at in 1877 -is situated about 300 yards N.W. of the village of this name, $1 \frac{1}{4}$ miles N.E. by N. of Sitaur village, and 1 mile E.S.E. of Allativayal village. It is in the lands of the village of Ókkúr, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{8}$ feet in diameter, built on a foundation and surrounded by an annular wall 18 inches thick: it contains two mark-stones, one in its upper surface about 1 foot above the ground level and the other $2 \cdot 67$ feet below it. Outside the annular wall three pillars of masonry 8 feet high are built for the support of the high trestle. The azimuths and distances of the following places are:-Okkúr (\odot cut on the moulding above the plinth on the W. end of the largest temple) $239^{\circ} 49^{\prime}$, feet 569 ; Thunjanúr (\odot cut on the roof of the temple) $3^{\circ} 57^{\prime}$, miles $1 \cdot 29$; Elunúthimangalam 223°, miles 1.74 ; Pěruntámarai 156°, mile 0.13 ; and Prrukudi 94°, miles 1.46 .
XLIV. Kánád Trestle Station, lat. $9^{\circ} 59^{\prime}$, long. $79^{\circ} 10^{\prime}$-observed at in 1877 -is situated 16 yards from the \mathbf{S}. bank of a tank, and lies between it and the temple at the most westerly hamlet of Kánad village, and 1 mile S.W. by S. of Andiandal village. It is in the lands of the village of Kánád, taluk Patukota, district Tanjore.

The station consists of a solid circular pillar of masonry $3 \frac{1}{z}$ feet in diameter, built on a foundation and surrounded by an annular wall 18 inches thick: it contains two mark-stones, one in its upper surface and the other $1 \cdot 1$ feet below it at the ground level. Outside the annular wall three pillars of masonry $4 \frac{1}{2}$ feet high are built for the support of the high trestle. The azimuths and distances of the following places are :-Kanad (centre of the dome at the W. end of the temple) $40^{\circ} 37^{\prime}$, yards 273 ; Karnakúr 159°, miles 1.05 ; Vétivayal 350°, mile 0.71 ; and Thálanúr (centre of the dome at the W . end of the Sitambra Isvaran temple) $81^{\circ} 44^{\prime}$, mile 0.93 .
XLV. Sembalavayal Trestle Station, lat. $10^{\circ} 3^{\prime}$, long. $78^{\circ} 58^{\prime}$-observed at in 1876 -is situated in scrub jungle and about $\frac{3}{4}$ of a mile N.W. of the village so called. It is in the lands of Sembalavayal village, taluk Tirupatúr, district Madura (Madurai).

The station consists of a solid circular pillar of masonry $3 \frac{1}{y}$ feet in diameter, surrounded by an annular wall $13 \frac{1}{2}$ inches thick : it contains two mark-stones, one in its upper surface and the other $10 \cdot 8$ inches below it at the ground level. Outside the annular wall three pillars of masonry 3 feet high are built for the support of the high trestle. The azimuths and distances of the following places are:-Panankád 237°, mile 0.8 ; Tiruppuvayal 185°, mile 0.4 ; Sembalavayal 317°, mile 0.7 ; and Vittrávayal (centre of the roof of a Sivan temple) 93° ' 5^{\prime}, miles $1 \cdot 22$.
XLVI. Sirukambúr Trestle Station, lat. $9^{\circ} 52^{\prime}$, long. $79^{\circ} 3^{\prime}$-observed at in 1876 -is situated in the bed of a tank, about $\frac{1}{3}$ a mile W. of the village so called, 200 yards W. of the bund near the central E. waste weir, and 3 miles N. \mathbf{W}. of the town of Uriúr. The station is in the lands of the village of Sirukambur, taluk Tiruvadanai, district Madura.

Abstract

The station consists of a solid circular pillar of masonry $3 \frac{1}{z}$ feet in diameter at top, surrounded by an annular wall 17 inches thick : it contains two mark-stones, one in the foundation about the ground level, and the other 1 foot above it in the surface of the pillar. The azimuths and distances of the following places are:-Sitamangalam 63°, mile 0.8 ; Peramangalam 117°, mile 0.8 ; Pâganúr 162°, miles 1.1 ; Mailávali 4°, miles 1.3 ; and Andauruni (centre of the dome of the Roman Catholic Church) 97° 57 ', miles 1.88 .

XLVII. Manikamkota Trestle Station, lat. $9^{\circ} 55^{\prime}$, long. $78^{\circ} 58^{\prime}$-observed at in 1876 -is situated on the S. bank of a stream (Paushi Ar) 0.4 mile S.S.W. of the village of this name, about $2 \frac{1}{2}$ miles S.W. of Kanangudi town, and $\frac{1}{8}$ mile S.E. by E. of Khepalai village. It is in the lands of Urunikota village, taluk Tiruvadanai, district Madura.

The station consists of a solid circular pillar of masonry $3 \frac{1}{8}$ feet in diameter at top, surrounded by an annular wall 17 inches thick: it contains two mark-stones, one in the foundation about the ground level and the other 1 foot above it in
the surface of the pillar. The azimuths and perambulated distances of the following places and objects are:-Perumal Koil (dome of a small temple) $280^{\circ} 22^{\prime}$, mile 0.64 ; Kadambúr 249°, mile 0.88 ; Pariankota 284°, mile 0.64 ; Urunikota 338°, mile 0.64 ; Melanai 7°, mile 0.57 ; masonry bridge (centre of, on the high road from Trndi to Madura through Devakota) 421 $\frac{1}{2}^{\circ}$, mile 0.33 ; and Kamachi Ammankoil (centre of a group of images) $103^{\circ} 2^{\prime}$, mile $0 \cdot 25$.
XLVIII. Manĕgandi Trestle Station, lat. $9^{\circ} 46^{\prime}$, long. $78^{\circ} 58^{\prime}$-observed at in 1876 -is situated about 200 yards N.N.E. of the village of this name and 200 paces E. of the road which passes $\frac{3}{4}$ of a mile S . of Tiruvadanai village. It is in the lands of the village of Manĕgandi, taluk Tiruvadanai, district Madura.

The station consists of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter at top, surrounded by an annular wall 17 inches thick : it contains two mark-stones, one in the foundation about the ground level and the other 1 foot above it in the surface of the pillar. The azimuths and distances of the following places are:-Tiruvadanai 162°, mile $0 \cdot 8$; Tiruvadamarudúr (temple) 92°, mile $\frac{1}{2}$, and small square masonry temple 295°, mile $0 \cdot 9$.
XLIX. Nambudalai Trestle Station, lat. $9^{\circ} 44^{\prime}$, long. $79^{\circ} 3^{\prime}$-observed at in 1876 -is situated in a field about $\frac{1}{2}$ a mile N. by W. of the village of Nambudalai and $\frac{3}{4}$ mile S.E. by E. of Navakudi. It is in the lands of the village of Nambudalai, taluk Tiruvadanai, district Madura.

The station consists of a solid, circular and isolated pillar of masonry $3 \frac{1}{\mathrm{~s}}$ feet in diameter and contains two mark-stones, one in its upper surface and the other 2.91 feet below it in the foundation. The pillar rises 1 foot above the ground level. The azimuths and distances of the following places are:-Tŏndi (mosque flag-staff, near the N. end of the town) $232^{\circ} 32^{\prime}$, mile 1 ; Karuparakoil (wooden shaft in the stone basement of a temple) $137^{\circ} 13^{\prime}$, yards 220 ; Isvarankoil (temple) $317^{\circ} 38^{\prime}$, yards 300 ; and Mulatagam 71 ${ }^{\circ}$, miles $1 \frac{3}{4}$.
L. Věnniyúr Trestle Station, lat. $9^{\circ} 49^{\prime}$, long. $78^{\circ} 51^{\prime}$-observed at in 1876-is situated about 650 yards S.W. of the village of Věnniyúr, 7 miles W. of Tiruvadanai, and 3 miles S.E. of Tiruvegampati town. It is in the lands of the village of Věnniyúr, taluk Tiruvadanai, district Madura.

The station consists of a solid circular pillar of masonry $3 \frac{1}{3}$ feet in diameter, surrounded by an annular wall 17 inches thick: it contains two mark-stones, one in its upper surface about 1 foot above the ground level and the other $1 \cdot 1$ feet below the upper mark. The azimuths and perambulated distances of the following villages and objects are :-Āndaikudi 120°, mile 0.95 ; Muppúr 296°, mile 0.93 ; Ponna Karai 300°, mile 0.36 ; paka bridge on the road from Tyndi to Madura $297^{\circ} 6^{\prime}$, mile 0.36 ; paka bridge (guard stone on the W. side) $39^{\circ} 45^{\prime}$, mile $0 \cdot 17$; and dome of a tomb near Věnniyúr village $227^{\circ} 21^{\prime}$, mile $0 \cdot 67$.
LI. Urannankudi Trestle Station, lat. $9^{\circ} 37^{\prime}$, long. $78^{\circ} 58^{\prime}$-observed at in 1876 -is situated on the S.W. bund 10 feet above the adjacent fields, about 300 yards N.E. of the village of this name, 5miles E. of Rajasingamangalam, and 1.4 miles W. by S. of Kodalúr village. It is in the lands of Urannankudi village, taluk Tiruvadanai, district Madura.

The station consists of a solid circular pillar of masonry $3 \frac{1}{1}$. feet in diameter and surrounded by an annular wall : it contains two mark-stones, one in its upper surface flush with the bund level and the other 3.0 feet below it fixed in the foundation. The azimuths and distances of the following villages and objects are:-Melúruni 125°, miles $1 \cdot 2$; Chitravadi 221°, miles $1 \cdot 1$; Uppúr chattram (centre of the building) $311^{\circ} 9^{\prime}$, miles $1 \cdot 20$; and Valaivandi Ammankoil (centre of the large square building) $322^{\circ} 44^{\prime}$, mile 0.32.
LII. Mutupatnam Trestle Station, lat. $9^{\circ} 40^{\prime}$, long. $75^{\circ} 51^{\prime}$-observed at in 1876 -is situated about 300 yards N. of the village of this name, 0.8 mile N.E. by N. of Senagudi, $\frac{1}{2}$ mile S.E. of the small village of Setedal, and 4 miles N.W. of Rajasingamangalam. It is in the lands of the village of Seterdal, taluk Tiruvadanai, district Madura.

The station consists of a solid circular pillar of masonry $3 \frac{1}{8}$ feet in diameter, surrounded by an annular wall 17 inches thick, around which a platform is built: it contains two mark-stones, one in its upper surface and the other in the foundation 1.0 foot below it at the ground level. The azimuths and distances of objects in the following villages are :-Kðkku-úruni (cross on the E. gable of the R. C. church) $213^{\circ} 49^{\prime}$, miles 1.85 ; Suranu temple (centre of images) $90^{\circ} 4{ }^{\prime}$, mile $\frac{3}{4}$; and Mutupatnam (cross on the E. gable of the R. C. church) $355^{\circ} 9^{\prime}$, mile $0 \cdot 18$.
LIII. Kŏdikulam Tower Station, lat. $9^{\circ} 30^{\prime}$, long. $78^{\circ} 51^{\prime}$-observed at in 1876 -is on the N. bund of a small tank 320 yards E. of the village of this name, $1 \frac{1}{4}$ miles N.N.W. of Kadambúr, $1 \cdot 1$ miles W. of Arsanúr village, and about $9 \frac{1}{3}$ miles N. of Ramnad town. It is in the lands of Kŏdikulam village, taluk Ramnad (Rámnáthapuram), district Madura.

The station consists of a perforated pillar of masonry 25.8 feet high, built on a brick foundation 8 feet square, in which two mark-stones are imbedded, one at the bund level and the other 4.5 feet below it. The pillar is built in two rectangular blocks to within 1.8 feet of the top and thereafter circular and $3 \frac{1}{\frac{1}{3}}$ feet in diameter; an aperture on the E . side gives access to the bund level mark. The azimuths and distances of the following places are :-Tanniapulli 129°, mile 0.8 ; Pottuvayal (centre of the dome of a temple) $224^{\circ} 59^{\prime}$, miles $2 \cdot 62$; Agráram 297°, mile $0 \cdot 2$; and Manjikulam 354°, miles $2 \cdot 8$.
LIV. Pöragudi Trestle Station, lat. $9^{\circ} 30^{\prime}$, long. $78^{\circ} 56^{\prime}$-observed at in 1876 -is situated on a sand mound rising about 6 feet above the general level of the country, 300 yards N.E. of the hamlet of this name, and $1 \frac{1}{2}$ miles S.S.W. of Shambai village. It is in the lands of the village of Devipatnam, taluk Ramnad, district Madura.

The station consists of a solid rectangular pillar of masonry 5 feet square, having its upper surface flush with the top of the mound, and contains two mark-stones, one in its upper surface and the other $3 \cdot 9$ feet below it. The azimaths and distances of the following places are :-Devipatnam 340°, miles $1 \cdot 5$; Madavanúr 84°, miles $1 \cdot 4$; Mutturagunathapuramkoil (dome of a temple) $236^{\circ} 29^{\prime}$, mile $0 \cdot 81$; and Ayanárkoil (centre of a group of images) $99^{\circ} 9^{\prime}$, miles $1 \cdot 4$.
LV. Náyanárkoil Trestle Station, lat. $9^{\circ} 32^{\prime}$, long. $78^{\circ} 44^{\prime}$-observed at in 1876 -is situated in an open field, about 600 yards S.E. of the town of this name, 1 mile S. by W. of Tavankota, and $1 \frac{1}{2}$ miles W. by N. of Anjiamadai. It is in the lands of the village of Náyanárkoil, taluk Ramnad, district Madura.

The station consists of a solid rectangular pillar of masonry 5 feet square, having its upper surface flush with the ground, and contains two mark-stones, one in its upper surface and the other 3.3 feet below it. Outside the annular wall three rectangular pillars 12 feet high are built for the support of the high trestle. The azimuths and distances of the following places are :-Marudúr 169°, yards 280 ; Akramanji 324°, miles $1 \cdot 5$; and Náyanárkoil (centre of a temple) $126^{\circ} 40^{\prime}$, mile $0 \cdot 86$.
LVI. Ramnad (Rámnáthapuram) Station, lat. $9^{\circ} 22^{\prime}$, long. $78^{\circ} 52^{\prime}$-observed at in 1875 and 1876 -is on the superior slope of the parapet wall of the western face and between two embrasures of the S.W. bastion (the only one now standing) of the old brick fort of Ramnad near the entrance to the town and immediately N. of the high road from Madura. The centre of the bastion is occupied by a bungalow. The upper station mark is $27 \frac{1}{2}$ feet above the ground level (terreplein). Taluk Ramnad, district Madura.

The station consists of a solid circular pillar of masonry and contains two mark-stones, one imbedded flush with the slope of the parapet and the other $3 \cdot 1$ feet above it. When again visited in 1876, the station was found covered up just as when left in 1875, and evidently untouched in the interval. The azimuths and distances of the following places are :-Shuraukota 175°, mile 1; Ramnad (W. end of Roman Catholic Church) $268^{\circ} 42^{\prime}$, mile 0.34 ; Kurichata Ammankoil $154^{\circ} 24^{\prime}$, yards 150; and Kariúr 83°, mile $\frac{\text { s. }}{4}$.
LVII. Sambuttiyendal or Shámanúr Tower Station, lat. $9^{\circ} 23^{\prime}$, long. $78^{\circ} 45^{\prime}$-observed at in 1875 and 1876 -is situated in an open field, 385 yards E.S.E. of the hamlet of Sambuttiyendal, and $1 \frac{1}{4}$ miles N.W. by N. of Kawudakudi village. It is in the lands of the village of Tíyanúr, taluk Ramnad, district Madura.

The station consists of a perforated pillar of brick masonry 20.8 feet above ground level and contains two mark-stones, one at the ground level and the other 3.53 feet below it imbedded in the foundation. The pillar is built in two rectangular blocks to within 3 feet of the top, and thereafter circular and $3 \frac{1}{3}$ feet in diameter; an aperture on the E. side gives access to the ground level mark. When again visited in 1876, the station was found in good order and evidently untouched in the interval. The azimuths and distances of the following villages are:-P̌galúr 205 ${ }^{\circ}$, miles $1 \cdot 2$; Tíyanúr 285°, miles $1 \cdot 3$; Shámanúr 32°, miles $1 \cdot 2$; and Puthúr 111°, miles 2.
LVIII. Uttarakoshamangai Station, lat. $9^{\circ} 19^{\prime}$, long. $78^{\circ} 47^{\prime}$-observed at in 1875 -is on the central masonry pier of the southern staircase of the southern and unfinished gopuram (temple), about $6 \frac{1}{8}$ miles S.W. by W. of Ramnad town, 2 miles N. by E. of Kilaneri, and $5 \cdot 8$ miles N.E. by N. of Idambádal. The station mark is about 5 yards S. of the centre of the building, 50 yards S. of the northern and finished gopuram, and about 51 feet above the ground level. It is in the lands of the village of Uttarakoshamangai, taluk Ramnad, district Madura.

The station consists of a low solid pillar in which two marks are fixed, one on a stone in its upper surface and the other on a brick 0.7 foot below it. The azimuths and distances of the following villages are:-Kalari 280°, miles 2 ; Technúr 234, mile $\frac{3}{4}$; Köneri 76°, miles $2 \frac{1}{2}$; and Chěttiyendal 57°, miles $3 \frac{1}{2}$.
LIX. Kánjarangudi Station, lat. $9^{\circ} 15^{\prime}$, long. $78^{\circ} 51^{\prime}$-observed at in 1875-is situated on the highest hillock of loose drift-sand about 50 feet high, $2 \frac{1}{2}$ miles S.s.W. of Tirupilani village, and 8 miles S . of Ramnad town. It is in the lands of Kánjarangudi village, taluk Ramnad, district Madura.

The station consists of a long wooden pile driven flush with the summit of the sand hillock, on which a mark is cut, and around which three other wooden piles are similarly driven for the support of the theodolite stand. The azimuths, directions and distances of the following places are :-K Kanjarangudi 194°, mile 0.3 ; Sêngalanírodai 3°, mile 0.5 ; Tirupilani Gopuram $201^{\circ} 32^{\prime}$, miles 2.62; Najamandal land-mark $290^{\circ} 10^{\prime}$, miles 1.04 ; and Kílakarai Roman Catholic Church S.W., miles 2.
LX. Yervádi or Chakilimedu Station, lat. $9^{\circ} 14^{\prime}$, long. $78^{\circ} 46^{\prime}$-observed at in 1875 -is situated on the highest hillock of loose drift-sand about 40 feet above the plain, $1 \frac{1}{2}$ miles E. of Yervadi village, and
$3 \frac{1}{2}$ miles W. of Kilakarai village. It is in the lands of Máyakulam village, taluk Mutukulatúr, district Madura.

The station consists of a mark-stone imbedded flush with the hill top, around which three long wooden piles are driven into the sand hillock for the support of the theodulite stand. The azimuths and distances of the following places are :Idambádal 118°, miles $3 \frac{1}{2}$; Pilanthai 237°, mile 1 ; Máyakulam 256°, miles $1 \frac{1}{2}$; and Yervadi (mosque) $87^{\circ} 39^{\prime}$, miles 1.55 .
LXI. Tanichanthai Station, lat. $9^{\circ} 13^{\prime}$, long. $78^{\circ} 40^{\prime}$-observed at in 1875 -is situated on about the western summit of a sand ridge, about 0.6 of a mile N . of Thodai and Tanichanthai villages, and 60 yards \mathbf{W}. of the spot pointed out as the site of an old survey station, most probably "Tunnychundy" of Colonel Lambton's secondary triangulation, now called Vellakaramedu. It is in the lands of Tanichanthai village, taluk Mutukulatúr, district Madura.

The station consists of a mark-stone at the ground level ($1.5 \times 1.5 \times 1.0$ feet) imbedded in concrete ending below in a cone. This mark is surmounted by a wooden pile having a circle and dot engraved on its summit, 11.3 feet above the ground level mark-stone; the observations were all referred to the upper mark. The azimuths and distances of the following villages and objects are:-Kðttankulam temple $101^{\circ} 36^{\prime}$, miles $1 \cdot 06$; Āykkudi 177°, mile $\frac{3}{4}$; Rájakalpálaiyam (paka house) $159^{\circ} 38^{\prime}$, miles 1.84 ; Hikudi (small boundary stone) $178^{\circ} 40^{\prime}$, feet 150 ; and Chorakulam (temple) $231^{\circ} 40$, mile 1 .
LXII. Arapoth or Uttan Tower Station, lat. $9^{\circ} 19^{\prime}$, long. $78^{\circ} 39^{\prime}$-observed at in 1875 -is situated on the S.W. part of the tank bund slightly above the surrounding fields and about $\frac{1}{8}$ a mile S.E. of Arapoth or more commonly called Arapur village. It is in the lands of Uttan village, taluk Mutukulatur, district Madura.

The station consists of a perforated pillar of brick masonry, $24 \cdot 6$ feet above the bund level, which contains two markstones, one at the bund level and the other $2 \cdot 42$ feet below it imbedded in the foundation. The pillar is built in three rectangular blocks to within 2 feet of the top, and thereafter circular and $3 \frac{1}{\frac{1}{2}}$ feet in diameter; an aperture on the E. side gives access to the ground level mark. The azimuths and distances of the following places are: -Uttan 315°, yards 370 ; Tëri-iruvěli 262°, mile 1; Arapoth 141°, mile 0.5 ; Arapoth (temple) $132^{\circ} 14^{\prime}$, mile 0.73 ; and Kamachi Ammankoil $103^{\circ} 32^{\prime}$, mile 0.75 .
LXIII. Kadaládi Tower Station, lat. $9^{\circ} 13^{\prime}$, long. $78^{\circ} 32^{\prime}$-observed at in 1875 -is situated on the eastern tank bund, 10 feet above the level of the surrounding country, and about 50 yards N . of the village of Kadaládi. It is in the lands of the village of Kadaládi, taluk Mutukulatúr, district Madura.

The station consists of a perforated pillar of brick masonry, 20 feet above the bund level, which contains two mark-stones, one at the bund level and the other 3.75 feet below it imbedded in the foundation. The pillar is built in two rectangular blocks to within $3 \frac{1}{2}$ feet of the top and thereafter it is circular and $3 \frac{1}{3}$ feet in diameter; an aperture on the E. side gives access to the ground level mark. The azimuths and distances of the following places are:-Mangalam 135 ${ }^{\circ}$, miles $1 \cdot 2$; Appanúr 154 ${ }^{\circ}$, miles 3; Purasankulam (small stone temple) $200^{\circ} 52^{\prime}$, mile 0.50 ; Kadaládi temple $10^{\circ} 48^{\prime}$, mile $0 \cdot 18$; and Kadaládi white building $63^{\circ} 6^{\prime}$, mile $0 \cdot 32$.
LXIV. Ópilán Station, lat. $9^{\circ} 8^{\prime}$, long. $78^{\circ} 34^{\prime}$-observed at in 1875 -is situated on the highest hillock of loose drift-sand 30 feet high, 220 yards from the sea coast, and about 1 mile E.S.E. of OOpilán village. It is in the lands of Ópilán village, taluk Mutukulatúr, district Madura.

The station consists of a long wooden pile driven flush with the summit of the sand hillock on which a mark is cut, and around which three other wooden piles are similarly driven for the support of the theodolite stand. The azimuths and distances of the following places are :-Ópilán (paka house) $110^{\circ} 51^{\prime}$, mile 0.96 ; Pěriyakulam 181°, miles $1 \frac{1}{2}$; Tulukapati 245°, mile 1 ; Koil Máriur temple $257^{\circ} 8^{\prime}$, miles $2 \frac{1}{2}$; and Múkkaiyúr R. C. Church (W. end) 79 22', miles 2.68.
LXV. Kidátirukai Tower Station, lat. $9^{\circ} 18^{\prime}$, long. $78^{\circ} 30^{\prime}$-observed at in 1875 -is situated on a somewhat higher ground than the surrounding country, which is said to be the site of an old fort and about 260 yards N.W. of the village of Kidátirukai. It is in the lands of the village of Kidátirukai, taluk Mutukulatúr, district Madura.

The station consists of a perforated pillar of masonry 17 feet high, built on a conorete foundation 8 feet square, in which two mark-stones are imbedded, one at the ground level and the other 3.08 feet below it. The pillar is built in two rectangular blocks to within $2 \frac{1}{\frac{1}{2}}$ feet of the top and thereafter it is circular and $3 \frac{1}{3}$ feet in diameter; an aperture on the E. side gives access to the ground level mark. The azimuths and distances of the following places are:-Appanúr 334°, miles 3 ; Něrinijipati 87°, miles $2 屯$; Ǩttulavi 166°, mile $\frac{1}{2}$; and Sonapěrián Kota Pati (small white temple) $170^{\circ} 47^{\prime}$, mile 0.85 .
LXVI. Taraigudi Station, lat. $9^{\circ} 9^{\prime}$, long. $78^{\circ} 26^{\prime}$-observed at in 1875 -is situated on the eastern summit of a red sand ridge rising 25 to 30 feet above the adjacent plain; the high road from Tuticorin (Tutugudi) to Ramnad passes by the northern side of the ridge. It is in the lands of Taraigudi village, taluk Kamuti, district Madura.

The station consists of a long wooden pile driven flush with the sand ridge on which a mark is cut, and around which three other wooden piles are similarly driven for the support of the theodolite stand. The station is said to occupy the same site as that of "Turraygoody" secondary station of Colonel Lambton's triangulation. The directions, azimuths and distances of the following places are :-SĚvalpati W.S.W., miles $3 \frac{1}{\frac{1}{2}}$; Kðkkadi N., miles 2 2 ; Vrpankulam 139°, miles $8 \frac{1}{2}$; Umiamálkoil (white building) $99^{\circ} 58^{\prime}$, mile 1 ; Muturamalingampuram (masonry building) $74^{\circ} 42^{\prime}$, miles 3 ; and Taraigudi (large village) 134°, mile $0 \cdot 8$.
LXVII. Pulápati Tower Station, lat. $9^{\circ} 14^{\prime}$, long. $78^{\circ} 25^{\prime}$-observed at in 1875 -is situated on a somewhat higher ground than the general level of the country, 1.3 miles E. of Pothampalli, and 1 mile N.E. of Kadamangalam. It is in the lands of Pulápati village, taluk Kamuti, district Madura.

The station consists of a perforated pillar of masonry 21 feet high, built on a concrete foundation 8 feet square, in which two mark-stones are imbedded, one at the ground level and the other 3.92 feet below it. The pillar is built in three rectangular blocks up to a height of 20 feet, and thereafter circular and $3 \frac{1}{8}$ feet in diameter; an aperture on the E. side gives access to the ground level mark. The azimuths and distances of the following places are:-Kadamangalam Roman Catholic Church (W. end) $24^{\circ} 36^{\prime}$, miles $1 \cdot 38$; Ariyamangalam 191°, miles $2 \frac{1}{2}$; Pulápati 125°, mile 0.24 ; Kuthankulam 209 ${ }^{\circ}$, miles $1 \frac{1}{2}$; and Kalutharpán 167°, miles $1 \frac{1}{2}$.
LXVIII. Annapúnáyakanpati Tower Station, lat. $9^{\circ} 12^{\prime}$, long. $78^{\circ} 20^{\prime}$-observed at in 1875 -is situated in an open field of black cotton soil, nearly 1 mile N . of the village so called, 3 miles \mathbf{W}. of Tirumáluganthankota, and $3 \frac{1}{2}$ miles S.W. of the kasba town of Pernali. It is in the lands of the village of Tirumaluganthankota, taluk Kamuti, district Madura.

The station consists of a perforated pillar of brick masonry, 19.6 feet above the ground level, built on a concrete foundation 8 feet square, in which three mark-stones are imbedded, one at the ground level and two others 1.75 and 3.75 feet respectively below it. The pillar is built in three rectangular blocks up to a height of 18 feet, and thereafter circular and $3 \frac{1}{3}$ feet in diameter; an aperture on the eastern side gives access to the ground level mark. The azimuths and distances of the following places are :-Annapúnáyakanpati 11°, mile 0.9 ; Lachmipuram 25°, miles 1.6 ; Melasarapuram 93°, miles 1.7 ; Puthupati 135°, miles $1 \frac{3}{4}$; small boundary stone between Melasarapuram and Tirumáluganthankota $144^{\circ} 3^{\prime}$, mile 0.79 ; and large boundary stone near Melasarapuram dividing the Ramnad and Tinnevelly (Tirunělveli) districts $101^{\circ} 52^{\prime}$, miles 1.74 .
LXIX. Súrangudi Station, lat. $9^{\circ} 6^{\prime}$, long. $78^{\circ} 22^{\prime}$-observed at in 1875 -is situated on one of the highest and most westerly points of an extensive red sand ridge, rising about 30 feet above the level of the surrounding country, about 3 miles from the sea coast, and about $\frac{1}{2}$ mile S.E. of Súrangudi village. The high road from Tuticorin to Ramnad passes by the northern side of the ridge about $\frac{1}{2}$ a mile N . of the station. It is in the lands of Súrangudi village, taluk Ơtapidáram, district Tinnevelly.

The station consists of a long wooden pile driven well into the sand on which a mark is cut, and around which three other wooden piles are similarly driven for the support of the theodolite stand ; the station is about 9 feet above the general level of the hill. The directions, azimuths and distances of the following places and objects are :-Melmanthai (large tree) 440, miles 3; Vémbár (centre of a dark building) $294^{\circ} 22^{\prime}$, miles 3; Tattaneri W W. by S., miles 4 $\frac{1}{2}$; Sěvalpati N.E. by N., miles 3; and Vémbár Roman Catholic Church (spire at the W. end) $297^{\circ} 47^{\prime}$, miles 2.98.
LXX. Mutúruni Station, lat. $9^{\circ} 17^{\prime}$, long. $78^{\circ} 19^{\prime}$-observed at in 1875 -is situated on the southern bund of a tank in the open fields, on the boundary of the Ramnad zamindári estate, $3 \frac{1}{4}$ miles S . of Paraláchi village, 3 miles S.S.W. of the Shenkulam white building, and 3 miles S.W. by W. of Pulankad. It is in the lands of Paraláchi village, taluk Tirushuli, district Madura.

The station consists of the usual earthen platform enclosing a solid, circular and isolated pillar of masonry $7 \cdot 13$ feet high, built on a deep concrete foundation, in which three mark-stones are imbedded, one at its surface and two others 3.00 and $7 \cdot 13$ feet respectively below it. The azimuths and distances of the following places and objects are:-Paralachi (temple on the N.E. side of the village) $189^{\circ} 20^{\prime}$, miles $3 \cdot 14$; Púvanáyakanpati 62°, miles $2 \frac{1}{2}$; Tuttinattam 326°, miles 2; Boundary stone $A 101^{\circ} 9^{\prime}$, feet 76 ; Boundary stone B $271^{\circ} 11^{\prime}$, feet 401 ; Boundary stone C $303^{\circ} 46^{\prime}$, feet 433 ; Boundary stone D (great upright boundary stone of the Ramnad estate) $324^{\circ} 13^{\prime}$, mile $0 \cdot 66$; Boundary stone $E 62^{\circ} 40^{\prime}$, feet 102 ; and Boundary stone F (at the S.W. corner of a tank) $110^{\circ} 20^{\prime}$, feet 328 .
LXXI. Mŏtúruni or Kammápati Station, lat. $9^{\circ} 9^{\prime}$, long. $78^{\circ} 14^{\prime}$-observed at in 1875 -is on the bund of a tank about $\frac{2}{3}$ of a mile E. of the village of Kammápati and $1_{\frac{1}{2}}$ miles N.N.E. of Vilátikulam. It is in the lands of the village of Kammápati, taluk Otapidáram, district Tinnevelly.

The station consists of a platform of earth and stones 16 feet square enclosing a solid, circular and isolated pillar of masonry, built on a bed of concrete 9 feet in diameter. The lower $6 \frac{1}{2}$ feet of the pillar is built of rough stone masonry and the upper $9 \frac{3}{4}$ feet of brick masonry. The pillar which rises 7 or 8 feet above the bund level or about 15 feet above the general level of the adjacent fields, contains four mark-stones, one at top and the others at $4 \cdot 75,9 \cdot 83$ and $16 \cdot 25$ feet respectively below it. The azimuths and distances of the following places are:-Kammápati 94°, mile $\frac{3}{3}$; Vilátikulam (temple near a tank bund to the N.W. of the village) $40^{\circ} 38^{\prime}$, miles $1 \frac{1}{2}$; and Vilvamartapati (large tiled house in the village) $113^{\circ} 5^{\prime}$, mile $\frac{3}{3}$.
LXXII. Melakalúruni Tower Station, lat. $9^{\circ} 14^{\prime}$, long. $78^{\circ} 13^{\prime}$-observed at in 1875 -is on the \mathbf{S}. or S.E. part of the tank bund 17 feet above the adjacent field, 120 yards E. by N. from the small hamlet of this name, $1 \frac{2}{3}$ miles S.W. of Sirangapuram, $2 \frac{1}{\frac{1}{8}}$ miles E . of Nágalápuram on the high road from Vilátikulam to Madura, and 4 miles W.S.W. of Pudalapuram. It is in the lands of Sirangapuram village, taluk Ơtapidáram, district Tinnevelly.

The station consists of a perforated, circular and isolated pillar of brick masonry 11.09 feet high, above the bund level, standing on a solid pillar or block of masonry sunk to a depth of 20 feet below the bund level. The solid pillar contains five mark-stones, one at the bund level and four others at 5, 10, 15 and 20 feet respectively below it. Access to the mark at the bund level is obtained through an aperture in the perforated pillar. The azimuths and distances of the following villages are :Melakalúruni 82°, yards 120 ; Kílakalúruni 289°, mile $0 \cdot 6$; and Nágalápuram 81°, miles $2 \frac{1}{2}$.
LXXIII. Supalápuram Tower Station, lat. $9^{\circ} 4^{\prime}$, long. $78^{\circ} 7^{\prime}$-observed at in 1875 -is situated in the open fields, about $\frac{1}{4}$ mile N.W. of the village of this name, $7 \frac{1}{8}$ miles S.E. of Etaiyápuram town, and 7 miles S.W. of Vilátikulam on the high road from Sátúr. It is in the lands of the village of Supalápuram, taluk Ótapidáram, district Tinnevelly.

The station consists of a perforated pillar of masonry 21 feet high, standing on a stone foundation 8 feet square, which contains two mark-stones, one at the ground level and the other $3 \cdot 17$ feet below it imbedded in the foundation. The pillar is 6 feet square at the ground level, $3 \frac{1}{\frac{1}{2}}$ feet square at a height of 20 feet, and thereafter circular and $3 \frac{1}{\frac{1}{3}}$ feet in diameter. Access to the ground level mark is obtained through an aperture on the E. side. The azimuths and distances of the following places are :Kariyámpati 127°, mile $\frac{3}{4}$; Pudupati 144°, miles 3 ; Aronkulam 184°, mile $\frac{3}{4}$; and Supalápuram (chattram) $317^{\circ} 4^{\prime}$, mile \ddagger.
LXXIV. Mínákslii Hill Station, lat. $9^{\circ} 13^{\prime}$, long. $78^{\circ} 1^{\prime}$-observed at in 1875-is situated on the middle of the summit of the pyramidal-shaped roof of the Mínákshi-Malaipati temple called Pŏichola Mĕyiráyankoil, built on a rock which rises about 120 feet above the surrounding plain of black soil, about 4 miles N. by W. of the town of Ětaiyapuram, and $5 \frac{3}{4}$ miles S.W. of Tappati on the high road from Vipar to Sátúr town. The station is in the lands of Minákshipuram, taluk Ơtapidáram, district Tinnevelly.

The station consists of a circular isolated pillar of masonry built around a circle and dot engraved on a stone set in the flat portion of the chunam ridge or crest of the roof of the temple, 14 inches W. by N. of the centre of the temple and 9.7 feet above the floor. The station mark is 6.33 feet from the S. side, 6.13 feet from the N. side, 5.08 feet from the W. side and $7 \cdot 35$ feet from the E. side of the base of the roof which is about $12 \frac{1}{2}$ feet square and 14 feet above the rock on which the temple is built. This station is most probably identical with that of "Meenachipooram" of Colonel Lambton's triangulation, though no allusion to the finding of a mark or pillar of any kind is made by the party visiting it in 1875. The directions, azimuths and distances of the following places are :-Ětaiyapuram (centre of three domes) $343^{\circ} 53^{\prime}$, miles 4.23; Mínákshipuram 174 ${ }^{\circ}$, mile 0.9 ; Kadalai W.S.W., miles $2 \frac{1}{3}$; Karuppúr N.N.E., miles $2 \frac{1}{2}$; and Kotúr E.N.E., miles $4 \frac{3}{4}$.
LXXXIII.-(Of the Great Arc Meridional Series, Section 8° to 18°). Koilpati Hill Station, lat. $9^{\circ} 10^{\prime}$, long. $77^{\circ} 544^{\prime}$-observed at in 1874 and 1875 -is situated on the highest point of a small rocky hill called Koilpati-parambu. The high road from Tinnevelly to Madura and the Railway line from Tuticorin pass close by the N.W. foot of the hill. The station is in the lands of Koilpati village, taluk Sátúr, district Tinnevelly.

Abstract

The station consists of a platform of earth and stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{3}{3}}$ feet in diameter, which contains two marks, one engraved on the rock in sitl and the other $1 \cdot 10$ feet above it on a stone imbedded flush with the upper surface of the pillar. When again visited in 1875, in connection with the operations of the South-East Coast Series, the station was found in good order and evidently untampered with. The azimuths and distances of the following places are:-Manditop 14°, mile 1; Maniyachi 133°, mile $\frac{3}{4}$; Revenue Survey trijunction boundary stone of Koilpati, Alampati and Mandítop villages $32^{\circ} 33^{\prime}$, feet 86.5 ; Koilpati (northern and larger spire of a temple) $225^{\circ} 42^{\prime}$, mile $1 \cdot 00$; and Mupampati (centre of the roof of a small temple) $202^{\circ} 32^{\prime}$, miles $1 \frac{8}{4}$.

LXXXV.-(Of the Great Arc Meridional Series, Section 8° to 18°). Kulayanallúr Hill Station, lat. $8^{\circ} 56^{\prime}$, long. $78^{\circ} 1^{\prime}$-observed at in January and December 1874 -is situated on the highest part of a stony ridge or mound rising about 150 feet above the surrounding plain, about 3 miles nearly west of Otapidáram town, $3 \frac{1}{2}$ miles E. by N. of Singampati on the high road from Ơtapidáram to Těnkási. It is in the lands of the village of Araikulam, taluk Ötapidáram, district Tinnevelly.

[^12]Vellapuram N.E., mile $\frac{3}{4}$; Kílamangalam N.N.W., miles $1 \frac{1}{4}$; No. 1, Revenue Survey stone $8^{\circ}{ }^{57} 7^{\prime}$, miles $1 \cdot 12$; No. 2, Revenue Survey stone $1^{\circ} 47^{\prime}$, miles $1 \cdot 10$; No. 3, Revenue Survey stone $343^{\circ} 14^{\prime}$, mile 0.88 ; No. 4, Revenue Survey stone $838^{\circ} 41^{\prime}$, mile 0.65 ; No. 5, Revenue Survey stone $311^{\circ} 58^{\prime}$, mile 0.78 ; and No. 6, Revenue Survey stone $302^{\circ} 38^{\prime}$, mile 0.92 .

CEYLON BRANCH SERIES OF THE SOUTH-EAST COAST SERIES.

LXXV. Púvarasanhalli Tívu Station, lat. $9^{\circ} 9^{\prime}$, long. $78^{\circ} 48^{\prime}$-observed at in 1875 -is situated on a very small sand and coral islet about 170 yards long and 50 yards wide, oval in shape stretching in a N.W. and S.E. direction, about a mile E.N.E. of the Palayamunai island, and 6 miles S.W. by S. of Kilakarai. The station is on about the widest part and in the centre of the island, 50 feet from the high water mark due N . of it, and 56 yards from the S.E. extremity of the islet. Taluk Ramnad, district Madura.

The station is denoted by a circle and dot cut on the head of a wooden pile driven into the ground. This station was reported by the district officer, in February 1883, to have been destroyed.
LXXVI. Appa Tívu Station, lat. $9^{\circ} 10^{\prime}$, long. $78^{\circ} 52^{\prime}$-observed at in 1875 -is situated on the highest sand bank at the southern extremity of the eastern portion of the Appa Tivu island, about 13 feet above the high water mark, and about $5 \frac{1}{2}$ miles S.S.E. of Kilakarai. The island is about $1 \frac{1}{4}$ miles long from N.E. to S.W. and varies in breadth from 40 to 1200 feet, the narrowest portion is about the centre which is submerged at high water. Taluk Ramnad, district Madura.

The station is denoted by a circle and dot cut on the head of a wooden pile driven into the ground.
LXXVII. Pěriyapatnam Station, lat. $9^{\circ} 15^{\prime}$, long. $78^{\circ} 57^{\prime}$-observed at in 1875 -is situated on a low sand hillock near a headland of the coast, about a mile S.W. of Periyapatnam village, and 118 feet E.S.E. of the Mutupet S.W. boundary stone; the station is in a clump of palmyras, 750 yards from the sea. It is in the lands of Mutupet village, taluk Ramnad, district Madura.

The station consists of a mark-stone buried deep in the sand and having a large wooden pile erected over it and carrying a mark engraved on its head $10 \frac{1}{2}$ feet above the mark-stone : the pile is surrounded with sand piled up nearly to its summit.
LXXVIII. Válai Tívu Station, lat. $9^{\circ} 11^{\prime}$, long. $78^{\circ} 59^{\prime}$-observed at in 1875 -is situated on the eastern portion of the island, 2 or 3 feet above the high water mark, about 10 miles E. by S. of Kilakarai, 6 miles S.S.E. of Mutupet, and 2 miles W. of Muli Tívu. This portion of the island is about $\frac{1}{2}$ a mile long and 400 yards wide, and is separated at high water from the western portion which is densely covered with tree and thorn jungle. Taluk Ramnad, district Madura.

The station is denoted by a wooden pile driven into the ground, having a circle and dot cut on its summit nearly 5 feet above the ground level.
LXXIX. Rámaswámi Madam Station, lat. $8^{\circ} 16^{\prime}$, long. $79^{\circ} 6^{\prime}$-observed at in 1875 -is situated on a sand hillock about 40 feet high, 320 yards N. by E. of the chattram known as Kodipothianthedal, and about $\frac{1}{8}$ a mile N.W. of Chini Appa Pillai's dargah. The station is in taluk Ramnad, district Madura.

The station consists of a platform enclosing a solid circular pillar of masonry $8 \frac{1}{3}$ feet in diameter, surrounded by an annular wall ; it contains two marks, one in its upper surface and the other 0.75 foot below it, engraved on a stone imbedded in the foundation.
LXXX. Musal Tivu Trestle Station, lat. $9^{\circ} 12^{\prime}$, long. $79^{\circ} 7^{\prime}$-observed at in 1875 -is situated on a large island so called, about 4 miles due south of Rámaswami Madam, and 3 or 4 miles W. of Mannáli Tívu. The station is on the north or northwestern point of the island, about 25 yards from the high water mark, 1700 yards N.W. of a small Roman Catholic shrine, and 1400 yards N.N.W. of a large banian tree (the most conspicuous object on the island); the shrine and the tree are on the eastern portion of the island. Taluk Ramnad, district Madura.

The station consists of a solid circular pillar of masonry $3 \frac{1}{z}$ feet in diameter and contains two mark-stones, one set in the foundation about the ground level and the other 0.75 foot above it in the upper surface of the pillar.
LXXXI. Marakayarpatnam Station, lat. $9^{\circ} 17^{\prime}$, long. $79^{\circ} 10^{\prime}$-observed at in 1875 and 1876 -is situated on a sand hillock about 55 feet high, 265 yards S.E. by S. of milestone No. 22 on the high road from Ramnad to Pámban, and 500 yards N. by W. of Marakayárpatnam town. Taluk Ramnad, district Madura.

Abstract

The station consists of a platform enclosing a solid circular pillar of masonry $3 \frac{1}{8}$ feet in diameter and contains two mark-stones, one in the foundation and the other 0.9 foot above it in the surface of the pillar. When again visited in 1876 it was found in good order and no alteration in its construction was made. The bearings and distances of the circumjacent places are :Vittilai Mantapam E., miles 1-49; Marakayárpatnam mosque S.S.W., mile 0.26; and Pámban light-house E. by N., miles 6.13.

LXXXII. Púmurichán Station, lat. $9^{\circ} 15^{\prime}$, long. $79^{\circ} 13^{\prime}$-observed at in 1875 and 1876 -is on the conspicuous beacon on the western edge of the Pulli island, 80 feet E . from the high water mark, and about $4 \frac{1}{8}$ miles S . W. of the Pámban Light-house. The beacon is built of stone masonry, 29 feet high and 10 feet square at base, and tapers upwards ending in a pyramid, and belongs to the Madras Marine Department. Taluk Ramnad, district Madura.

The station is denoted by a mark-stone imbedded in the middle of the pyramid about a foot below its point. For the accommodation of the theodolite, the pyramidal top of the beacon was removed and a circular pillar 40 inches in diameter was built round the mark-stone: when again visited in 1876, the station was found intact. On completion of the observations, this pillar was removed and the summit of the beacon restored to its original height and shape with the mark-stone left in it. The azimuths and distances of the circumjacent places are :-Kurusadi island beacon $259^{\circ} 444^{\prime}$, miles 2.45 ; Kurusadi hospital (for Ceylon Cooly emigrants) $260^{\circ} 11^{\prime}$, miles 2.74; Pámban Light-house $220^{\circ} 33^{\prime}$, miles 4.12; and Toniturai beacon (southern of two) $176^{\circ} 41^{\prime}$, miles 2.60.
LXXXIII. Gandhamána Station, lat. $9^{\circ} 18^{\prime}$, long. $79^{\circ} 21^{\prime}$-observed at in 1876 -is on the roof of the Gandhamána Parvatam temple on a sand lillock rising about 85 feet above its base, and about 1 mile N.W. of Rámeswaram town. The station is in the centre of the S.E. bay of the double colonnade on the roof of the temple. Taluk Pámban, district Madura.

The station is denoted by a circle and dot engraved on the roof in the centre of the four southeasternmost columns forming a square (6.56 by 6.36 feet) with their innermost corners nearly 9 feet diagonally apart. The station mark is about $10 \frac{1}{2}$ feet from the centre of the roof under the temple spire, and the same distance N.W. from the head of the steps by which the roof is reached. The colonnade supports a second roof at a height of 9 feet above the station mark. The azimuths and distances of the circumjacent places are:-Rámeswaram (large temple) $324^{\circ} 25^{\prime}$, miles $1 \cdot 25$; Rámeswaram (unfinished temple) $319^{\circ} 6^{\prime}$, miles $1 \cdot 33$; Pámban Light-house $80^{\circ} 21^{\prime}$, miles 6.01 ; and Ködándarámaswámi temple $329^{\circ} 2^{\prime}$, miles 5.60 .
LXXXIV. Pisásu Mundal Trestle Station, lat. $9^{\circ} 20^{\prime}$, long. $79^{\circ} 21^{\prime}$-observed at in 1876 -is situated on the small sand ridge in a field called Vadakád at the northern extremity of the Rámeswaram island, about 40 yards S. of the high water mark, $1 \cdot 8$ miles N. by E. of the Gandhamana Parvatam. It is in the lands of the village of Devamankád, taluk Pámban, district Madura.

[^13]LXXXVI. Kachi Tivu, N., Trestle Station, lat. $9^{\circ} 24^{\prime}$, long. $79^{\circ} 34^{\prime}$-observed at in 1876 -is situated on the shingle ridge forming the N.N.W. point of the Kachi Tivu island in Palk's Straits, about 12 yards S. of the high water mark, and 16 miles N.E. by N. of Rámeswaram. Taluk Jaffna, N. Province of Ceylon.

The station consists of a solid circular pillar of masonry 1 foot high and $3 \frac{1}{2}$ feet in diameter and contains two markstones, one flush with its upper surface and the other 1 foot below it at the ground level.
LXXXVII. Kachi Tívu, S., Trestle Station, lat. $9^{\circ} 23^{\prime}$, long. $79^{\circ} 34^{\prime}$-observed at in 1876 -is situated on the rock 41 feet N. of the edge of the cliff at the extreme S.E. point of the Kachi Tívu island in Palk's Straits, and about 16 miles N.E. by N. of Rámeswaram. Taluk Jaffina, N. Province of Ceylon. The station consists of a solid circular pillar of masonry $1 \frac{1}{2}$ feet high and $3 \frac{1}{2}$ feet in diameter and contains three markstones, the lowest engraved on the rock in sitl and the others $\frac{1}{2}$ foot and $1 \frac{1}{\frac{1}{2}}$ feet respectively above it.
LXXXVIII. Ámanakamunai or Neduvan Tívu Trestle Station, lat. $9^{\circ} \mathbf{3 3}$, long. $79^{\circ} 42^{\prime}$ —observed at in 1876-is situated on the coast ridge at the N.W. extremity of the island called Neduvan Tívu or Delft
Island in Palk's Straits, about 33 yards S. from the high water mark on the headland, 63 yards \mathbf{E}. from the
Island in Palk's Straits, about 33 yards S. from the high water mark on the headland, 63 yards \mathbf{E}. from the
high water mark in the inlet which drains the N.W. part of the island, and about 14 feet above sea level. Taluk Jaffna, N. Province of Ceylon.

The station consists of a platform of loose stones and sand enclosing a solid circular pillar of masonry $5 \frac{1}{2}$ feet in diameter and 1 foot above the ground level, built on a foundation 8 feet in diameter and 3 feet deep. The pillar contains two marks, one flush with its upper surface and the other 1 foot below it. Delft Bungalow is E.S. E. about 4 miles.
LXXXIX. Úrimunai or Neduvan Tívu Trestle Station, lat. $9^{\circ} 28^{\prime}$, long. $79^{\circ} 46^{\prime}$-observed at in 1876 -
is situated on the coast ridge at the southeasternmost point of the island called Neduvan Tívu or Delft Island in
Palk's Straits, about 35 to 40 yards N. of the high water mark, and 4 miles S. of the Delft Bungalow. Taluk
is situated on the coast ridge at the southeasternmost point of the island called Neduvan Tivu or Delft Island in
Palk's Straits, about 35 to 40 yards N. of the high water mark, and 4 miles S. of the Delft Bungalow. Taluk Jaffna, N. Province of Ceylon.

The station consists of a solid circular pillar of masonry $5 \frac{1}{2}$ feet in diameter and 1 foot above the ground level, built on a foundation 8 feet in diameter and 3 feet deep. The pillar contains two mark-stones, one flush with its upper surface and the other 1 foot below it.

April, 1884.
W. H. COLE,
In charge of Computing Office.位

SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

Notr.-Stations XXXIV (Mávandúr) and XXXIX (Avirimodu) appertain to the Madras Longitudinal Series.

Notr.-Stations XXXIV (Mávandúr) and XXXIX (Avirimodu) appertain to the Madras Longitudinal Series.

Note.—Station XXXIV (Mávandúr) appertains to the Madras Longitudinal Series.

At VI (Kallapat)

March 1879; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on X (Vallam) $206^{\circ} 24^{\prime} \quad 26^{\circ} 24^{\prime} \quad 285^{\circ} 35^{\prime} \quad 105^{\circ} 35^{\prime} \quad 4^{\circ} 48^{\prime} \quad 184^{\circ} 48^{\prime} \quad 83^{\circ} 59^{\prime} \quad 263^{\circ} 59^{\prime} \quad 163^{\circ} 11^{\prime} \quad 843^{\circ} 11^{\prime}$										$\mathbf{M}=$ Mean of Groups ${ }^{2}=$ Relativo $\mathbf{W e i g h t}$ C = Concluded Angle	
$\begin{gathered} \mathbf{X} \text { (Vallam) } \\ \text { and } \\ \text { VIII (Chěndamangalam) } \end{gathered}$	 										$\begin{aligned} M & =40^{\prime \prime} \cdot 47 \\ w & =9 \cdot 80 \\ \frac{I}{w} & =0 \cdot 10 \\ C & =31^{\circ} 42^{\prime} 40^{\prime \prime} \cdot 47 \end{aligned}$	
	40'09	$39 \cdot 87$	41•07	42•16	$39^{\bullet 28}$	40•88	40•46	39*33	41'10	40*42		
VIII (Chěndamangalam) and VII (Mallipat)											$\begin{aligned} M & =53^{\prime \prime} \cdot 77 \\ w & =9 \cdot 54 \\ \frac{\mathbf{1}}{w} & =0 \cdot 10 \\ C & =54^{\circ} 2^{\prime} 53^{\prime \prime} \cdot 76 \end{aligned}$	
	54*17	54.52	54*46	52.97	53.71	53'19	$55^{\circ} \mathrm{6I}$	53*40	52.29	53*39		
$\begin{gathered} \text { VII (Mallipat) } \\ \text { and } \\ \text { V (Gingee) } \end{gathered}$											$\begin{aligned} & M=4^{\prime \prime} \cdot 19 \\ & w=13 \cdot 82 \\ & \frac{\mathbf{I}}{w}=0 \cdot 07 \\ & C=56^{\circ} 35^{\prime} 4^{N} \cdot 19 \end{aligned}$	
	5.56	4.71	3*96	4×53	4*02	$3 \cdot 46$	3*57	2900	4*22	4*96		
$\begin{gathered} \text { V (Gingee) } \\ \text { and } \\ \text { IV (Përumukkal) } \end{gathered}$											$\begin{aligned} & M=59^{\prime \prime \cdot 16} \\ & w=11 \cdot 32 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=64^{\circ} \quad 1^{\prime} 59^{\prime \prime} \cdot 16 \end{aligned}$	
At VII (Mallipat) March 1879; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.												
Angle between	Circle readings, telescope being set on \mathbf{V} (Gingee) 										M = Mean of Groups ${ }^{20}=$ Relative Weight C = Concluded Angle	
$\begin{gathered} \nabla \text { (Gingee) } \\ \text { and } \\ \text { IV (Përumukkal) } \end{gathered}$	 										$\begin{aligned} & M=10^{\prime \prime} \cdot 79 \\ & w=37 \cdot 00 \\ & \frac{\mathbf{I}}{w}=0 \cdot 03 \\ & C=52^{\circ} 55^{\prime} 10^{\prime \prime} \cdot 79 \end{aligned}$	
	10*31	11•56	11)10	11:28	10*33	$10 \cdot 85$	10*12	10*39	11*01	10*92		

At VIII (Chěndamangalam)-(Continued).											
Angle between	Circle readings, telescope being set on \mathbf{X} (Vallam)										$M=$ Mean of Groups $w_{0}=$ Relative Weight C = Concluded Angle
$\begin{aligned} & \text { XI (Ulundúrpet) } \\ & \text { and } \\ & \text { IX (Kiliyúr) } \end{aligned}$	 										$\begin{aligned} M & =20^{\prime \prime} \cdot 96 \\ w & =25 \cdot 60 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =60^{\circ} 35^{\prime} 20^{\prime \prime} \cdot 96 \end{aligned}$
	20'19	21.45	20*71	21.62	20.88	20.64	21•33	20.25	21.82	20.73	
$\begin{aligned} & \text { IX (Kiliyúr) } \\ & \text { and } \\ & \text { VII (Mallipat) } \end{aligned}$											$\begin{aligned} M & =2^{\prime \prime} \cdot 72 \\ w & =11 \cdot 13 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =61^{\circ} 28^{\prime} \quad 2^{\prime \prime} \cdot 72 \end{aligned}$
	$2 \cdot 16$	$2 \cdot 13$	$2 \cdot 34$	3.56	4*53	1•76	$3 \cdot 22$	$3{ }^{21}$	1 71	2.54	
$\begin{aligned} & \text { VII (Mallipat) } \\ & \text { and } \\ & \text { VI (Kallapat) } \end{aligned}$											$\begin{aligned} & M=9^{\prime \prime} \cdot 15 \\ & w=20 \cdot 49 \\ & \frac{1}{w}=0 \cdot \circ 5 \\ & C=39^{\circ} 9^{\prime} 9^{\prime \prime} \cdot 15 \end{aligned}$
	9*73	8.96	9•59	7.65	$8 \cdot 86$	$9 \cdot 69$	8•93	$9 \cdot 89$	8.91	$9 \cdot 25$	
$\begin{aligned} & \text { VI (Kallapat) } \\ & \text { and } \\ & \mathrm{X} \text { (Vallam) } \end{aligned}$	 										$\begin{aligned} & M=11^{\prime \prime} \cdot 00 \\ & w=27 \cdot 80 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=76^{\circ} 8^{\prime} 11^{\prime \prime} \cdot 00 \end{aligned}$
	$\begin{array}{lllll}11 & 52 & 10 \cdot 41 & 11.65 & 10 \cdot 58\end{array}$				$\begin{array}{lllllll}11.66 & 10 \cdot 53 & 11.14 & 10.24 & 11.58 & 10.73\end{array}$						
At IX (Kiliyúr) March 1879; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch T'heodolite No. 1.											
Angle between	Circle readings, telescope being set on VII (Mallipat) $127^{\circ} 12^{\prime} \quad 307^{\circ} 11^{\prime} \quad 206^{\circ} 23^{\prime} \quad 26^{\circ} 22^{\prime} \quad 285^{\circ} 35^{\prime} \quad 105^{\circ} 34^{\prime} \quad 4^{\circ} 47^{\prime} \quad 184^{\circ} 46^{\prime} \quad 83^{\circ} 59^{\prime} \quad 263^{\circ} 58^{\prime}$										$M=$ Mean of Gronps $w^{2}=$ Relative Weight $C=$ Concluded Angle
$\begin{gathered} \text { VII (Mallipat) } \\ \text { and } \\ \text { VIII (Chændamangalam) } \end{gathered}$	 										$\begin{aligned} M & =29^{\prime \prime} \cdot 99 \\ w & =18 \cdot 20 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =82^{\circ} 28^{\prime} 29^{\prime \prime} \cdot 99 \end{aligned}$
	29*69	30'35	$28 \cdot 82$	30•07	$30 \cdot 61$	29.52	$30 \cdot 87$	$30 \cdot 87$	29-24	29.89	
VIII (Chěndamangalam) and XI (Ulundúrpet)	 $l 42.03$										$\begin{aligned} & M=40^{\prime \prime} \cdot 85 \\ & w=22 \cdot 8 \mathbf{1} \\ & \frac{1}{w}=0 \cdot 04 \\ & C=44^{\circ} 41^{\prime} 40^{\prime \prime} \cdot 86 \end{aligned}$
	40•86	40*32	42*02	40'22	$40 \cdot 65$	40'99	40•08	$40 \cdot 63$	$4{ }^{1} \cdot 36$	41*36	

At \mathbf{X} (Vallam)

February 1879; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between		Circle readings, telescope being set on XIII (Seppalánattam)									$M=$ Mean of Groups vo = Relative Weight $C=$ Concluded Angle
```XIII (Seppalánattam) and XII (Koilánkuppam)```	$\begin{aligned} & h_{1} 19.59 \\ & h_{20} 20.83 \\ & h_{20} 20 \end{aligned}$	$\begin{aligned} & 21 \cdot 35 \\ & 22 \cdot 12 \\ & 21.78 \end{aligned}$	$\begin{array}{cc}  & \prime \prime \\ l & 20 \cdot 45 \\ l & 20 \cdot 26 \\ 2 & 20.71 \end{array}$	$\begin{array}{cc} " \\ l 20 \cdot 07 & l \\ l 21 \cdot 35 & l \\ l 21 \cdot 03 & l \end{array}$	$\begin{gathered} " \\ l \end{gathered} 21 \cdot 89$	$\begin{gathered} \prime \prime \\ l 20 \cdot 78 \\ l 20 \cdot 97 \\ l \\ l \\ 20 \cdot 85 \end{gathered}$	$\begin{aligned} & h 21 \cdot 14 \\ & h 20 \cdot 83 \\ & h 21 \cdot 78 \end{aligned}$	$\begin{gathered} " \\ l \\ l \\ l 22 \cdot 17 \\ l 22 \cdot 04 \\ l 22 \cdot 27 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 22.22 \\ l 21.80 \\ l \\ l \end{gathered} 22.21$	$\begin{gathered} " \\ l 20 \cdot 95 \\ l \\ l \\ l \\ l \end{gathered} 21 \cdot 30$	$\begin{aligned} & M=21^{\prime \prime} \cdot 18 \\ & w=22 \cdot 70 \\ & \frac{t}{w}=0 \cdot 04 \\ & C=73^{\circ} 42^{\prime} 21^{\prime \prime} \cdot 18 \end{aligned}$
	20*37	21•75	20*47	20•82	20•79	20•87	21.25	22:16	22.08	21.25	
$\begin{aligned} & \text { XII (Koilánkuppam) } \\ & \text { and } \\ & \text { VIII (Chěndamnngalam) } \end{aligned}$	h24.15   h23.19   h24.24	$\begin{aligned} & l 23.93 \\ & 123.49 \\ & 124.12 \end{aligned}$	$\begin{array}{ll} l & 22 \cdot 85 \\ l & 23 \cdot 24 \\ l & 22 \cdot 95 \end{array}$	$\begin{array}{ll} l & 23 . \\ l & 23 \\ l & 23 \\ l & 23 \\ l & 3 \end{array}$	$\begin{aligned} & l 22.55 \\ & l 23.03 \\ & l 22.27 \end{aligned}$	$\begin{aligned} & l 23.40 \\ & l \\ & l \\ & l \\ & l \end{aligned} 22.718$	$\begin{aligned} & h_{21} 1 \cdot 14 \\ & h_{22} 26 \\ & h_{22} \cdot 86 \end{aligned}$	$\begin{aligned} & l 22 \cdot 91 \\ & l 22 \cdot 87 \\ & l 23.44 \end{aligned}$	$\begin{aligned} & l 22 \cdot 68 \\ & l \\ & l \\ & l \\ & l \end{aligned} 22 \cdot 059$	$\begin{aligned} & l 22 \cdot 93 \\ & l 22 \cdot 14 \\ & l \\ & l \\ & l 23 \cdot 26 \end{aligned}$	$\begin{aligned} M & =23^{\prime \prime} \cdot 05 \\ w & =29 \cdot 40 \\ \mathbf{I} & =0 \cdot 03 \\ w & =43^{\circ} 0^{\prime} 23^{\prime \prime} \cdot 05 \end{aligned}$
	23.86	$23 \cdot 85$	23.01	$23 \cdot 30$	$22 \cdot 62$	$23 \cdot 10$	$22 \cdot 07$	$23 \cdot 07$	$22 \cdot 87$	$22 \cdot 78$	
```VIII (Chěndamangalam) and VI (Kallapat)```	$\begin{array}{llll}h & 8 \cdot 85 & l \\ h & 9 & 85 & l \\ h & 9 & 18 & l\end{array}$	$10 \cdot 80$ $10 \cdot 16$ $9 \cdot 85$	$l 10 \cdot 26 l$ $l 10005 l$ $l 10.47$	$\begin{array}{rr}l & 10.03 \\ l & 10.10 \\ l & 9.85\end{array}$	$l$ $l$ $954 l$	7 1 $10 \cdot 17$ 10012		9.89 1101 10.03	$l$ $l$ $l$ $l$ 9.79	$\begin{array}{ll} l & 10 \cdot 38 \\ l & 10 \cdot 73 \\ l & 10 \cdot 21 \end{array}$	$\begin{aligned} M & =9^{\prime \prime} \cdot 9 \mathbf{1} \\ w & =45 \cdot 50 \\ \frac{1}{w} & =0 \cdot 02 \\ C & =72^{\circ} 9^{\prime} 9^{\prime \prime} \cdot 9 \mathbf{1} \end{aligned}$
	9'29	10*27	10. 26	9•99	9*47	10*01	$9 \cdot 83$	1031	9'27	10*44	

At XI (Ulundúrpet)

February 1879; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on IX (Kiliyúr)										$M=$ Mean of Groups $v_{0}=$ Relative Weight $C=$ Concluded Angle
	"	"	"	"	"	"	"	"	"	"	
IX (Kiliyúr) and	$\begin{aligned} & h_{57} \cdot 74 \\ & h_{58} \cdot 08 \\ & h_{5} \cdot 80 \end{aligned}$	$\begin{aligned} & l 58.35 \\ & l 58.00 \\ & l 57.93 \end{aligned}$	$58 \cdot 34$ $58 \cdot 37$ 57	$\begin{array}{r} l \\ l \\ l \\ l \\ l \\ l \\ 57 \cdot 8 \cdot \\ 57 \end{array}$	$\begin{aligned} & l \\ & \hline \end{aligned} 5 \cdot 70.30$	$\begin{aligned} & l \\ & l \\ & l \\ & 7 \\ & 58 \cdot 0105 \end{aligned}$ $l 57 \cdot 88$	$\begin{aligned} & l 56 \cdot 83 \\ & l \\ & 57 \cdot 80 \end{aligned}$ $l 58 \cdot 31$	$\begin{aligned} & l \\ & 57 \cdot 52 \\ & l \\ & 57 \cdot 32 \\ & h \\ & 56 \cdot 62 \end{aligned}$		$\begin{aligned} & l \\ & l \end{aligned} 55 \cdot .56$	$\begin{aligned} & M=57^{\prime \prime} \cdot 63 \\ & w=20 \cdot 85 \end{aligned}$
	58.21	58.09	$58 \cdot 21$	57•68	$57 \cdot 83$	57×98	$57 \cdot 65$	57'15	57×45	56•04	
VIII (Chĕndamangalam) and	$\begin{aligned} & h 34 \cdot 13 \\ & h 33 \cdot 34 \\ & h 33 \cdot 78 \end{aligned}$	$\begin{aligned} & l 33 \cdot 80 \\ & l \begin{array}{l} 33^{*} 47 \\ l \\ l \end{array} 3^{-9} 98 \end{aligned}$	$\begin{aligned} & l \\ & l \\ & l \\ & l 3 \cdot 12 \\ & l \\ & l \end{aligned} 33 \cdot 84$	$\begin{aligned} & l 34.67 \\ & l 34.69 \end{aligned}$ $h 33^{\circ} 70$	$\begin{array}{r} l \\ l \\ l \\ l \\ l \end{array} 3^{\prime} 76$	$\begin{aligned} & l \\ & l \\ & l \\ & l \\ & l \end{aligned} 33.39 .52$	$\begin{aligned} & l 33 \cdot 12 \\ & l 33 \cdot 09 \\ & l \\ & l \end{aligned} 32 \cdot 62$		$\begin{aligned} & l 32 \cdot 93 \\ & l 32 \cdot 72 \\ & l 33 \cdot 17 \end{aligned}$	$\begin{aligned} & l 34 \cdot 34 \\ & l \end{aligned} 3^{\circ} 888$	$\begin{aligned} & M=33^{\prime \prime} \cdot 57 \\ & w=22 \cdot 8 \mathrm{I} \end{aligned}$
	33*75	34*08	$33 \cdot 36$	34`35	32-60	33*53	32-94	34*31	32-94	$33 \cdot 87$	$C=55^{\circ} 59^{\prime} 33^{\prime \prime} \cdot 57$
At XI (Ulundúrpet)-(Continued).											
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
Angle between	Circle readings, telescope being set on IX (Kiliyúr)										$M=$ Mean of Groups ${ }^{20}=$ Relatire Weight $\boldsymbol{C}=$ Concluded Δ ngle
XII (Koilánkuppam) and XIV (Kánádakŏndán)	$\prime \prime$ $h_{1} 7.67$ $h_{17} 9.95$ $h_{17} 7_{54}$		$\prime \prime$ 19.08 $l 18.70$ 188.94		$\begin{gathered} " \\ l 18 \cdot 91 \\ l 18 \cdot 95 \\ l 18 \cdot 72 \end{gathered}$	$\prime \prime$ l 18.03 $l 18.03$ l 17.98	$\begin{array}{ll} l & 19.67 \\ l & 19.46 \\ l & 19.69 \end{array}$	$\begin{array}{cc} & \prime \prime \\ l & 17 \cdot 98 \\ l & 18 \cdot 23 \\ h & 17 \\ \hline \end{array}$			$\begin{aligned} & M=18^{\prime \prime} \cdot 39 \\ & w=20 \cdot 04 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=34^{\circ} 26^{\prime} 18^{\prime \prime} \cdot 39 \end{aligned}$
	17×72	$18 \cdot 43$	18:91	$17 \cdot 84$	18.86	18•01	$19 \cdot 61$	17•92	19.08	17×5	

At XII (Koilánkuppam)
 February 1879; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch I'heodolite No. 1.

Angle between	Circle readings, telescope being set on XIV (Kánádakŏndán)										$\boldsymbol{M}=$ Mean of Groups ${ }^{v}=$ Relative Weight $C=$ Concluded Angle
	$0^{\circ} 1^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\prime} 12^{\prime}$	$158^{\circ} 25^{\prime}$	$338^{\circ} 2 \downarrow^{\prime}$	$237^{\circ} 37^{\prime}$	$57^{\circ} 36^{\prime}$	$316^{\circ} 49^{\prime}$	$136^{\circ} 48^{\prime}$	
XIV (Kánádakŏndán) and XI (Ulundúrpet)	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=20^{\prime \prime} \cdot 57 \\ & w=16 \cdot 70 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=81^{\circ} 46^{\prime} 20^{\prime \prime} \cdot 57 \end{aligned}$
	20'79	20*94	19*76	$21 \cdot 02$	20•50	20.18	20\%71	$19 * 48$	21•90	$20 \cdot 42$	
XI (Ulundúrpet) and VIII (Chěndamangalam)											$\begin{aligned} & M=28^{\prime \prime} \cdot 43 \\ & w=15 \cdot 45 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=50^{\circ} 31^{\prime} 28^{\prime \prime} \cdot 43 \end{aligned}$
	28.71	27•94	$28 \cdot 55$	28.46	27•81	29:23	28.20	29*77	$27^{1} 11$	28.51	
```VIII (Chěndamangalam) and X (Vallam)```	    										$\begin{aligned} & M=20^{\prime \prime} \cdot 22 \\ & w=13 \cdot 70 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=87^{\circ} 49^{\prime} 20^{\prime \prime} \cdot 22 \end{aligned}$
	19•10	20*44	20'95	19’70	20.25	19.17	20'54	$19 \times 54$	21.05	21*45	
$\begin{gathered} \mathbf{X} \text { (Vallam) } \\ \text { and } \\ \text { XIII (Seppalánattam) } \end{gathered}$	$h 8.60$ 188	$l 8.34$	77.47	h 9.61 9. 8.86	$l 8.91$   8.91	$l 8.58$	$l 7.54$	$8 \cdot 76$	$l 9.25$	$8 \cdot 82$	$\begin{aligned} M & =8^{\prime \prime} \cdot 53 \\ w & =22 \cdot 70 \\ \frac{\mathbf{I}}{w} & =0 \cdot 04 \\ C & =50^{\circ} 9^{\prime} 8^{\prime \prime} \cdot 53 \end{aligned}$
	$l 8.76$	l $l$ 7 8.67	h 7: 90	$h$ 9	1 9 9 9	${ }^{1} 99.14$	h 8 8.13	h   9	l 8.26	17 7 7	
	8.68	8•74	7*31	$9^{1} 17$	$8 \cdot 85$	$9^{112}$	$7 \times 8$	9•08	$8 \cdot 39$	8.02	
```XIII (Seppalánattam) and XIV (Kánádakŏndán)```	    										$\begin{aligned} M & =42^{\prime \prime} \cdot 15 \\ w & =13 \cdot 70 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =89^{\circ} 43^{\prime} 42^{\prime \prime} \cdot 15 \end{aligned}$
	$42 \cdot 41$	$41^{\circ} 88^{\circ}$	$43^{\circ} 44$	41 97	$42^{\circ} 71$	$42^{\circ} 00$	$43 \cdot 02$	41*91	41'47	40'73	

At XVII (Salpai)-(Continued).		
Angle between	Circle readings, telescope being set on $X V$ (Pydaiyúr) $\begin{array}{lllllllll}0^{\circ} 1^{\prime} & 180^{\circ} 0^{\prime} & 79^{\circ} 13^{\prime} & 259^{\circ} 18^{\prime} & 168^{\circ} 25^{\prime} & 338^{\circ} 24^{\prime} & 237^{\circ} 37^{\prime} & 67^{\circ} 36^{\prime} & 816^{\circ} 49^{\prime} \\ 136^{\circ} 48^{\prime}\end{array}$	$\left.\boldsymbol{M}=\begin{array}{l}\text { Mean of Groups } \\ \boldsymbol{w}\end{array}\right)=$ Relative Weight ${ }^{W}=\mathbf{C}=$ Relative Weight Concluded $\Delta \mathrm{ngle}$
$\begin{gathered} \text { XX (Kachip̧̆rumál) } \\ \text { and } \\ \text { XIX (Kulattúr) } \end{gathered}$	 	$\begin{aligned} & M=8^{\prime \prime} \cdot 07 \\ & w=23 \cdot 80 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=3^{\circ} 31^{\prime} 8^{\prime \prime} \cdot 07 \end{aligned}$
	$\begin{array}{lllllllllll}8.12 & 8.97 & 7.36 & 8.75 & 7.57 & 8.66 & 7.72 & 7.96 & 8.03 & 7.56\end{array}$	
$\begin{aligned} & \text { XIX (Kulattúr) } \\ & \text { and } \\ & \text { XVI (Ayyampet) } \end{aligned}$	l l 	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 3^{8} \\ & w=29 \cdot 40 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=56^{\circ} 48^{\prime} 3^{\prime \prime \prime} \cdot 3^{8} \end{aligned}$
	$\begin{array}{llllllllll}36 \cdot 04 & 37 \cdot 23 & 36 \cdot 94 & 36 \cdot 19 & 36 \cdot 70 & 36 \cdot 68 & 36 \cdot 28 & 36 \cdot 10 & 35 \cdot 90 & 35 \cdot 74\end{array}$	
$\begin{gathered} \text { XVI (Ayyampet) } \\ \text { and } \\ \text { XV (Pơdaiyúr) } \end{gathered}$	 	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 41 \\ & w=11 \cdot 50 \\ & \frac{1}{w}=\circ \cdot \circ 9 \\ & C=48^{\circ} 39^{\prime} 36^{\prime \prime} \cdot 41 \end{aligned}$
	$\begin{array}{llllllllll}36 \cdot 40 & 35.06 & 37 \cdot 36 & 35 \cdot 52 & 35.63 & 36 \cdot 46 & 36 \cdot 74 & 36 \cdot 47 & 36.47 & 38.02\end{array}$	
At XVIII (Kuchúr) January 1879; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.		
Angle between	Circle readings, telescope being set on XXI (Tirupanandál Mandap) $\begin{array}{llllllllll}182^{\circ} 3^{\prime} & 312^{\circ} 3^{\prime} & 211^{\circ} 16^{\prime} & 81^{\circ} 16^{\prime} & 290^{\circ} 31^{\prime} & 110^{\circ} 3 \sigma^{\prime} & 9^{\circ} 40^{\prime} & 189^{\circ} 40^{\prime} & 88^{\circ} 62^{\prime} & 268^{\circ} 61^{\prime}\end{array}$	
XXI (Tirupanandál Mandap) and XVII (Salpai)	 - $\quad l 20 \cdot 98$	$\begin{aligned} & M=20^{\prime \prime} \cdot 66 \\ & w=8 \cdot 82 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=69^{\circ} 41^{\prime} 20^{\prime \prime} \cdot 66 \end{aligned}$
	$\begin{array}{lllllllllll}19.59 & 19.75 & 19.70 & 19.46 & 20.51 & 21.39 & 21.09 & 21 \cdot 32 & 22.49 & 21.26\end{array}$	
$\begin{gathered} \text { XVII (Salpai) } \\ \quad \text { and } \\ \text { XV (Pơdaiyúr) } \end{gathered}$	 	$\begin{aligned} & M=34^{\prime \prime \prime} \cdot 60 \\ & w=18 \cdot 90 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=62^{\circ} 21^{\prime} 34^{\prime \prime} \cdot 60 \end{aligned}$
	$\begin{array}{lllllllllll} & 3 \cdot 14 & 34 \cdot 72 & 35 \cdot 38 & 35 \cdot 70 & 34 \cdot 74 & 34 \cdot 13 & 34 \cdot 01 & 34 \cdot 29 & 33 \cdot 83 & 35 \cdot 01\end{array}$	

At XIX (Kulattúr)
 December 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch T'heodolite No. 1.

Angle between	Circle readings, telescope being set on XVI (Ayyampet)										$\boldsymbol{M}=$ Mean of Groups ${ }^{20}=$ Relative Weight C = Concluded Anglo
	$154^{\circ} 56^{\prime}$	$3344^{\circ} 56^{\prime}$	$234{ }^{\circ} 8^{\prime}$	$54^{\circ} 7^{\prime}$	$313^{\circ} 20^{\prime}$	$133^{\circ} 19^{\prime}$	32 ${ }^{\text {3 }} \mathbf{2}^{\prime}$	$212^{\circ} 32^{\prime}$	$111^{\circ} 45^{\prime}$	$2911^{\circ} 44^{\prime}$	
$\begin{aligned} & \text { XVI (Ayyampet) } \\ & \text { and } \\ & \text { XVII (Salpai) } \end{aligned}$	 $l \mathbf{1 6 . 7 7 l} 16 \cdot 72 \quad l 17 \times 25$ $l 17$. 60										$\begin{aligned} M & =16^{\prime \prime} \cdot 34 \\ w & =15 \cdot 48 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =66^{\circ} 15^{\prime} 16^{\prime \prime} \cdot 35 \end{aligned}$
	16.21	17*04	$15 \cdot 14$	17*46	15*59	16*49	$16 \cdot 05$	$15 \cdot 76$	$17^{1} 18$	16.51	
$\begin{gathered} \text { XVII (Salpai) } \\ \text { and } \\ \text { XX (Kachipðrumál) } \end{gathered}$											$\begin{aligned} M & =56^{\prime \prime} \cdot 96 \\ w & =11 \cdot 67 \\ \frac{1}{v o} & =0 \cdot 09 \\ C & =88^{\circ} 39^{\prime} 56^{\prime \prime} \cdot 96 \end{aligned}$
	57×63	55.71	57.61	$56 \cdot 69$	57*61	56•19	57.55	56.68	56.21	$57 \cdot 68$	

At XX (Kachipěrumál)

December 1878 and January 1879; observed by Lieut.-Colonel B. R. Branfil with Troughton and Simms' 24-inch T'heodolite No. 1.

At XXIII (Kumbakonam)-(Continued).

Angle between	Circle readings, telescope being set on XXVI (Alangudi) $\begin{array}{llllllllll}359^{\circ} & 58^{\prime} & 179^{\circ} 58^{\prime} & 79^{\circ} 16^{\prime} & 259^{\circ} 16^{\prime} & 158^{\circ} 26^{\prime} & 338^{\circ} 27^{\prime} & 237^{\circ} 38^{\prime} & 57^{\circ} 38^{\prime} & 316^{\circ} 52^{\prime} \\ 136^{\circ} & 52^{\prime}\end{array}$									$M=$ Mean of Groups $v^{v}=$ Relative Weight $C=$ Concluded Angle
$\begin{aligned} & \text { XXV (Mutuváncheri) } \\ & \text { and } \\ & \text { XXII (Nayinipiriyán) } \end{aligned}$	 $l 53$-09 l $56 \cdot 58 l 54.96$ $l 56.67$									$\begin{aligned} & M=55^{\prime \prime \cdot} \cdot 22 \\ & w=7 \cdot 28 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=0 \cdot 14 \\ & \boldsymbol{C}=47^{\circ} 4^{\prime} 55^{\prime \prime} \cdot 22 \end{aligned}$
	53*71 56.22	$53^{*} 4^{2}$	56•03	$55^{\circ} 25$	55*06	56•35	$54 * 63$	$56 \cdot 63$	54.87	
XXII (Nayinipiriyán) and XXI (Tirupanandál Mandap)										$\begin{aligned} & M=27^{\prime \prime} \cdot 59 \\ & w=12 \cdot 89 \\ & \frac{\mathbf{x}}{w}=0 \cdot 08 \\ & C=42^{\circ} 9^{\prime} 27^{\prime \prime} \cdot 58 \end{aligned}$
	$29.24 \quad 28 \cdot 22$	28.03	28.26	$27 \cdot 65$	27•13	$26 \cdot 27$	26.20	27×55	27*36	
XXI (Tirupanandál Mandap) and XXIV (Putagaram)	 									$\begin{aligned} & M=37^{\prime \prime} \cdot 90 \\ & w=7 \cdot 5^{6} \\ & \frac{1}{w}=0 \cdot 13 \\ & C=76^{c} 3^{\prime} 37^{\prime \prime} \cdot 90 \end{aligned}$
	$38 \cdot 78 \quad 36 \cdot 71$	38-28	$38 \cdot 62$	37-20	$39 \cdot 83$	38.50	$37 \cdot 27$	$37 * 46$	36•36	
$\begin{aligned} & \text { XXIV (Putagaram) } \\ & \text { and } \\ & \text { XXVI (Álangudi) } \end{aligned}$	 									$\begin{aligned} M & =20^{\prime \prime} \cdot 15 \\ \dot{w} & =6 \cdot 74 \\ \frac{1}{w} & =0 \cdot 15 \\ C & =65^{\circ} 54^{\prime} 20^{\prime \prime} \cdot 15 \end{aligned}$
	$19.46 \quad 19 \times 29$	19 ${ }^{\prime} 76$	19*59	20*45	20'77	18.26	21.87	20'19	21*86	

At XXIV (Putagaram)

March 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

At XXV (Mutuváncheri)
March 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms'
24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXII (Nayinipiriyán)										$\boldsymbol{M}=$ Mean of Groups 2 $w_{0}=$ Relative Weight C $=$ Concluded Angle
$\begin{aligned} & \text { XXII (Nayinipiriyán) } \\ & \text { and } \\ & \text { XXIII (Kumbakonam) } \end{aligned}$											$\begin{aligned} M & =14^{\prime \prime} \cdot 37 \\ w & =11 \cdot 26 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =80^{\circ} 30^{\prime} 14^{\prime \prime} \cdot 37 \end{aligned}$
	14*02	15\%91	14*13	14*96	13*97	$13 \cdot 06$	14*68	$15 \cdot 30$	13.45	14*24	
XXIII (Kumbakonam) and XXVII (Víramangalam)	 										$\begin{aligned} & M=44^{\prime \prime} \cdot 5^{2} \\ & w=10 \cdot 00 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=45^{\circ} 40^{\prime} 44^{\prime \prime} \cdot 5^{2} \end{aligned}$
	42.93	44*33	$43 \cdot 88$	46.61	44*75	44*48	44*73	$44 * 37$	$45^{\circ} \mathrm{Ol}$	44*11	
March 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on XXIX (Parutikota)										$\boldsymbol{M}=$ Mean of Groups $w_{0}=$ Relative Weight C = Concluded Angle
$\begin{aligned} & \text { XXIX (Parutikota) } \\ & \text { and } \\ & \text { XXVIII (Arasapat) } \end{aligned}$											$\begin{aligned} \boldsymbol{M} & =33^{\prime \prime} \cdot 3^{8} \\ w & =9 \cdot 42 \\ \frac{1}{w} & =0 \cdot 11 \\ C & =43^{\circ} 53^{\prime} 33^{\prime \prime} \cdot 3^{6} \end{aligned}$
	$33 \cdot 83$	35*02	$33 \cdot 47$	32'15	31'99	33.58	$33 \cdot 75$	32•72	34*03	$33 \cdot 29$	

At XXVI (Ålangudi)-(Continued).

Angle between		Circle readings, telescope being set on XXIX (Parutikota)									$M=$ Mean of Groups $w=$ Relative Weight C = Concluded Angle
XXVIII (Arasapat) and XXVII (Víramangalam)	$\begin{array}{lll} l & 56 \cdot 18 l \\ l & 58 \cdot 0_{4} & l \\ l & 57 \cdot 84 l \end{array}$	$\begin{aligned} & 59 \cdot 07 \\ & 6 \mathrm{I} \cdot \mathrm{~A} \\ & 58 \cdot 78 \\ & 58 \end{aligned}$	h $58 \cdot 25$ h 59 •24 h 59.06		$\begin{aligned} & l \\ & \\ & 50 \cdot 18 \\ & \hline \end{aligned}$	h56.76 ${ }^{h} 55^{\circ} 71$ ${ }^{h} 55^{\prime} 73$	$\prime \prime$ $58 \cdot 80$ $59 \cdot 22$ $58 \cdot 26$	$\prime \prime$ $58 \cdot 53$ 57.65 59.04			$\begin{aligned} & M=58^{\prime \prime} \cdot 57 \\ & w=5 \cdot 41 \\ & \frac{1}{w}=0 \cdot 18 \\ & C=70^{\circ} 54^{\prime} 58^{\prime \prime} \cdot 57 \end{aligned}$
	57*35	59.66	$58 \cdot 85$	59*92	59*49	56•07	58•76	58.41	$57 \cdot 22$	59*92	
XXVII (Víramangalam) and XXIII (Kumbakonam)	$\begin{aligned} & l 14.13 \\ & l 14.72 \\ & l 14.46 \\ & l 14.41 \end{aligned}$	15.99 14.18 16.59		$\begin{array}{ll} l & 13.56 \\ l & 15.87 \\ l & 16.61 \\ l & 15.62 \end{array}$	$\begin{array}{ll} l & 16 \cdot 06 \\ l & 15 \cdot 84 \\ l & 13.88 \end{array}$	$\begin{aligned} & h 15.12 \\ & h 15.52 \\ & h_{14} .90 \end{aligned}$	$\begin{array}{ll} l & 13.48 \\ l & 14.88 \\ l & 16 \cdot 20 \\ l \\ l & 15.18 \end{array}$			$l 14.22$ $l 15.02$ $l 1591$	$\begin{aligned} & M=15^{\prime \prime} \cdot 11 \\ & w=12 \cdot 60 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=58^{\circ} 23^{\prime} 15^{\prime \prime} \cdot 09 \end{aligned}$
	14*43	15.59	16*47	15*37	$15 \cdot 26$	15•18	14*94	13.55	15.27	15.05	
```XXIII (Kumbakonam) and XXIV (Putagaram)```	$\begin{aligned} & l 43.93 l \\ & l 43.34 l \\ & l \\ & l 3 . \\ & \hline 6 \end{aligned}$	$43 \cdot 32$ 41 $42 \cdot 74$	h 43.79   h $38 \cdot 80$   $h_{41} \cdot 04$   l41•25		$\begin{array}{r} l 42 \cdot 09 \\ l 42.79 \\ l 42 \cdot 34 \end{array}$	$\begin{aligned} & h_{41} \cdot 99 \\ & h_{43} \cdot 49 \\ & h_{42} \cdot 36 \end{aligned}$	$\begin{aligned} & 4 \mathrm{I} \cdot 86 \\ & 4 \mathrm{I} \cdot 58 \\ & 40 \cdot 18 \\ & 40 \cdot 99 \end{aligned}$	$\begin{aligned} & 41 \cdot 32 \\ & 42 \cdot 10 \\ & 40.73 \\ & 38 \cdot 08 \end{aligned}$	$\begin{aligned} & h_{42} \cdot 62 \\ & h_{42} \cdot 84 \\ & h_{42} \cdot 97 \end{aligned}$		$\begin{aligned} & M=42^{\prime \prime} \cdot 06 \\ & w=8 \cdot 45 \\ & \frac{1}{w}=0 \cdot 12 \\ & C=44^{\circ} I^{\prime} 42^{\prime \prime} \cdot 04 \end{aligned}$
	$43 \cdot 61$	42•54	41•22	42•33	42* ${ }^{\prime}$	42.61	41'15	40'56	$42 \cdot 81$	41•36	

## At XXVII (Víramangalam) <br> March 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXV (Mutuváncheri)										$M=$ Mean of Gronps   $v_{0}=$ Relutive Weight   $\boldsymbol{C}=$ Concluded Angle
XXV (Mutuváncheri) and	$\begin{gathered} \prime \prime \\ l 40 \cdot 48 \\ l \\ l \\ l \\ l 9 \cdot 80 \cdot 25 \end{gathered}$	$\begin{aligned} & 39.76 \\ & 40.52 \\ & 40.72 \\ & 60.72 \end{aligned}$	$\begin{aligned} & h 39^{\circ} 76 \\ & h 390^{\prime} 32 \\ & h \\ & h 9^{\circ} 04 \end{aligned}$	$\begin{gathered} " \prime \\ l 40 \cdot 27 \\ l 39 \cdot 67 \\ l \\ 40.35 \end{gathered}$	$\begin{aligned} & l 39 \cdot 28 \\ & l 38 \cdot 08 \\ & l 40 \cdot 86 \\ & k 38 \cdot 95 \end{aligned}$	$\prime \prime$ $l 39 \cdot 21$ $l$ $l 0$ $l$ $40 \cdot 10$	$\begin{gathered} n \\ h_{41} \cdot 27 \\ h_{40} \cdot 29 \\ h_{40} \cdot 14 \end{gathered}$	$\begin{gathered} \\ l \end{gathered} 9^{\circ} \cdot{ }^{\circ} \cdot 46$			$\begin{aligned} M & =39^{\prime \prime} \cdot 84 \\ w & =18 \cdot 10 \\ \frac{\mathbf{I}}{w} & =0 \cdot 06 \\ C & =51^{\circ} \quad 6^{\prime} 39^{\prime \prime} \cdot 83 \end{aligned}$
	40'20	40•33	39•37	40'10	39*29	39*79	40*57	$39^{\circ} 00$	40'79	38.99	
XXIII (Kumbakonam)   and   XXVI (Ālangudi)											$\begin{aligned} & M=41^{\prime \prime} \cdot 72 \\ & w=11 \cdot 02 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=0 \cdot 09 \\ & C=76^{\circ} 1^{\prime} 41^{\prime \prime} \cdot 72 \end{aligned}$
	$42 \cdot 82$	41-52	41 34	41*47	$39^{\circ} 93$	42•80	41'10	41*41	42*77	42*OI	


At XXVII (Víramangalam)-(Continued).											
Angle between	Circle readings, telescope being set on XXV (Mutuváncheri)   $\begin{array}{llllllllll} & 236^{\circ} 15^{\prime} & 66^{\circ} 15^{\prime} & 315^{\circ} 25^{\prime} & 135^{\circ} 24^{\prime} & 34^{\circ} 34^{\prime} & 214^{\circ} 35^{\prime} & 118^{\circ} 48^{\prime} & 298^{\circ} 48^{\prime} & 193^{\circ} 1^{\prime}\end{array} \quad 13^{\circ} 1^{\prime}$										$M=$ Mean of Groupa   $\omega_{0}=$ Relative Weight   C = Concluded Augle
$\begin{gathered} \text { XXVI (Álangudi) } \\ \text { and } \\ \text { XXVIII (Arasapat) } \end{gathered}$											$\begin{aligned} & M=21^{\prime \prime} \cdot 57 \\ & w=21 \cdot 80 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=67^{\circ} 57^{\prime} 21^{\prime \prime} \cdot 57 \end{aligned}$
	21.4	21•29	$22 \cdot 67$	$22 \cdot 12$	21*89	21•36	20*80	22.05	21•03	21*OI	
$\begin{aligned} & \text { XXVIII (Arasapat) } \\ & \text { and } \\ & \text { XXX (Rárámutiraikota) } \end{aligned}$											$\begin{aligned} & M=12^{\prime \prime} \cdot 46 \\ & w=9 \cdot 14 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=41^{\circ} 3^{\prime} 12^{\prime \prime} \cdot 46 \end{aligned}$
	$13^{\circ}$	10'98	$13.50 \quad 11 \times 42$		13.12	$12 \cdot 42$	12.22	$\begin{array}{llll}11.55 & 12.32 & 13.38\end{array}$			
At XXVIII (Arasapat)   February 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between		Circle readings, telescope being set on XXX (Rárámutiraikota)									$M=$ Mean of Groups   $v^{2}=$ Relative Weight   C = Concluded Angle
XXX (Rárámutiraikota) and											$\begin{aligned} & M=3^{\prime \prime} \cdot 55 \\ & w=11 \cdot 50 \\ & \frac{\mathbf{I}}{w}=0 \cdot 09 \\ & C=67^{\circ} 16^{\prime} 3^{\prime \prime \prime} \cdot 53 \end{aligned}$
	$3 \cdot 7$	4*60	4*03	3*44	$2 \cdot 89$	3'72	$4^{1} 14$	3•79	$2 \cdot 69$	2.44	
XXVII (Víramangalam)   and XXVI (Ālangudi)	    										$\begin{aligned} M & =40^{\prime \prime} \cdot 22 \\ w & =14 \cdot 30 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =41^{\circ} 7^{\prime} 40^{\prime \prime} \cdot 22 \end{aligned}$
	$38 \cdot 5$	41.31	$39 \cdot 37$	40•66	40•49	40* 40	40'55	40.08	40•29	$40 \cdot 46$	
$\begin{gathered} \text { XXVI (Ālangudi) } \\ \text { and } \\ \text { XXIX (Parutikota) } \end{gathered}$	      $l 46 \cdot 06$ $l 47.54$										$\begin{aligned} & M=47^{\prime \prime} \cdot 56 \\ & w=11 \cdot 72 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=64^{\circ} 37^{\prime} 47^{\prime \prime} \cdot 55 \end{aligned}$
	$48 \cdot 4$	$48 \cdot 45$	47•26	48.52	47 ${ }^{16}$	46•47	48•55	46•79	$47 * 02$	46•92	

## At XXVIII (Arasapat)-(Continued).

Angle between		Circle readings, telescope being set on $\mathbf{X X X}$ (Rárámutiraikota)									$\boldsymbol{M}=$ Mean of Groups   ${ }^{20}=$ Relative Weight   C = Concluded Angle
	$\prime \prime$ $l 25.68$ $l$ $l$ $l$	$\prime \prime$ $l 22 \cdot 83$ $l$ $l$ $23 \cdot 03$ $l 23.16$	$\prime \prime$ 23.45 23.99 $24: 87$ 22.38	$\prime \prime$ $l 25.38$ $l$ $l$ 23.94	$\prime \prime$ $l 21 \cdot 72$ $l 24.60$ $h 25.49$ $l 23.09$	$\prime \prime$ h 24.90 $h 27.90$ $l 29.18$ $l 25.38$	$\prime \prime$ $l 24.55$ $l 24.86$ $l 24.66$	$n$ $l 24.23$ $l 24.86$ $h 24.08$			$\begin{aligned} & M=24^{\prime \prime \cdot} \cdot 54 \\ & \boldsymbol{w}=7 \cdot 40 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=0 \cdot 14 \\ & \boldsymbol{C}=73^{\circ} 54^{\prime} 24^{\prime \prime} \cdot 55 \end{aligned}$
	24*73	23*01	$23 \cdot 67$	24*69	23.73	$25 \cdot 84$	24*69	24*39	$26 \cdot 57$	24*06	
XXXI (Púvatúr) and											$\begin{aligned} & M=34^{\prime \prime} \cdot 85 \\ & w=8 \cdot 97 \\ & \frac{\mathbf{I}}{w}=0 \cdot 1 \mathbf{I} \\ & C=36^{\circ} 58^{\prime} 34^{\prime \prime} \cdot 84 \end{aligned}$
	36•36	34.24	$35 * 98$	$33 \cdot 78$	34.61	34*94	34*72	35 22	34.70	33.99	
$\begin{aligned} & \text { XXXII (Kakkrákota) } \\ & \text { and } \\ & \text { XXX (Rárámutiraikota) } \end{aligned}$											$\begin{aligned} & M=28^{\prime \prime} \cdot 28 \\ & w=3 \cdot 32 \\ & \frac{1}{w}=0 \cdot 30 \\ & C=76^{\circ} 5^{\prime} 28^{\prime \prime} \cdot 28 \end{aligned}$
	$28 \cdot 66$	25•79	29.60	$26 \cdot 66$	30*09	$27 \cdot 64$	$26 \cdot 36$	28.56	$28 \cdot 64$	30•79	

At XXIX (Parutikota)
February 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch T'heodolite No. 1.


At XXX (Rárámutiraikota)   February 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.		
Angle between	Circle readings, telescope being set on XXVII (Viramangalam)   $\begin{array}{llllllllll}0^{\circ} 4^{\prime} & 180^{\circ} 1^{\prime} & 79^{\circ} 14^{\prime} & 259^{\circ} 11^{\prime} & 158^{\circ} 25^{\prime} & 338^{\circ} 29^{\prime} & 237^{\circ} 86^{\prime} & 67^{\circ} 33^{\prime} & 316^{\circ} 50^{\prime} & 136^{\circ} 47^{\prime}\end{array}$	$M=\begin{aligned} & \text { Mean of Groups } \\ & w_{0}= \\ & \text { Relative Weight }\end{aligned}$   $\stackrel{\text { con }}{C}=$ Concluded Anglo
XXVII (Víramangal:m) and XXVIII (Arasapat)	        l 39.46 l 40 • 74   l $39^{\circ} 90$	$\begin{aligned} & M=42^{\prime \prime} \cdot 5^{6} \\ & w=7 \cdot 22 \end{aligned}$
$\begin{aligned} & \text { XXVIII (Arasapat) } \\ & \text { and } \\ & \text { XXXII (Kakkrákota) } \end{aligned}$	    	$\begin{aligned} & M=50^{\prime \prime} \cdot 27 \\ & w=10 \cdot 60 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=66^{\circ} 14^{\prime} 50^{\prime \prime} \cdot 27 \end{aligned}$
At XXXI (Púvatúr)   $\dagger$ February and March 1877; observed by Captain T. T. Carter, R. E., with Troughton and Simnis' 24-inch Theodolite No. 1.   * February 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.		
Angle between	Circle readings, telescope being set on XXXIV (Patukota)   $\begin{array}{lllllllllll}0^{\circ} 1^{\prime} & 180^{\circ} 0^{\prime} & 79^{\circ} 13^{\prime} & 259^{\circ} 12^{\prime} & 158^{\circ} 24^{\prime} & 388^{\circ} 24^{\prime} & 237^{\circ} 37^{\prime} & 57^{\circ} 7^{\circ} & 316^{\circ} 49^{\prime} & 186^{\circ} 49^{\prime}\end{array}$	$\boldsymbol{M}=$ Mean of Groups   $\begin{aligned} 20 & =\text { Relative Weight } \\ C & =\text { Concluded Angle }\end{aligned}$
$\begin{gathered} \stackrel{\dagger}{\text { XXXIV }} \text { (Patukota) } \\ \text { and } \\ \text { XXXIII (Pátharankota) } \end{gathered}$	    	$\begin{aligned} & M=17^{\prime \prime} \cdot 60 \\ & w=13 \cdot 98 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=39^{\circ} 11^{\prime} 17^{\prime \prime} \cdot 6 \mathbf{1} \end{aligned}$
	$\begin{array}{lllllllllll}17.65 & 17.69 & 16.22 & 18 \cdot 18 & 17.38 & 17.84 & 17.99 & 17.65 & 18.86 & 16.58\end{array}$	
$\stackrel{\dagger}{\dagger}$XXXIII (Pátharankota)andXXXII (Kakkrákota)	$l$ $l$	$\begin{aligned} & \boldsymbol{M}=39^{\prime \prime} \cdot 05 \\ & \boldsymbol{w}=13 \cdot 3^{8} \\ & \frac{1}{w}=\circ \cdot 07 \\ & \boldsymbol{C}=67^{\circ} 5^{\prime} 39^{\prime \prime} \cdot 05 \end{aligned}$
	$\begin{array}{llllllllll}39^{\circ} 25 & 39.67 & 39^{\circ} 69 & 38 \cdot 73 & 39 \cdot 30 & 39^{\circ} 08 & 39^{\circ} 02 & 37 \cdot 59 & 38 \cdot 10 & 40.09\end{array}$	



At XXXII (Kakkrákota)
$\dagger$ February 1877; observed by Captain T. T. Carter, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

* February 1878; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.



## At XXXII (Kakkrákota)-(Continued).

Angle between	$223^{\circ} 26^{\prime}$	Circle $43^{\circ} 23^{\prime}$	readings,   $802^{\circ} 37^{\prime}$	telescope   $122^{\circ}{ }^{3} 4^{\prime}$	being $21^{\circ} 49^{\prime}$	$\begin{aligned} & \text { et on XX } \\ & 201^{\circ} 49^{\prime} \end{aligned}$	$\begin{gathered} X X(R a ́) \\ 101^{\circ} 2^{\prime} \end{gathered}$	amutira   $281^{\circ} \mathbf{2}^{\prime}$	$\begin{aligned} & \text { ikota) } \\ & 180^{\circ} 14^{\prime} \end{aligned}$		$M=$ Mean of Gronpe   ${ }^{20}$ = Relative Weight   C = Concluded Angle
$\begin{gathered} \dagger \\ \text { XXXI (Púvatúr) } \\ \text { and } \\ \text { XXXIII (Pátharankota) } \end{gathered}$	$\begin{array}{cc} " \prime \\ l 31 \cdot 41 & l \\ l 30 \cdot 98 & l \\ l 32 \cdot 13 & l \\ l & 31 \cdot 67 \end{array}$	$\begin{aligned} & 31 \cdot 47 \\ & 3 \mathrm{I} \cdot 50 \\ & 32 \cdot 52 \end{aligned}$	$\begin{gathered} n \\ l 30^{\circ} 42 \\ l \\ l \\ l \\ l 0 \cdot 22 \\ 30 \cdot 52 \end{gathered}$		$\begin{array}{r} 3 O^{\circ} 48 \\ 3 \mathrm{I} \cdot 46 \\ 3 \mathrm{I} \cdot 67 \end{array}$	$\begin{gathered} " \\ l \begin{array}{c} " 32 \cdot 09 \\ l \\ 29.76 \\ l \\ 3 \mathrm{I} \cdot 7^{\prime} \\ 7 \end{array} \end{gathered}$	$\left\{\begin{array}{l} 30 \cdot 67 \\ 31 \cdot 35 \\ 31 \cdot 71 \end{array}\right.$	$\left\{\begin{array}{l} 31 \cdot 21 \\ 30 \cdot 80 \\ 30 \cdot 13 \end{array}\right.$	$\begin{aligned} & 30 \cdot 50 \\ & 729.56 \\ & 730 \cdot 49 \end{aligned}$	$\begin{aligned} & 29 \cdot 63 \\ & 30.48 \\ & 29.96 \end{aligned}$	$\begin{aligned} M & =30^{\prime \prime} \cdot 88 \\ w & =2 \mathrm{i} \cdot 80 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =71^{\circ} 36^{\prime} 30^{\prime \prime} \cdot 88 \end{aligned}$
	31.55	31*83	30•39	$30 \cdot 50$	31'20	31*2I	31-24	30•71	30'18	$30 \cdot 02$	
$\dagger$XXXIII (Pátharankota)andXXXV (Kallakota)	      l29.79										$\begin{aligned} M & =29^{\prime \prime} \cdot 98 \\ w & =15 \cdot 98 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =43^{\circ} 52^{\prime} 29^{\prime \prime} \cdot 98 \end{aligned}$
	29*95	28.79	29.88	29 96	30'12	29.63	29*77	31*27	29*43	30'95	

## At XXXIII (Pátharankota)

March 1877; observed by Captain T. T. Carter, R.E., with Troughton and Simms' 24-inch Theodolite No. 1. -


Note.-R. M. denotes Referring Mark.

## At XXXIII (Pátharankota)—(Continued).

Angle between		Circle $180^{\circ} 0^{\prime}$	readings, $79^{\circ} 12^{\prime}$	telescop   $259^{\circ} 12^{\prime}$	pe being   $158^{\circ} 24^{\prime}$	set on X $\mathbf{3 3 8}{ }^{\circ} 24^{\prime}$	XXVII   $237^{\circ} 37^{\prime}$	(Kárakk $57^{\circ} \mathbf{3 6}$	urchi)   $316^{\circ} 49^{\prime}$	$136^{\circ} 49^{\prime}$	$M=$ Mean of Groups   ${ }^{20}=$ Relative Weight   C = Concluded Angle
R. M. and XXXI (Púvatúr)	$\begin{aligned} & l 47 \cdot 11 \\ & l 47 \cdot 81 \\ & l \\ & l \\ & 45 \cdot 46 \end{aligned}$	$\begin{array}{cc} n \\ l & 47 \cdot 04 \\ l & 48 \cdot 02 \\ l & 48 \cdot 71 \end{array}$	$\begin{array}{r} l 45.43 \\ l 47.74 \\ l 45.20 \\ l \\ l \\ 45.62 \end{array}$	$\begin{gathered} \prime \prime \\ l \\ l \\ l 6 \cdot 69 \\ l \\ l 6 \cdot 10 \\ 46 \cdot 94 \end{gathered}$	$\begin{aligned} & l 47 \cdot 99 \\ & l \\ & l \\ & l 8 \cdot 10 \\ & l \\ & 47 \\ & \hline \end{aligned}$	$\begin{array}{lc}  & \prime \prime \\ l & 46 \cdot 74 \\ l & 46 \cdot 35 \\ l & 46 \cdot 54 \end{array}$	$\begin{gathered} \prime \prime \\ l 47.56 \\ l 46 \cdot 4 \mathrm{r} \\ l \\ 77.60 \end{gathered}$		$\begin{array}{rr} \prime \prime \\ l & 46 \cdot 49 \\ l & 47 \cdot 43 \\ l & 48 \cdot 28 \end{array}$	$\begin{gathered} " \\ l 47 \cdot 14 \\ l 47 \cdot 79 \\ l 46 \cdot 21 \end{gathered}$	$\begin{aligned} & M=47^{\prime \prime \cdot} \cdot 03 \\ & w=20 \cdot 17 \\ & \frac{\mathbf{I}}{w}=0 \cdot 05 \\ & \boldsymbol{C}=40^{\circ} 24^{\prime} 47^{\prime \prime} \cdot 02 \end{aligned}$
	46•79	47*92	$46 \cdot 00$	$46 \cdot 58$	$47 \cdot 80$	$46 \cdot 54$	47•19	$47^{\circ} \mathrm{OI}$	47*40	$47 \cdot 05$	
XXXI (Pávatúr)   and	    										$\begin{aligned} & M=41^{\prime \prime} \cdot 34 \\ & w=22 \cdot 70 \\ & \frac{\mathbf{I}}{w}=0 \cdot 04 \\ & C=68^{\circ} 7^{\prime} 41^{\prime \prime} \cdot 34 \end{aligned}$
	41•31	41•18	42•70	40•78	41*04	41 10	41*41	$40 \cdot 68$	41*99	41•23	
```XXXIV (Patukota) and XXXVI (Kalúrunikád)```	      $l 47.57$ $l 47 \cdot 56$										$\begin{aligned} & M=48^{\prime \prime} \cdot 02 \\ & w=18 \cdot 11 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=69^{\circ} 36^{\prime} 48^{\prime \prime} \cdot 01 \end{aligned}$
	$47 \cdot 42$	47`99	48•80	48•96	47•16	$48 \cdot 66$	47•81	48•16	$47 \cdot 21$	$48 \cdot 00$	
```XXXVI (Kalúrunikád) and XXXVII (Kárakkurchi)```	$\begin{array}{ll}l & 0.94 \\ l & 3.21 \\ l & 1 \\ l\end{array}$		$\begin{array}{cc}l & 1.57 \\ l & 1 \\ l & 97 \\ l & 2\end{array}$	$\begin{array}{ll}l & 2.44 \\ l & 3.54 \\ l \\ l\end{array}$	$\begin{array}{ll}l & 3.06 \\ l & 3.53 \\ l & 4.09\end{array}$	$\begin{array}{ll}l & 2 \cdot 33 \\ l & 4.92 \\ l & 3 \\ l & 49 \\ l & 2.58\end{array}$	$l$ $l$ $l$ 2.51	$\begin{array}{ll}l & 4 \cdot 18 \\ l & \cdot 18 \\ l & 8 \\ 4 & 16\end{array}$	$\begin{array}{lll}l & 2 & 58 \\ l & 1 \\ l & 89 \\ l & 1 & 29\end{array}$	$\begin{array}{ll}l & 2.91 \\ l & 2.91 \\ l & 2.02\end{array}$	$\begin{aligned} & M=2^{\prime \prime} \cdot 67 \\ & w=14 \cdot 06 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=52^{\circ} 42^{\prime} 2^{\prime \prime} \cdot 67 \end{aligned}$
	$2 \cdot 51$	1 73	$2 \cdot 11$	$2 \cdot 57$	3•56	$3 \cdot 33$	2.40	4.08	1*92	$2 \cdot 47$	

## At XXXIV (Patukota)

March 1877; observed by Captain T. T. Carter, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXXVI (Kalúrunikad)										$M=$ Mean of Groups   ${ }^{*}=$ Relative Weight   C = Concluded Angle
	$140^{\circ} 87^{\prime}$	320 ${ }^{\circ} 36^{\prime}$	$219^{\circ} 49^{\prime}$	$39^{\circ} 48^{\prime}$	$299^{\circ} 0^{\prime}$	$119^{\circ} 0^{\prime}$	$18^{\circ} 13^{\prime}$	$198^{\circ} 13^{\prime}$	$97^{\circ} 25^{\prime}$	$277^{\circ} 25^{\prime}$	
```XXXVI (Kalưrunikád) and XXXIII (Pátharankota)```	"	"	4	"	"	"	"	"	"	"	$\begin{aligned} & M=51^{\prime \prime \cdot} \cdot 06 \\ & w=37 \cdot 00 \\ & \frac{\mathbf{I}}{w}=0 \cdot 03 \\ & C=67^{\circ} 54^{\prime} 51^{\prime \prime} \cdot 06 \end{aligned}$
	51*26	50.76	$50 \cdot 87$	$50 \cdot 69$	51:20	$50 \cdot 66$	51•75	51•78	$50 \cdot 69$	50\%91	

Note.-R. M. denotes Referring Mark.

At XXXVI (Kalúrunikád)
February 1877; observed by Captain T. T. Carter, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXXIX (Retavayal)										$M=$ Mean of Groups $\omega_{0}=$ Relative Weight $C=$ Concluded Angle
	$214^{\circ} 9^{\prime}$	$34^{\circ} 8^{\prime}$	$293^{\circ} 21^{\prime}$	$113^{\circ} 21^{\prime}$	$12^{\circ} 32^{\prime}$	$192^{\circ} 32^{\prime}$	$91^{\circ} 45^{\prime}$	$271^{\circ} 45^{\prime}$	$170^{\circ} 57^{\prime}$	$350^{\circ} 56{ }^{\prime}$	
$\begin{gathered} \text { XXXIX (Rětavayal) } \\ \text { and } \\ \text { XXXVIII (Merpanaikád) } \end{gathered}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=31^{\prime \prime} \cdot 47 \\ & w=1 \mathrm{I} \cdot 34 \\ & \frac{\mathbf{I}}{w}=0 \cdot 09 \\ & C=43^{\circ} 50^{\prime} 31^{\prime \prime} \cdot 48 \end{aligned}$
		32-08	$l 31 \cdot 21$	$l 30 \cdot 87$	l $32 \cdot 12$	$73 \mathrm{~B} \cdot 04$				$30 \cdot 95$	
	$l 30.78$	32.90	$l 29.72$	$l 3117$	l $30 \cdot 87$	$l 32 \cdot 17$	$l 34.57$	$l^{2} 32 \cdot 18$	$32 \cdot 84$	$30 \cdot 08$	
	$l 30 \cdot 19$	$32 \cdot 18$	$l 32 \cdot 24$	$l 32.54$	31-58	$l 30 \cdot 80$	$\begin{aligned} & l 31 \cdot 88 \\ & h 31 \cdot 21 \end{aligned}$	$\begin{array}{lll} l & 30 \cdot 93 \\ l & 32.42 \end{array}$	31×92 30-06	l $30 \cdot 96$	
	30'10	32*39	31-06	31•53	$31 \cdot 52$	31•34	32-66	32-29	31'16	30•66	

Angle between	At XXXVI (Kalúrunikád)-(Continued).									
	Circle $214^{\circ} 9^{\prime}$ $84^{\circ} 8^{\prime}$	reading $293^{\circ} 21^{\prime}$, telescop $113^{\circ} 21^{\prime}$	e being $12^{\circ} 32^{\prime}$	set on X $192^{\circ} 32^{\prime}$	XXXIX $91^{\circ} 46^{\prime}$	(Rĕtava $271^{\circ} 45^{\prime}$	ayal) $170^{\circ} 57^{\prime}$	$350^{\circ} 56^{\prime}$	$\boldsymbol{M}=$ Mean of Groups ${ }^{v o}=$ Relative Weight C $=$ Concluded Angle
XẊXVIII (Merpanaikád) and XXXVII (Kárakkurchi)										$\begin{aligned} M & =59^{\prime \prime} \cdot 3^{2} \\ w & =12 \cdot 78 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =61^{\circ} 10^{\prime} 59^{\prime \prime} \cdot 31 \end{aligned}$
	$59.69 \quad 59.27$	$59 \cdot 57$	59^{12}	$59 \cdot 69$	59*92	58.91	$57 \cdot 29$	60•04	59*74	
XXXVII (Kárakkurchi) and XXXIII (Pátharankota)										$\begin{aligned} & M=11^{\prime \prime} \cdot 54 \\ & w=13 \cdot 54 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=66^{\circ} 3^{\prime} 11^{\prime \prime} \cdot 53 \end{aligned}$
	11.69 11.61	11*63	12•34	12.22	10'91	11•27	12:76	$10 \cdot 61$	10*40	
\qquad	 d19.35 l21•13									$\begin{aligned} M & =21^{\prime \prime} \cdot 22 \\ w & =19 \cdot 84 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =42^{\circ} 28^{\prime} 21^{\prime \prime} \cdot 21 \end{aligned}$
	$\begin{array}{llllllllll}21.62 & 20.98 & 22.24 & 20.99 & 20.71 & 21.44 & 20.07 & 22.02 & 20.89 & 21.25\end{array}$									
At XXXVII (Kárakkurchi) February 1877; observed by Captain T. T. Carter, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.										
Angle between	Circle readings, telescope being set on XXXV (Kallakota) $\begin{array}{llllllllll} & 207^{\circ} & 26^{\prime} & 27^{\circ} & 26^{\prime} & 286^{\circ} & 38^{\prime} & 106^{\circ} 38^{\prime} & 5^{\circ} 50^{\prime} & 185^{\circ} \\ 50^{\prime} & 85^{\circ} 2^{\prime} & 265^{\circ} 2^{\prime} & 164^{\circ} 14^{\prime} & 344^{\circ} & 15^{\prime}\end{array}$									$M=$ Mean of Groups $w^{w}=$ Relative Weight $C=$ Concluded Angle
$\begin{gathered} \text { XXXV (Kallakota) } \\ \text { and } \\ \text { XXXIII (Pátharankota) } \end{gathered}$										$\begin{aligned} & M=60^{\prime \prime} \cdot 00 \\ & w=18 \cdot 50 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=43^{\circ} 35^{\prime} 0^{\prime \prime} \cdot \circ 0 \end{aligned}$
	59'19 60'15	59•37	60•67	60•77	$59 \cdot 69$	59•02	$60 \cdot 40$	$59 \cdot 87$	$60 \cdot 86$	
XXXIII (Pátharankota) and XXXVI (Kalúrunikád)	 $t 45 \cdot 12$									$\begin{aligned} & M=45^{\prime \prime} \cdot 17 \\ & w=28 \cdot 15 \\ & \frac{1}{w}=0 \cdot 04 \\ & \boldsymbol{C}=60^{\circ} 39^{\prime} 45^{\prime \prime} \cdot 18 \end{aligned}$
	$45^{\prime} 71 \quad 45 \cdot 56$	44.66	45*28	44*49	$45 \cdot 51$	$45 \cdot 56$	$44 * 63$	45*34	$45^{\circ} 00$	

At XXXVII (Kárakkurchi)-(Continued).											
Angle between	Circle readings, telescope being set on XXXV (Kallakota)										$\boldsymbol{M}=$ Mean of Groups $w_{0}=$ Relative Weight O = Concluded Angle
	$207^{\circ} 26^{\prime}$	27 ${ }^{\circ} 6^{\prime}$	$286^{\circ} 38^{\prime}$	$106^{\circ} 38^{\prime}$	$5^{\circ} 50^{\prime}$	$185^{\circ} 50^{\circ}$	$85^{\circ} 2^{\prime}$	$266^{\circ} \mathbf{2}^{\prime}$	$164^{\circ} 14^{\prime}$	$344^{\circ} 16^{\prime}$	
XXXVI (Kalúrunikád) and XXXVIII (Merpanaikád)	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} M & =34^{\prime \prime} \cdot 39 \\ w & =13 \cdot 76 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =67^{\circ} 57^{\prime} 34^{\prime \prime} \cdot 39 \end{aligned}$
	${ }^{1} 33 \cdot 12 l$	34.43	$234 \cdot 12$	35'14	33.47	l $35 \cdot 20$	32-13	34.83	$734 \cdot 13$	$l 34.54$	
	$l 34.17 l$	34.68	$l 3{ }^{\text {l }} 36 \cdot 24$	$l 34 \cdot 88$	$33 \cdot 82$	$l 34.62$	33.86	34.50	l $33 \cdot 80$	$l 34.44$	
	$l 33^{\circ} 04$	$35 \cdot 32$	$l 36 \cdot 58$	l $35 \cdot 27$	34.04	$l 35^{\circ} 03$	34.25	35 -06	$\begin{aligned} & l 32.45 \\ & l \\ & 34 \cdot 43 \end{aligned}$	${ }^{7} 3{ }^{\prime}{ }^{1}$	
	$33 * 44$	34*81	$35 \cdot 65$	$35^{\circ} 10$	$33 \cdot 78$	34.95	$33^{*} 4$	34•80	33'70	34*30	
XXXVIII (Merpanaikad) and XL (Kulamangalam)	 										$\begin{aligned} & M=55^{\prime \prime} \cdot 37 \\ & w=13 \cdot 42 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=0 \cdot \circ 7 \\ & C=35^{\circ} 12^{\prime} 55^{\prime \prime} \cdot 36 \end{aligned}$
	54.25	55*21	55*95	$55 * 75$	56•14	56-06	55'17	$55 \cdot 86$	53*75	55*51	

At XXXVIII (Merpanaikád)

January 1877; observed by Captain T. T. Carter, R.E., and Mr. G. Belcham with Troughton and Simms' 24-inch T'heodolite No. 1.

Angle between	Circle readings, telescope being set on XXXIX (Rytavayal)										$M=$ Mean of Groups $w^{*}=$ Relative Weight $\boldsymbol{C}=$ Concluded Angle
$\begin{gathered} \text { XXXIX (Rětavayal) } \\ \text { and } \\ \text { XLI (Mánúr) } \end{gathered}$	"	"	"	"	"	"	"	"	-		$\begin{aligned} & M=44^{\prime \prime} \cdot 8 \mathbf{I} \\ & w=2 \mathbf{I} \cdot 70 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=64^{\circ} 49^{\prime} 44^{\prime \prime} \cdot 8 \mathbf{I} \end{aligned}$
	$\begin{aligned} & l 45: 93 \\ & l 44 \cdot 76 \\ & l \\ & l 4 \cdot 75 \end{aligned}$		$l 44 \cdot 16$ $l 44$ • 17 $l 44$.08	$\begin{aligned} & l 44.99 \\ & l 45.77 \\ & l 44.69 \end{aligned}$	$\begin{aligned} & l 44 \cdot 36 \\ & l \\ & l \\ & l \\ & 43 \cdot 65 \\ & 43 \end{aligned}$	$\begin{aligned} & l 44.30 \\ & l 45 \cdot 34 \\ & l 45 \cdot 03 \end{aligned}$	$\begin{aligned} & l 44 \cdot 85 \\ & l 44 \cdot 27 \\ & l \\ & l \\ & 45 \cdot 46 \end{aligned}$	$l 43.86$ $l 44$.65 $l 45$. 59	$l 43.90$ l $44^{\circ} 49$ $l 44$ 50	$\begin{aligned} & l+46 \cdot 58 \\ & l 44.51 \\ & l \\ & l \end{aligned}$	
	45'15	45*91	44*14	$45^{\prime} 15$	$43 \cdot 85$	$44 \cdot 89$	$44 * 86$	44*70	44*30	45*13	
$\begin{gathered} \text { XLI (Mánúr) } \\ \text { and } \\ \text { XLII (Pallathivayal) } \end{gathered}$	$\begin{aligned} & l 28 \cdot 18 \\ & l \\ & l \\ & l \\ & l \end{aligned} 28 \cdot 53$	$\begin{aligned} & l 29.52 \\ & l 28.92 \\ & l 29.67 \end{aligned}$	$\begin{aligned} & l 27.63 \\ & l 27.46 \\ & l 28.80 \end{aligned}$	$\begin{array}{r} l 28 \cdot 35 \\ l 28 \cdot 52 \\ l 29 \cdot 32 \end{array}$	l29•17 l28.65 $l 29$. 16	$\begin{aligned} & l 27.31 \\ & l 28 \cdot 80 \\ & l 28.89 \end{aligned}$	$\begin{aligned} & l 28.52 \\ & l 29.01 \\ & l 28.39 \end{aligned}$	$\begin{aligned} & l 28 \cdot 27 \\ & l 27 \cdot 33 \\ & l 27 \cdot 96 \end{aligned}$	$\begin{aligned} & l 29.27 \\ & l 28.38 \\ & l 27.10 \end{aligned}$	$\begin{aligned} & l 26 \cdot 96 \\ & l 27 \cdot 28 \\ & l \\ & l \\ & 26 \cdot 53 \end{aligned}$	$\begin{aligned} & M=28^{\prime \prime} \cdot 28 \\ & w=16 \cdot 70 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=45^{\circ} 14^{\prime} 28^{\prime \prime} \cdot 28 \end{aligned}$
	27×73	$29 \cdot 37$	27-96	$28 \cdot 73$	28•99	$28 \cdot 33$	$28 \cdot 64$	$27 \cdot 85$	28.25	26.92	
XLII (Pallathivayal) and XL (Kulamangalam)	l l 45.94	l l 46.41	l l $5^{\circ} \cdot \mathbf{4 2}$	l l l 46.13 46 47	l 44.64 l 44 l 45	l l l 47 l $45^{\circ} \cdot 92$ 43	$\begin{aligned} & l 46 \cdot 84 \\ & l \\ & l \\ & l_{45} \cdot 63 \\ & d_{46} \cdot 16 \\ & d_{45} \cdot 51 \end{aligned}$	l l l $l 6 \cdot 61$ $46 \cdot 35$ l $45 \cdot 60$	$745 \cdot 78$ l l		$\begin{aligned} & M=46^{\prime \prime} \cdot 14 \\ & \boldsymbol{w}=20 \cdot 34 \\ & \underline{I}=0 \cdot 05 \\ & \boldsymbol{w}=67^{\circ} 58^{\prime} 46^{\prime \prime} \cdot 14 \end{aligned}$
	46•10	46•75	45*74	46•98	$44 \cdot 8 \mathrm{I}$	46•22	46•04	46•19	$45 * 96$	46*61	
XL (Kulamangalam) and XXXVII (Kárakkurchi)	l l 3.48		$\begin{array}{ll}l & 4.37 . \\ l & 1 \\ l & 58 \\ l & 3.59 \\ l & 3.08\end{array}$	$\begin{array}{ll}l & 3.73 \\ l & 2.76 \\ l & 2.92\end{array}$	$\begin{array}{ll}l & 6.63 \\ l & 4.63 \\ l & 5.39\end{array}$	l l $3 \cdot 31$		$\begin{array}{lll}l & 3 & .81 \\ l & 2 & 77 \\ l & 3\end{array}$	$\begin{array}{ll}l & 1.69 \\ l & 3.68 \\ l & 3.10 \\ l & 3.02\end{array}$		$\begin{aligned} M & =3^{\prime \prime} \cdot 46 \\ w & =9 \cdot 66 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =68^{\circ} 20^{\prime} \quad 3^{\prime \prime} \cdot 46 \end{aligned}$
	3.55.	$2 \cdot 28$	3'16	2.90	5•55	3•66	$4 * 47$	$3 \cdot 26$	$2 \cdot 87$	$2 \cdot 93$	

At XXXVIII (Merpanaikád)-(Continued).

Angle between	Circle readings, telescope being set on XXXIX (Rětavayal)										$M=$ Mean of Groups $v=$ Relative Weight C $=$ Concluded Angle
XXXVII (Kárakkurchi) and XXXVI (Kalúrunikád)											$\begin{aligned} M & =27^{\prime \prime} \cdot 51 \\ w & =8 \cdot 32 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =50^{\circ} 51^{\prime} 27^{\prime \prime} \cdot 5^{1} \end{aligned}$
	28.9	27.67.	$28 \cdot 62$	$27 \cdot 22$	$26 \cdot 07$	26•39	$26 \cdot 46$	28-12	28.71	26•96	
XXXVI (Kaláranikád) and XXXIX (Rětavayal)	 										$\begin{aligned} & M=29^{\prime \prime} \cdot 06 \\ & w=5 \cdot 20 \\ & \frac{1}{w}=0 \cdot 19 \\ & C=62^{\circ} 45^{\prime} 29^{\prime \prime} \cdot 06 \end{aligned}$
	$28 \cdot 4$	26•76	29*06	29.24	31-10	28•81	27•89	29.58	$28 \cdot 60$	31*11	

At XXXIX (Rětavayal)

February 1877; observed by Captain T. T. Carter, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 0^{\prime}$	$\begin{gathered} \mathrm{Ci} \\ 180^{\circ} 0^{\circ} \end{gathered}$	rcle rea $79^{\circ} 13^{\prime}$	dings, tel $259^{\circ} 13^{\prime}$	lescope b $158^{\circ} 24^{\prime}$	being set 338° 24'	on XLI $237^{\circ} \mathbf{3 7}{ }^{\prime}$	(Mánúa 57 ${ }^{\circ} 36^{\prime}$	$316^{\circ} 49^{\prime}$	$186^{\circ} 49^{\prime}$	$M=$ Mean of Groups $w_{0}=$ Relative Weight $C=$ Concluded Angle
$\begin{gathered} \text { XLI (Mánár) } \\ \text { and } \\ \text { XXXVIII (Merpanaikád) } \end{gathered}$											$\begin{aligned} & M=22^{\prime \prime} \cdot 96 \\ & w=12 \cdot 25 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=69^{\circ} 31^{\prime} 22^{\prime \prime} \cdot 96 \end{aligned}$
	23.39	24*13	21.43	22.92	24*09	22.78	23.44	22.43	22.50	$22 \cdot 52$	
```XXXVIII (Merpanaikad) and XXXVI (Kalurrunikád)```											$\begin{aligned} & M=58^{\prime \prime} \cdot 29 \\ & w=14 \cdot 59 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=73^{\circ} 23^{\prime} 58^{\prime \prime} \cdot 30 \end{aligned}$
	58.45	57.66	$58 \cdot 45$	57•20	57•52	$57 \cdot 85$	$59^{\prime} 13$	58•70	58.51	$59 * 45$	

## At XL (Kulamangalam)

January 1877 ; observed by Captain T. T. Carter, R.E., and Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXXVII (Kárakkurchi)										$M=$ Mean of Groups   $v_{0}=$ Relative Weight   $c=$ Concluded Angle
XXXVII (Kárakkurchi) and XXXVIII (Merpanaikád)	$\prime \prime$    $l$ $3 \cdot 02$   $l$ $5 \cdot 09$   $l$ 4.59  	$\prime \prime$ $l$ $l$ 2.22 $l$ $l$ $l$ $l$ 3.60	$\begin{array}{cc} n \\ l & n .69 \\ l & 5.69 \\ l & 2.28 \\ l & 2.81 \\ l & 2 . \\ 2 . & 57 \end{array}$			$\prime \prime$ $l$ $l$ $l$ $l$ $l$ 288	$\begin{array}{ll} \\ l & \prime \prime \\ l & 188 \\ l & 1 \\ l & 88 \\ l & 2\end{array}$	$\begin{array}{cc}\prime \prime \\ l & 2.94 \\ l & 2.96 \\ l & 2.75\end{array}$			$\begin{aligned} & M=2^{\prime \prime} \cdot 60 \\ & w=13 \cdot 34 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=76^{\circ} 27^{\prime} 2^{\prime \prime} \cdot 59 \end{aligned}$
	4.23	3.18	$2 \cdot 95$	1-59	$2 \cdot 57$	2.49	2.15	$2 \cdot 88$	$2 \cdot 13$	1.84	
$\begin{array}{\|c} \text { XXXVIII (Merpanaikád) } \\ \text { and } \\ \text { XLII (Pallathivayal) } \end{array}$											$\begin{aligned} M & =45^{\prime \prime} \cdot 82 \\ w & =11 \cdot 04 \\ \frac{\mathbf{1}}{w} & =0 \cdot 09 \\ C & =77^{\circ} 25^{\prime} 45^{\prime \prime} \cdot 82 \end{aligned}$
	44*57	4511	$45 \cdot 60$	$45 * 42$	$47 \cdot 85$	$46 \cdot 46$	45*71	45'73	45*50	46•29	

At XLI (Mánúr)
January 1877; observed by Captain T. T. Carter, R.E., and Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLIV (Kánád)										$M=$ Mean of Groups   $w^{2}=$ Relative Weight   C = Concluded Angle
	$226^{\circ} 7^{\prime}$	$46^{\circ} 7^{\prime}$	$305^{\circ} 18^{\prime}$	$125^{\circ} 18^{\prime}$	$24^{\circ} 29^{\prime}$	$204^{\circ} 29^{\prime}$	$103^{\circ} 42^{\prime}$	$283^{\circ} 42^{\prime}$	$182^{\circ} 54^{\prime}$	$2^{\circ} 54{ }^{\prime}$	
XLIV (Kánád) and XLIII (Okkúr)	"	$"$	"	"	"	"	"	"	"	"	$\begin{aligned} & M=28^{\prime \prime} \cdot 34 \\ & w=13 \cdot 96 \\ & \frac{\mathrm{I}}{\mathbf{w}}=0 \cdot 07 \\ & C=49^{\circ} 23^{\prime} 28^{\prime \prime} \cdot 34 \end{aligned}$
	27-36	28.21	27.89	29.68	28.12	28:20	28.59	28.26	$29 \cdot 64$	$27 \cdot 42$	
```XLIII (Okkúr) and XLII (Pallathivayal)```	      ${ }^{2} 5 \mathrm{I}$ • 52										$\begin{aligned} M & =5^{\prime \prime \prime} \cdot 45 \\ w & =8 \cdot 22 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =62^{\circ} 26^{\prime} 51^{\prime \prime} \cdot 45 \end{aligned}$
	51•13	52.07	52*79	52.65	51-39	51*32	51*44	$50 \cdot 42$	$49^{*} 3^{2}$	52.00	
XLII (Pallathivayal) and XXXVIII (Merpanaikád)	 										$\begin{aligned} & M=60^{\prime \prime} \cdot 60 \\ & w=21 \cdot 70 \\ & \frac{1}{w}=0 \cdot 0 j \\ & C=68^{\circ} 36^{\prime} 0^{\prime \prime} \cdot 60 \end{aligned}$
	61-01	$60 \cdot 62$	60•25	60*43	61/19	59*79	$60 \cdot 89$	60*95	61.10	59•80	

At XLI (Mánúr)-(Continued).

Angle between	Circle readings, telescope being set on XLIV (Kánád)										$\mathcal{M}=$ Mean of Groups so $=$ Relative Weight $C=$ Concluded Δ anglo
```XXXVIII (Merpanaikád) and XXXIX (Re̊tavayal)```	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=5 \mathbf{l}^{\prime \prime} \cdot 57 \\ & w=10 \cdot 45 \\ & \frac{\mathbf{I}}{\boldsymbol{w}}=0 \cdot 10 \\ & \boldsymbol{C}=45^{\circ} 3^{\prime} 8^{\prime} 51^{\prime \prime} \cdot 57 \end{aligned}$
	$751 \times 0$	51-18	$750 \cdot 58$	$52 \cdot 15$	51-23	252.56	$l 50.07$	$l 52.88$	749.25	22.64	
	$l 52^{2} 28$	49.94	$l 50 \cdot 92$	49.56	51•87	${ }_{5} \mathrm{SI}^{26}$	$l 52 \cdot 01$	$l 53.29$	$l 50 \cdot 63$	52.81	
	650.53	52.27	$l_{51}$ - 26	51-15	51*42	22.63	$\begin{array}{ll} l & 52 \cdot 94 \\ l \\ 51 & 04 \end{array}$	$l 53 \cdot 42$	$l_{51}$-11	$52 \cdot 84$	
	51•27	51*13	50'92	50*95	51*51	52.15	51*52	$53^{\prime 20}$	50’33	$52 \cdot 76$	

At XLII (Pallathivayal)
January 1877; observed by Captain T. T. Carter, R.E., and Mr. G. Belcham with Troughton and Simms'
24-inch Theodolite No. 1.

Angle between	$211^{\circ} 88^{\prime}$	Circle readings, telescope being set on XL (Kulamangalam)								$348^{\circ} 26^{\prime}$	$M=$ Mean of Groups   ${ }^{\infty}=$ = Relative Weight.   $C=$ Concluded Angle
XI (Kulamangalam) and XXXVIII (Merpanaikád)	$\begin{aligned} & l 26 \cdot 22 \\ & l 27 \cdot 53 \\ & l \\ & l \\ & 27 \cdot 92 \end{aligned}$	\% 28.27 27 26.78 26.04	$\prime \prime$ $l$ $26 \cdot 82$ $l$ $l$			$\begin{array}{cc} \\ l & 26 \cdot 74 \\ l & 28 \cdot \\ l \\ l & 28.00\end{array}$	$\prime \prime$ 28.44 28.33 27	$\begin{aligned} & l 27.61 \\ & l 26.96 \\ & l 29.46 \\ & l 28.62 \end{aligned}$	$\prime \prime$ $l 30 \cdot 60$ $l$ $l$	$\prime \prime$ $l 29 \cdot 13$ $l 28 \cdot 40$ $l 27 \cdot 96$	$\begin{aligned} & M=28^{\prime \prime} \cdot 12 \\ & w=11 \cdot 67 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=34^{\circ} 35^{\prime} 28^{\prime \prime} \cdot 12 \end{aligned}$
	27.22	27*36	$27 \cdot 13$	29*38	28.28	27•72	28.02	28•16	29*41	$28 \cdot 50$	
XXXVIII (Merpanaikad) and XLI (Mánár)	$l$ $l$ $\mathbf{3 2} 177$	$\begin{aligned} & l 32.05 \\ & l \\ & l \\ & l \\ & l \\ & 32.43 \\ & 34.14 \end{aligned}$	$\begin{aligned} & l 33.55 \\ & l 33.82 \\ & l 32.40 \end{aligned}$	$\begin{aligned} & l 31 \cdot 99 \\ & l 32 \cdot 87 \\ & l 33 \cdot 69 \end{aligned}$	$\begin{aligned} & l 32 \cdot 70 \\ & l 32 \cdot 45 \\ & l 30 \cdot 71 \end{aligned}$			$\begin{aligned} & l 33 \cdot 58 \\ & l 31 \cdot 91 \\ & l \\ & l \\ & 3 \mathrm{I} \cdot 97 \end{aligned}$	$\begin{aligned} & l 31 \cdot 38 \\ & l 32 \cdot 24 \\ & l \\ & l \end{aligned}$	$l 34 \cdot 82$   $l 32 \cdot 90$   $l 33 \cdot 78$   ${ }^{2} 30^{\circ} 50$   ${ }^{l} 333.64$   l $32 \cdot 34$	$\begin{aligned} M & =32^{\prime \prime \prime} \cdot 70 \\ w & =12 \cdot 53 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =66^{\circ} \quad 9^{\prime} 32^{\prime \prime} \cdot 73 \end{aligned}$
	32.21	$32 \cdot 87$	$33^{26}$	$32 \cdot 85$	31.95	34*26	32-06	32*49	32•04	$33^{\circ} 00$	
$\begin{aligned} & \text { XLI (Mánár) } \\ & \text { and } \\ & \text { XLIII (Ókkár) } \end{aligned}$	$\begin{aligned} & l 49 \cdot 56 \\ & l 47 \cdot 11 \\ & l 49 \cdot 52 \end{aligned}$	$78 \cdot 11$ 49.06 48.48	$\begin{aligned} & l 48 \cdot 01 \\ & l 48.91 \\ & l 48 \cdot 62 \end{aligned}$		$\begin{aligned} & l 50 \cdot 72 \\ & l \\ & l \\ & l \\ & 79.64 \\ & 49.69 \end{aligned}$		$l$   47   49   49   48   48	$\begin{aligned} & l 49.28 \\ & l 48.83 \\ & l \\ & l \end{aligned}{ }^{49.21}$	$l$ $l$ $l$ $49 \cdot 87$ $l$ 49.50	$\begin{aligned} & l 48 \cdot 58 \\ & l \\ & l \\ & l 6 \cdot 25 \\ & l \\ & l \\ & 49 \cdot 80 \end{aligned}$	$\begin{aligned} & M=48^{\prime \prime} \cdot 69 \\ & w=13 \cdot 80 \\ & \frac{\mathbf{I}}{w}=0 \cdot 07 \\ & C=74^{\circ} 8^{\prime} 48^{\prime \prime} \cdot 69 \end{aligned}$
	48.73	$48 \cdot 55$	48.51	$47^{116}$	50•02	48.75	48•57	$49^{\prime} 11$	$49^{\circ} 23$	48-22	
```XLIII (Okkúr) and XLV (Sembalavayal)```		$\begin{array}{cc}l & 4 \cdot 81 \\ l & 4.74 \\ l & 4.54\end{array}$	$l$ $l$ $l$ 6.22	$\begin{array}{ll}l & 4.23 \\ l & 6 \cdot 77 \\ l & 4.74 \\ l & 5.43\end{array}$	$\begin{array}{ll}l & 4.61 \\ l & 563 \\ l & 4.06\end{array}$	$\begin{array}{lll} l & 3.79 \\ l & 3.79 \\ l & 4.08 \\ l & 5 \cdot 08 \\ l & 4.29 \end{array}$	$\begin{array}{ll}l & 5 \cdot 41 \\ l & 4 \cdot 15 \\ l & 4 \\ l\end{array}$	$\begin{array}{ll}l & 6 \cdot 25 \\ l & 4.89 \\ l & 4.76\end{array}$	$\begin{array}{ll}l & 3.60 \\ l & 3.79 \\ l & 3.33\end{array}$	$\begin{array}{lll} l & 5.40 \\ l & 4.46 \\ l & 4.52 \end{array}$	$\begin{aligned} M & =4^{\prime \prime} \cdot 82 \\ w & =18 \cdot 75 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =36^{\circ} 43^{\prime} 4^{\prime \prime} \cdot 82 \end{aligned}$
	$5 \cdot 15$	$4 \cdot 70$	$5 \cdot 76$	5.29	$4 \cdot 77$	4*31	$4 \cdot 54$	5 30	$3 \cdot 57$	4779	

At XLIII (Ǒkkúr)

January 1877; observed by Captain T. T. Carter, R.E., and Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

At XLVI (Sirukambúr)

February 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLIX (Nambudalai)										$M=$ Mean of Groupe $\omega_{0}=$ Rolative Woight C = Concluded Anglo
```XLIX (Nambudalai) and XLVIII (Man\̌gandi)```	$\begin{array}{ll} & \prime \prime \\ l & 2.58 \\ l & 2.63 \\ l & 2.63 \\ l & 2.30\end{array}$			$\begin{array}{ll} & \prime \prime \\ l & 4 \cdot 17 \\ l & 1 \\ l & 83 \\ l & 2.38\end{array}$	$\begin{array}{ll} \\ l & \prime \prime \\ l & 3 \cdot 15 \\ l & 2 \\ l & 6 \\ l & 2.23\end{array}$	$\begin{array}{lll} & \prime \prime \\ l & 3.15 \\ l & 3 . \\ l & 3.97 \\ l & 2.65\end{array}$		$\begin{array}{llc}l \\ l & \prime \prime \\ l & 1.60 \\ l & 3.65 \\ l & 2.73\end{array}$			$\begin{aligned} M & =2^{\prime \prime} \cdot 64 \\ w & =22 \cdot 20 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =37^{\circ} 50^{\prime} \quad 2^{N} \cdot 64 \end{aligned}$
	$2 \cdot 50$	1'91	2'18	$2 \cdot 79$	$2 \cdot 67$	$3 \cdot 26$	3•68	$2 \cdot 66$	2.45	$2 \cdot 27$	
$\begin{aligned} & \text { XLVIII (Manð̌gandi) } \\ & \text { and } \\ & \text { XLVII (Manikamkota) } \end{aligned}$	    										$\begin{aligned} & M=49^{\prime \prime} \cdot 54 \\ & w=12 \cdot 20 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=67^{\circ} 11^{\prime} 49^{\prime \prime} \cdot 54 \end{aligned}$
	49*19	50.88	50'50	$50 \cdot 43$	48•98	$48 \cdot 67$	$48 \cdot 87$	48-82	49•98	$49^{111}$	
XLVII (Manikamkota)   and   XLIII (Ǒkkúr)	$l 57 \cdot 57 l 56 \cdot 25 l 58 \cdot 57 l 57 \cdot 37 l 59 \cdot 87 l 57 \cdot 63 l 56 \cdot 79 l 58 \cdot 31 l 57 \cdot 89 l 58 \cdot 42$  										$\begin{aligned} M & =57^{\prime \prime} \cdot 3^{8} \\ w & =10 \cdot 10 \\ \frac{I}{w} & =0 \cdot 10 \\ C & =67^{\circ} 31^{\prime} 57^{\prime \prime} \cdot 3^{8} \end{aligned}$
	56.25	$56 \cdot 80$	58•18	56.12	58.91	$57 \cdot 69$	$56 \cdot 65$	57•97	57.63	57.63	
$\begin{aligned} & \text { XLIII (Okkúr) } \\ & \text { and } \\ & \text { XLIF (Kánád) } \end{aligned}$	$l$ 6.49   $l$ 5.86   $l$     4 12	$\begin{array}{ll}l & 4.80 \\ l & 5.91 \\ l & 3.89\end{array}$	$\begin{array}{ll}l & 6.36 \\ l & 3.56 \\ l & 5.60\end{array}$	$\begin{array}{ll}l & 6 \cdot 17 \\ l & 3.49 \\ l & 4.77\end{array}$	$\begin{array}{ll}l & 4 \\ l & .94 \\ l & 480 \\ l \\ 5 & 95\end{array}$	$\begin{array}{ll}l & 4.98 \\ l & 6.05 \\ l & 5.69\end{array}$	$l$ 4   $l$ 50   $l$ 4   $l$ 61  	$\begin{array}{ll}l & 7.44 \\ l & 5.26 \\ l & 6.69\end{array}$	$\begin{array}{ll} l & 5 \cdot 03 \\ l & 5: 83 \\ l & 5 \cdot 96 \end{array}$	$\begin{aligned} & l \\ & l \\ & 7.95 \\ & 26.12 \\ & 76.25 \end{aligned}$	$\begin{aligned} & M=5^{N \cdot 34} \\ & w=19 \cdot 60 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=47^{\circ} 56^{\prime} \quad 5^{N \cdot} \cdot 34 \end{aligned}$
	5*49	$4 \cdot 87$	5•17	$4 \cdot 81$	$5 \cdot 23$	5•57	5*11	$6 \cdot 46$	4*94	5*77	

## At XLVII (Manikamkota)

February 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$225^{\circ} 24^{\prime}$	$\begin{aligned} & \text { Circl } \\ & 45^{\circ} 24^{\prime} \end{aligned}$	reading   304오́	s, telesco   $124^{\circ} 36^{\prime}$	pe being   $28^{\circ} 48^{\prime}$	$\begin{gathered} g \text { set on } \\ 203^{\circ} 48^{\prime} \end{gathered}$	$\begin{gathered} \text { XLV }(S \\ 103^{\circ} 0^{\prime} \end{gathered}$	ombalav   $283^{\circ} 0^{\prime}$	ayal) $182^{\circ} 12^{\prime}$	$2^{0} 12^{\prime}$	$M=$ Mean of Groupe   $\infty_{C}=$ Relative Weight   C = Concluded Angle
XLV (Sembalavayal) and XLIII (Okkúr)	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=36^{\prime \prime} \cdot 61 \\ & w=16 \cdot 90 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=36^{\circ} 50^{\prime} 36^{\prime \prime} \cdot 61 \end{aligned}$
	$\begin{array}{ll}l & 35 \cdot 53 \\ l & 36.53 \\ l & l\end{array}$	$l$ 37.07 $l$ 36.63	$l 37.35$	$l$ $l$ 36.261	$36 \cdot 32$ 37 37	$l$	$l$$37 \cdot 16$   37   37   10	$36 \cdot 55$ $37 \cdot 87$	$l$	$35 \cdot 26$ 35.82	
	$l 36.47$	$l 37 \cdot 68$	$l 37 \cdot 04$	$l 36 \cdot 53$	$37 \times 3$	$l .35 \cdot 17$	l $36 \cdot 29$	$37 * 09$	$l 37^{\circ} 09$	$35 \cdot 63$	
	36.21	37 ${ }^{13}$	37*51	$36 \cdot 48$	37'25	$35^{\circ} 36$	$36 \cdot 85$	37'17	36.6I	35*57	

## At XLVII (Manikamkota)-(Continued).



## At XLVIII (Manĕgandi)-(Continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Angle between \& \multicolumn{10}{|c|}{Circle readings, telescope being set on XLVII (Manikamkota)} \& \begin{tabular}{l}
\(\mathcal{M}=\) Mean of Groupe \\
\({ }^{20}=\) Relative Weight \\
\(C=\) Concluded \(\Delta\) nglo
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
XLIX (Nambudalai) \\
and \\
LI (Orannankudi)
\end{tabular}} \& \[
\begin{gathered}
" \prime \\
l 42 \cdot 84 \\
l 42 \cdot 42 \\
l 42.66
\end{gathered}
\] \& \(\prime \prime\)
\(h_{46} \times 13\)
\(h_{44} \cdot 36\)
444 \& \(\prime \prime\)
\(42 \cdot 14\)
\(42 \cdot 89\)
\(40 \cdot 20\) \&  \& \(\prime \prime\)
\(42 \cdot 85\)
\(42 \cdot 66\)
\(42 \cdot 10\) \&  \& \(\prime \prime\)
\(44 \cdot 09\)
42.74
44.58
4 \& \(\prime \prime\)
\(42 \cdot 22\)
\(42 \cdot 86\)
\(42 \cdot 36\) \& \[
\begin{gathered}
n \\
l \\
l \\
l 4 \cdot 13 \\
l \\
l \\
l \\
42 \cdot 40 \\
h_{4} \cdot 26 \\
\\
44 \cdot 09
\end{gathered}
\] \&  \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& M=42^{\prime \prime \cdot} \cdot 78 \\
\& w=8 \cdot 12 \\
\& \frac{I}{w}=0 \cdot 12 \\
\& C=67^{\circ} 15^{\prime} 42^{N} \cdot 78
\end{aligned}
\]} \\
\hline \& \(42 \cdot 64\) \& \(44 \cdot 89\) \& 41 74 \& \(42 \cdot 04\) \& \(42 \cdot 54\) \& 42•17 \& \(43 \cdot 80\) \& \(42 \cdot 48\) \& \(43 \cdot 72\) \& 41 74 \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
LI (Urannankudi) and \\
LII (Mutupatnam)
\end{tabular}} \& \(\begin{array}{ll}l \& 4.24 \\ l \& 5 \\ l \& 14 \\ l \& 4\end{array}\) \& \(\begin{array}{ll}h \& 1.54 \\ h \& 2.71 \\ h \& 2.71\end{array}\) \& \(l\)
\(l\) \(6 \cdot 15\) \& \(\begin{array}{ll}l \& 4.06 \\ l \& 5.62 \\ l \& 3.55\end{array}\) \& \(\begin{array}{ll}l \& 4.75 \\ l \& 4.59 \\ l \& 6.04\end{array}\) \& \(\begin{array}{ll}l \& 5.02 \\ l \& 4.96 \\ l \& 3.94\end{array}\) \& \(\begin{array}{ll}l \& 5.03 \\ l \& 5.76 \\ h \& 5.07\end{array}\) \& \(\begin{array}{ll}l \& 4.44 \\ l \& 4.23 \\ l \\ l \& .83\end{array}\) \& \(\begin{array}{cl}l \& 3\end{array}\) \& \begin{tabular}{lll}
\(l\) \& \(4 \cdot 78\) \\
\(l\) \& 3 \& 78 \\
\(l\) \& 5 \\
\\
\hline
\end{tabular} \& \multirow[t]{2}{*}{\[
\begin{aligned}
M \& =4^{N} \cdot 65 \\
w \& =9 \cdot 53 \\
\frac{1}{w} \& =0 \cdot 10 \\
C \& =47^{\circ} 6^{\prime} 4^{N} \cdot 66
\end{aligned}
\]} \\
\hline \& 4*71 \& \(2 \cdot 32\) \& 6.11 \& 4.41 \& 5•13 \& 4*47 \& 5:29 \& 4.50 \& 4.94 \& 4.69 \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
LII (Mutupatnam) and \\
L (V̌̆nniyưr)
\end{tabular}} \&  \& \begin{tabular}{ll}
\(h\) \& \(8 \cdot 21\) \\
\(h\) \& \(7 \cdot 84\) \\
\(h\) \& 9 \\
\hline
\end{tabular} \& \[
\begin{array}{lll}
l \& 6 \cdot 28 \\
l \& 7 \& 09 \\
l \& 6.89
\end{array}
\] \& \[
\begin{aligned}
\& l 7.05 \\
\& l \\
\& l \\
\& l
\end{aligned} 7.90
\] \& \(l\)
\(l\) 6.97 \& \(l\)
\(l\) \(6 \cdot 66\) \& \begin{tabular}{c}
\(l\) \\
\(l\) \\
\(l\) \\
7 \\
\(h\) \\
\hline
\end{tabular} \& \(l\)
\(l\) \(5 \cdot 64\) \& \[
\begin{array}{ll}
l \& \begin{array}{ll}
l \& 31 \\
l \& 6.70 \\
l \& 6.44 \\
h \& 6.67
\end{array}
\end{array}
\] \& \(\begin{array}{ll}l \& 7 \cdot 75 \\ l \& 7 \\ l \& 921 \\ l \& 6.82\end{array}\) \& \multirow[t]{2}{*}{\[
\begin{aligned}
M \& =7^{\prime \prime} \cdot 22 \\
w \& =13 \cdot 56 \\
\frac{1}{w} \& =0 \cdot 07 \\
C \& =63^{\circ} 48^{\prime} \quad 7^{\prime \prime} \cdot 22
\end{aligned}
\]} \\
\hline \& 8.33 \& \(8 \cdot 48\) \& 6.73 \& 7-24 \& \(6 \cdot 85\) \& \(6 \cdot 51\) \& 6•92 \& \(6 \cdot 89\) \& \(6 \cdot 28\) \& 7`93 \& \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { L (V̌nniyúr) } \\
\text { and } \\
\text { XLVII (Manikamkota) }
\end{gathered}
\]} \& \(l\)
7
\(l\) \(32 \cdot 66\) \& \[
\begin{aligned}
\& h_{32} \cdot 77 \\
\& h_{32} 32 \cdot 92 \\
\& h_{32} \cdot 17
\end{aligned}
\] \& 34.68
33.54
33.62 \& \(l\)
\(l\) \(3 \cdot 29\) \& \(33 \cdot 71\)
\(34 \cdot 10\)
\(34 * 04\) \& \(l\)
34.39
\(l\)
\(l\) \& \(l\)
\(34 \cdot 11\)
\(l\)
l
h

33 \& $l$
$35 \cdot 13$
$l$
$73 \cdot 82$

33.27 \& $$
\begin{aligned}
& l 35.49 \\
& l 34^{\circ} \cdot 491 \\
& l 34.37 \\
& h 32.03
\end{aligned}
$$ \& $l$

3

$l$ $3 \cdot 90$ \& \multirow[t]{2}{*}{$$
\begin{aligned}
& M=33^{\prime \prime} \cdot 79 \\
& w=17 \cdot 33 \\
& \frac{\mathbf{I}}{w}=0 \cdot 06 \\
& C=65^{\circ} 28^{\prime} 33^{\prime \prime} \cdot 79
\end{aligned}
$$} <br>

\hline \& 32`94 \& $32 \cdot 62$ \& 33•95 \& $33 * 46$ \& 33.95 \& $34 \cdot 82$ \& 33*71 \& 34*07 \& $33 \cdot 98$ \& 34*38 \& <br>
\hline
\end{tabular}

At XLIX (Nambudalai)
February 1876; observed by Major B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LI (Orannankudi)										$M=$ Mean of Groups   ${ }^{2}$ = Relative Weight   $C=$ Ooncluded Anglo
LI (Orannankudi) and	h 12 . 44 h 14.73 h 13.91	$\begin{aligned} & 14.97 \\ & 13.23 \\ & 12.94 \end{aligned}$		$\begin{array}{cc} " \\ l 14.30 & l \\ l 12.82 & l \\ l & 13.96 \\ l \end{array}$	$\begin{aligned} & 13.93 \\ & 133.54 \\ & l 13.33 \end{aligned}$	$\begin{gathered} " \\ l 15^{\circ} 40 \mathrm{~h} \\ 13.87 \mathrm{~h} \\ 712.87 \mathrm{l} \end{gathered}$		$\begin{aligned} & 13.58 \\ & 13.90 \\ & 13.85 \\ & 13.8 \end{aligned}$	$\begin{array}{cc}  & " \\ l & 13.21 \\ l & 13.08 \\ l & 14.37 \end{array}$	$\begin{array}{ll} l & 14.18 \\ l & 13 \cdot 93 \end{array}$	$\begin{aligned} M & =13^{\prime \prime} \cdot 79 \\ w & =23 \cdot 30 \\ \frac{I}{w} & =0 \cdot 04 \\ C & =76^{\circ} 2013^{\prime \prime} \cdot 79 \end{aligned}$
	13.69	13.71	13.36	13.69	13.60	14.05	$15 \% 04$	$13 \cdot 78$	13.55	13.42	

## At XLIX (Nambudalai)-(Continued).

Angle between	Circle readings, telescope being set on LI (Urannankudi)										$M=$ Mean of Group:   ${ }^{*}$ = Relative Weight   $C=$ Concluded $\Delta$ ngle
	$0^{\circ} z^{\prime}$	$180^{\circ} 1^{\prime}$	$79^{\circ} 18^{\prime}$	$259^{\circ} 12^{\prime}$	$158^{\circ} 24^{\prime}$	838 ${ }^{\circ} 3^{\prime}$	237 ${ }^{\circ} 37$	$57^{\circ} 36$	$316^{\circ} 50^{\prime}$	$136^{\circ} 49^{\prime}$	
XLVIII (Manĕgandi)   and   XLVI (Sirukambúr)	    										$\begin{aligned} & M=31^{\prime \prime} \cdot 69 \\ & w=22 \cdot 20 \\ & \frac{\mathbf{I}}{w}=0 \cdot 05 \\ & C=70^{\circ} \quad 5^{\prime} 31^{\prime \prime} \cdot 69 \end{aligned}$
	31'79	31-22	32•10	$3 \mathrm{I} \cdot 89$	32.29	31-69	$30 \cdot 59$	31-21	31*45	$32 \cdot 62$	
At L (Věnniyúr)											

February 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLVII (Manikamkota)  										$M=$ Mean of Groups   ${ }^{20}=$ Relative Weight
XLVII (Manikamkota)   and   XLVIII (Manĕgandi)	    										$\begin{aligned} & M=27^{\prime \prime} \cdot 18 \\ & w=6 \cdot 20 \\ & \frac{\mathbf{I}}{w}=0 \cdot 16 \\ & C=65^{\circ} 4^{\prime} 27^{\prime \prime} \cdot 18 \end{aligned}$
	26.11	$25 \cdot 76$	26•90	26•86	28.61	29*50	26.11	$26 \cdot 62$	28-10	27*21	
XLVIII (Manĕgandi)   and   LII (Mutupatnam)	    										$\begin{aligned} & M=58^{\prime \prime} \cdot 46 \\ & w=9 \cdot 00 \\ & \frac{I}{w}=0 \cdot 11 \\ & C=70^{\circ} 27^{\prime} 58^{\prime \prime} \cdot 46 \end{aligned}$
	$60 \cdot 04$	57`97	58.51	57•59	57•97	56•78	58•95	58.44	58•88	$59 * 47$	
March 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on LIV (Pŏragudi)   $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 13^{\prime} \quad 259^{\circ} 13^{\prime} \quad 158^{\circ} 25^{\prime} \quad 338^{\circ} 25^{\prime} \quad 237^{\circ} 37^{\prime} \quad 57^{\circ} 37^{\prime} \quad 316^{\circ} 50^{\prime} \quad 136^{\circ} 49^{\prime}$										$M=$ Mean of Groupe   ${ }_{C}^{w}=\begin{gathered}\text { Relative Weight } \\ C\end{gathered}$
$\begin{aligned} & \text { LIV (Pŏragudi) } \\ & \text { and } \\ & \text { LIII (Kðdikulam) } \end{aligned}$											$\begin{aligned} & M=45^{\prime \prime} \cdot 06 \\ & w=12 \cdot 26 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=30^{\circ} 7^{\prime} 45^{\prime \prime} \cdot 06 \end{aligned}$
	$43 \cdot 88$	45 70	44*74	46•10	45-08	$43 \cdot 87$	$45 \cdot 60$	$45 \cdot 03$	46.09	44*51	

## At LI (Úrannankudi)-(Continued).

Angle between											
LIII (Kð̌dikulam)   and   LII (Mutupatnam).											$\begin{aligned} M & =49^{\prime \prime} \cdot 90 \\ w & =15 \cdot 47 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =71^{\circ} 7^{\prime} 49^{\prime \prime} \cdot 90 \end{aligned}$
	50.25	51•57	49*01	$49^{*} 42$	49.52	$49 \cdot 87$	49*34	50•06	$49 \cdot 63$	50•36	
LII (Mutupatnam) and XLVIII (Maněgandi)	    										$\begin{aligned} & M=28^{\prime \prime} \cdot 93 \\ & w=13 \cdot 60 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=67^{\circ} 55^{\prime} 28^{N \prime} \cdot 93 \end{aligned}$
	$28 \cdot 56$	$28 \cdot 49$	$28 \cdot 73$	28.47	29•28	28•39	29*26	28•96	30.69	28.50	
XLVIII (Maněgandi) and XLIX (Nambudalai)	$\begin{array}{ll}l & 4.63 \\ l & 3.38 \\ l & 4.27\end{array}$	$\begin{array}{ll}l & 2 \cdot 16 \\ l & 2.96 \\ l & 2.84\end{array}$	$l$ $l$ $l$ 4.07	$\begin{array}{ll}l & 3.71 \\ l & 3.74 \\ l & 2.88\end{array}$	$\begin{array}{ccc}l & 2 \cdot 45 \\ l & 3 & 17 \\ l & 3 & 58\end{array}$	$\begin{array}{ll}h & 4.73 \\ h & 3.73 \\ h & 4.78\end{array}$	$\begin{array}{ll}l & 2.94 \\ l & 2.34 \\ l & 2.79\end{array}$	$l$ $l$ $3 \cdot 10$	$\begin{array}{ll}l & 1.50 \\ l & 1 \\ l & 00 \\ l & 2.63\end{array}$	$\begin{array}{lll} l & 4 \cdot 06 \\ l & 4 & .16 \\ l & 4 & 104 \end{array}$	$\begin{aligned} & M=3^{\prime \prime} \cdot 40 \\ & w=12 \cdot 80 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=36^{\circ} 24^{\prime} 3^{\prime \prime} \cdot 40 \end{aligned}$
	4*09	$2 \cdot 65$	$4 \cdot 02$	$3 \cdot 44$	$3 \cdot 07$	$4 \cdot 29$	$2 \cdot 69$	$3 \cdot 92$	1•71	$4 \cdot 09$	

## At LII (Mutupatnam)

March 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on L (Věnniyur)										$M=$ Mean of Groups   ${ }^{\infty} \mathbf{C}=$ Relative Weight   C = Concluded Angle
```\Psi (Věnniyúr) and XLVIII (Manĕgandi)```	$\begin{aligned} & l 53 \cdot 65 \\ & l 53 \cdot 17 \\ & l \\ & l \\ & l 2 \cdot 98 \end{aligned}$	$\begin{aligned} & 54.59 \\ & 54.69 \\ & 55.19 \end{aligned}$	$\begin{aligned} & 53.97 \\ & 53.09 \\ & 52.98 \end{aligned}$	$\begin{aligned} & l \\ & 53.16 \\ & \hline .64 \end{aligned}$	$\begin{gathered} \prime \prime \\ l 52 \cdot 70 \\ l \\ l \\ l \\ l 5^{\circ} \cdot 02 \\ 53 \cdot 71 \end{gathered}$	$\begin{gathered} \prime \prime \\ l \\ l \\ l 2 \cdot 50 \\ l \\ l \\ 51 \cdot 74 \\ 53 \cdot 58 \end{gathered}$	$\begin{gathered} " 1 \\ l 53 \cdot 57 \\ l 53 \cdot 87 \\ l \\ l \\ 56 \cdot 12 \end{gathered}$	$\begin{aligned} & 53.36 \\ & 555^{\circ} 93 \\ & 533^{\circ} 48 \end{aligned}$		$\begin{gathered} \prime \prime \\ l 54 \cdot 80 \\ l \\ l \\ l \\ \hline \\ 53 \cdot 83 \\ \hline .81 \end{gathered}$	$\begin{aligned} M & =54^{\prime \prime \cdot} \cdot 03 \\ w & =12 \cdot 70 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =45^{\circ} 43^{\prime} 54^{\prime \prime} \cdot 03 \end{aligned}$
	$53 \cdot 27$	$54 \cdot 82$	$53 * 35$	54*78	53.48	52.61	54*52	54*26	54*91	54.31	
XLVIII (Maněgandi) and LI (Urannankudi)	 										$\begin{aligned} M & =26^{\prime \prime} \cdot 69 \\ w & =4 \cdot 80 \\ \frac{\mathbf{I}}{w} & =0 \cdot 2 \mathrm{I} \\ C & =64^{\circ} 58^{\prime} 26^{\prime \prime} \cdot 69 \end{aligned}$
	$25 \cdot 57$	$25 \cdot 35$	$25 \cdot 65$	$27 \cdot 69$	$27 \cdot 88$	29•19	26.98	24.98	$26 \cdot 25$	27•39	

At LII (Mutupatnam)-(Continued).											
Angle between	Circle readings, telescope being set on L (V̌nniyúr)										$M=$ Mean of Groups ${ }^{*} 0=$ Relative Weight C = Concluded Angle
$\begin{aligned} & \text { LI (Urannankudi) } \\ & \text { and } \\ & \text { LIII (Kǒdikulam) } \end{aligned}$											$\begin{aligned} & M=28^{\prime \prime} \cdot 22 \\ & w=10 \cdot 70 \\ & \frac{I}{w}=0 \cdot 09 \\ & C=66^{\circ} 32^{\prime} 28^{\prime \prime} \cdot 22 \end{aligned}$
	$28 \cdot 6$	$28 \cdot 44$	28•8 1	26•98	$27 \cdot 67$	27.02	$29 * 46$	28.27	28•74	28.09	
$\begin{aligned} & \text { LIII (Ǩ̌dikulam) } \\ & \text { and } \\ & \text { LV (Náyanárkoil) } \end{aligned}$											$\begin{aligned} & M=45^{\prime \prime} \cdot 79 \\ & w=6 \cdot 4 \mathrm{I} \\ & \frac{\mathrm{I}}{\mathbf{w}}=0 \cdot 16 \\ & C=39^{\circ} 2^{\prime} 45^{\prime \prime} \cdot 79 \end{aligned}$
	$46 \cdot 3$	46*3I	47×02	45.21	47×43	$45 * 42$	43.51	$46 \cdot 63$	$45^{*} 52$	44*50	
At LIII (Kŏdikulam)March 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between	Circle readings, telescope being set on LIV (Pŏragudi) $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 18^{\prime} \quad 259^{\circ} 18^{\prime} \quad 158^{\circ} 25^{\prime} \quad 338^{\circ} 25^{\prime} \quad 237^{\circ} 37^{\prime} \quad 67^{\circ} 37^{\prime} \quad 316^{\circ} 49^{\prime} \quad 136^{\circ} 49^{\prime}$										$M=$ Mean of $G_{\text {roups }}$ $w_{0}=$ Relative Weight $C=$ Concluded Δ ngle
LIV (Pŏragudi) and -											$\begin{aligned} M & =35^{\prime \prime} \cdot 50 \\ w & =28 \cdot 60 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =79^{\circ} 39^{\prime} 35^{\prime \prime} \cdot 50 \end{aligned}$
	35.6	36•15	$35^{\prime 4}$	34.66	$35^{*} 46$	$35^{\prime} 8 \mathrm{I}$	3579	35*73	35•18	35'17	
LVI (Ramnad) and LVII (Sambuttiyendal)	 										$\begin{aligned} & M=31^{\prime \prime} \cdot 90 \\ & w=6 \cdot 10 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=48^{\circ} 48^{\prime} 31^{\prime \prime} \cdot 90 \end{aligned}$
	$30 \cdot 9$	31•69	$30 \cdot 13$	$33 \cdot 51$	$32 \cdot 65$	$33 \cdot 79$	$30 \cdot 61$	31*43	31-60	$32 \cdot 66$	
LVII (Sambuttiyendal) and LV (Náyanárkoil)	 										$\begin{aligned} & M=35^{\prime \prime} \cdot 40 \\ & w=5 \cdot 10 \\ & \frac{\mathbf{l}}{w}=0 \cdot 20 \\ & C=67^{\circ} 40^{\prime} 35^{\prime \prime} \cdot 40 \end{aligned}$
	33.4	$35 \cdot 26$	34*74	$33 \cdot 32$	$35 \cdot 27$	$35^{\prime 15}$	$36 \cdot 76$	$36 \cdot 96$	36•95	$36 \cdot 13$	

At LIII (Kŏdikulam)-(Continued).											
Angle between	Circle readings, telescope being set on LIV (Pŏragudi)										$\boldsymbol{U}=$ Mean of Groups ${ }^{2}=$ Relative Weight C $=$ Concluded Angle
LV (Náyanárkoil) and LII (Mutupatnam)	 										$\begin{aligned} M & =15^{\prime \prime \prime} \cdot 20 \\ w & =4 \cdot 50 \\ \frac{I}{w} & =0 \cdot 22 \\ C & =70^{\circ} 4^{\prime} 15^{\prime \prime} \cdot 20 \end{aligned}$
	$17 \cdot 62$	15.95	$16 \cdot 52$	16.67	13.71	$13 \cdot 64$	13.83	14*02	15*03	15\%1	
LII (Mutupatnam) and LI (Urannankudi)	 										$\begin{aligned} M & =44^{\prime \prime} \cdot 51 \\ w & =11 \cdot 90 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =42^{\circ} 19^{\prime} 44^{\prime \prime} \cdot 51 \end{aligned}$
	$44^{\circ} 29$	45*59	$43 \cdot 80$	$43^{\circ} \mathrm{OI}$	$44 * 38$	$44 \cdot 84$	$45 * 45$	$44 \cdot 68$	$45 \cdot 26$	$43 \cdot 75$	
LI (Urannankudi) and LIV (Pŏragudi)											$\begin{aligned} & M=16^{\prime \prime} \cdot 90 \\ & w=6 \cdot 53 \\ & \frac{\mathbf{I}}{w}=0 \cdot 15 \\ & C=51^{\circ} 27^{\prime} 16^{\prime \prime} \cdot 90 \end{aligned}$
	$\begin{array}{lllllllllll}17.28 & 15.38 & 18.03 & 18.10 & 18.45 & 16.51 & 15.83 & 17.52 & 15.27 & 16.64\end{array}$										
March 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between											
$\begin{aligned} & \text { LVI (Ramnad) } \\ & \text { and } \\ & \text { LIII (Kŏdikulam) } \end{aligned}$											$\begin{aligned} & M=54^{\prime \prime} \cdot 05 \\ & w=17 \cdot 20 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=66^{\circ} 34^{\prime} 54^{\prime \prime} \cdot 05 \end{aligned}$
	$55 \cdot 07$	54*11	$53 * 40$	$53 \cdot 61$	54.56	$53 \cdot 26$	$53 \cdot 88$	$53 \cdot 75$	54*99	$53 \cdot 82$	
LIII (Kŏdikulam) and LI (Orannankudi)	 										$\begin{aligned} M & =57^{\prime \prime} \cdot 13 \\ w & =19 \cdot 60 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =98^{\circ} 24^{\prime} 57^{\prime \prime} \cdot 13 \end{aligned}$
	56.72	$56 \cdot 16$	$57^{1} 13$	$56 \cdot 82$	57×32	57•77	58•24	57*57	$56 \cdot 27$	57'28	

At LV (Náyanárkoil)

May 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Angle between \& \multicolumn{10}{|c|}{Circle readings, telescope being set on LII (Mutupatnam)} \& \begin{tabular}{l}
\(\boldsymbol{M}=\) Mean of Groups \\
\({ }^{w}=\) Relative Weight \\
C = Concluded Angle
\end{tabular} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { LII (Mutupatnam) } \\
\& \text { and } \\
\& \text { LIII (Kŏdikulam) }
\end{aligned}
\]} \& \[
\begin{aligned}
\& l 58 \cdot 79 \\
\& l 59 \cdot 40 \\
\& l 59 \cdot 20
\end{aligned}
\] \& \[
\begin{gathered}
" \\
l 58 \cdot 99 \\
l \\
l \\
l \\
l o \cdot 24 \\
60 \cdot 08
\end{gathered}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
59 \cdot 88 \\
l \\
l \\
79 \cdot 74 \\
79 \cdot 37
\end{array}
\end{aligned}
\] \& \[
\begin{aligned}
\& l \begin{array}{l}
59 \cdot 33 \\
l \\
l \\
l \\
l
\end{array} 9^{\circ} \cdot 97 \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\prime \prime \\
l 60 \cdot 29 \\
l 60 \cdot 80 \\
l \\
l \\
58 \cdot 89
\end{gathered}
\] \& \[
\begin{gathered}
\prime \prime \\
l 60 \cdot 6 \mathrm{x} \\
l 58 \cdot 93 \\
l 60 \cdot 34
\end{gathered}
\] \& \[
\begin{gathered}
\prime \prime \\
l 58 \cdot 96 \\
l \\
l \\
l 9.96 \\
59.32
\end{gathered}
\] \& \[
\begin{gathered}
" \prime \\
l 60 \cdot 4 \mathrm{I} \\
l 60 \cdot 56 \\
l 6 \mathrm{I} \cdot 45
\end{gathered}
\] \& \(\prime \prime\)
\(l\)
57.86

58.25

58.70 \& $$
\begin{gathered}
" \\
l 59 \cdot 95 \\
l \\
l \\
l \\
l \\
58 \cdot \\
58
\end{gathered}
$$ \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& M=59^{\prime \prime} \cdot 5^{2} \\
& w=15 \cdot 60 \\
& \frac{\mathbf{1}}{w}=0 \cdot 06 \\
& C=70^{\circ} 52^{\prime} 59^{\prime \prime} \cdot 5^{2}
\end{aligned}
$$
\]}

\hline \& 59'13 \& 59*77 \& 59•66 \& 59`55 \& 59*99 \& 59*96 \& $59^{\circ} 4 \mathrm{I}$ \& $60 \cdot 81$ \& 58.27 \& 58.60 \&

\hline \multirow[t]{2}{*}{LIII (Ǩ̌dikulam) and LVII (Sambuttiyendal)} \& \multicolumn{10}{|l|}{| |
| :--- |
| |
| |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& M=13^{\prime \prime} \cdot 14 \\
& w=9 \cdot 90 \\
& \frac{1}{w}=0 \cdot 10 \\
& C=69^{\circ} 5^{\prime} 13^{\prime \prime} \cdot 14
\end{aligned}
$$
\]}

\hline \& 14.12 \& 12.98 \& 14.41 \& 13.57 \& 13.98 \& 12:96 \& 12.03 \& 11 70 \& 12.71 \& 12.91 \&

\hline
\end{tabular}

At LVI (Ramnad)

* March 1875; and \dagger April 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$96^{\circ} 42^{\prime}$	Circle readings, telescope being set on LIX (Kinnjarangudi)									$M=$ Mean of Groups $w^{w}=$ Relative Weight C = Concluded Angle
LIX (Kánjarangudi) and LVIII (Uttarakoshamangai)							$\prime \prime$ l $49 \cdot 13$ l $50 \cdot 88$ $50 \cdot 36$		$\prime \prime$ l $48 \cdot 43$ l l l 49 49 49		$\begin{aligned} M & =48^{\prime \prime \prime} \cdot 90 \\ w & =11 \cdot 80 \\ \frac{I}{w} & =0 \cdot 08 \\ C & =53^{\circ} 21^{\prime} 48^{\prime \prime} \cdot 90 \end{aligned}$
	49*35	48'10	48.75	48•73	49*97	48.92	50'12	48.08	$49 * 48$	47^49	
LVIII (Uttarakoshamangai) and LVII (Sambuttiyendal)	 										$\begin{aligned} M & =48^{\prime \prime} \cdot 62 \\ w & =10 \cdot 20 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =43^{\circ} 2^{\prime} 48^{\prime \prime} \cdot 62 \end{aligned}$
	49*97	$48 \cdot 76$	49•33	48•74	$48 \cdot 39$	4772	47*32	48.74	$47 \cdot 38$	$49 \cdot 83$	
	Circle readings, telescope being set on LVII (Sambuttiyendal)										$\begin{aligned} & M=53^{\prime \prime} \cdot 5 \mathbf{I} \\ & w=14 \cdot 10 \\ & \frac{\mathbf{I}}{w}=0 \cdot 07 \\ & \boldsymbol{C}=72^{\circ} 39^{\prime} 53^{\prime \prime} \cdot 5 \mathrm{I} \end{aligned}$
	"	"	"	"	"	"	"	"	"	"	
	$\begin{array}{llll} l & 54.32 \\ l & l \\ l & 2.54 & l \\ l & 53.25 l \end{array}$	54.27 l 53.50 74.52	$\begin{aligned} & 51.66 l \\ & 53.76 l \\ & 52.47 l \end{aligned}$	$\begin{aligned} & 53.51 \quad l \\ & l \\ & 53.30 \\ & \hline \end{aligned}$ $l 53.50 l$	$\begin{aligned} & l \\ & 53.96 \\ & l \\ & l \\ & l \\ & l \\ & 54.67 \\ & 54 \end{aligned}$	$\begin{aligned} & 52 \cdot 62 \\ & 53 \cdot 34 \\ & 52 \cdot 95 \end{aligned}$	$\begin{aligned} & l \\ & l \end{aligned} 53^{1} 17$	$\begin{aligned} & \begin{array}{l} 52 \cdot 85 l \\ l \\ 54 \cdot 28 \\ l \\ l 2 \\ 52 \cdot 89 \end{array} . \end{aligned}$	54:84 $75 \cdot 74$ l $154 \cdot 87$	$\begin{aligned} & 53 \cdot 75 \\ & 53 \cdot 24 \\ & 52 \cdot 13 \end{aligned}$	
	54*04	54*10	52.63	53*44	$53^{\circ} \mathrm{6}$ 1	52.97	52.77	53*34	55*15	53.04	

At LVIII (Uttarakoshamangai)

March 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXI (Tanichanthai)										$M=$ Mean of Groups $w_{0}=$ Relative Weight $C=$ Concluded Δ ngle
LXI (Tanichanthai) and LXII (Arapoth)	l 16.65 l 16.84 l15.26	$\begin{array}{cc} n \\ l & 17.31 \\ l & 16 \cdot 60 \\ l & 16 \cdot 48 \end{array}$	$\begin{aligned} & 7 \prime \prime \\ & h 16 \cdot 80 \\ & l \\ & l \\ & l \\ & 17 \\ & 15 \cdot 86 \end{aligned}$	$\begin{gathered} " \\ l 17 \cdot 65 \\ l 18 \cdot 18 \\ l 16 \cdot 73 \end{gathered}$		$\begin{array}{cc} \prime \prime \\ l & 16 \cdot 56 \\ l & 16 \cdot 53 \\ l & 15.20 \end{array}$				$\begin{gathered} " \\ l 17 \cdot 08 \\ l 17.52 \\ l 17.65 \end{gathered}$	$\begin{aligned} M & =16^{\prime \prime} \cdot 91 \\ w & \doteq 27 \cdot 80 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =41^{\circ} 27^{\prime} 16^{\prime \prime} \cdot 91 \end{aligned}$
	$16 \cdot 25$	16•80	$16 \cdot 57$	17*52	17*08	16.10	16•73	17•13	17*51	17*42	
LXII (Arapoth) and LVII (Sambuttiyendal)	$\begin{array}{ll}l \\ l & 1 \\ 1.55 \\ l \\ l & 0.29\end{array}$	$\begin{array}{ll}l & 2.29 \\ l & 2.01 \\ l & 2.78\end{array}$	$h 1.91$ l l l l 3	$\begin{array}{lll}l & 2 \cdot 20 \\ l & 2 & 10 \\ l & 2 & 80\end{array}$						$\begin{array}{ll}l & 1.42 \\ l & 1 \\ l \\ l & 15 \\ & 1\end{array}$	$\begin{aligned} M & =1^{\prime \prime} \cdot 74 \\ w & =28 \cdot 60 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =62^{\circ} 20^{\prime} 1^{\prime \prime} \cdot 74 \end{aligned}$
	1.05	$2 \cdot 36$	2.61	$2 \cdot 37$	I-69	I. 67	1 34	1.61	1. 22	1'50	
LVII (Sambuttiyendal) and LVI (Ramnad)	 										$\begin{aligned} & M=61^{\prime \prime} \cdot 40 \\ & w=29 \cdot 40 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=85^{\circ} 17^{\prime} 1^{\prime \prime} \cdot 40 \end{aligned}$
	$62 \cdot 18$	$60 \cdot 92$	$61 \cdot 31$	$6 \mathrm{I} \cdot 86$	61.48	61•91	$60 \cdot 66$	61.58	60.71	61.34	
```LVI (Ramnad) and LIX (Kánjarangudi)```	    										$\begin{aligned} & M=40^{\prime \prime} \cdot 91 \\ & w=17 \cdot 90 \\ & \frac{\mathbf{I}}{w}=0 \cdot 06 \\ & C=75^{\circ} 33^{\prime} 40^{\prime \prime} \cdot 91 \end{aligned}$
	$41 \cdot 38$	41•59	41*34	41'19	40'10	40•98	41•12	$39^{\circ} 45$	41•35	40.60	
LIX (Kánjarangudi) and   LX (Yervádi)	    										$\begin{aligned} & M=43^{\prime \prime} \cdot 62 \\ & w=8 \cdot 70 \\ & \frac{\mathbf{I}}{w}=0 \cdot 11 \\ & C=52^{\circ} \quad 9^{\prime} 43^{\prime \prime} \cdot 62 \end{aligned}$
	42.95	42.94	$43^{\circ} 40$	42.75	44*03	44*58	$45 \cdot 15$	45.11	42•79	42.50	
$\begin{gathered} \text { LX (Yervádi) } \\ \text { and } \\ \text { LXI (Tanichanthai) } \end{gathered}$	    										$\begin{aligned} & M=14^{\prime \prime} \cdot 85 \\ & w=14 \cdot 90 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=43^{\circ} 12^{\prime} 14^{\prime \prime} \cdot 85 \end{aligned}$
	14.88	14.43	14.06	14.66	14.79	$14 * 49$	13*95	15•16	$15 \cdot 67$	$16 \cdot 45$	

At LIX (Kánjarangudi)
March 1875; observed by Mr. G. Belcham with I'roughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LX (Yervádi)										$M=$ Mean of Groups   ${ }^{20}=$ Relative Weight   $C=$ Concluded $\Delta$ ngle
	$109^{\circ} 36^{\prime}$	$289{ }^{\circ} 36$	$188^{\circ} 47^{\prime}$	$8^{\circ} 47^{\prime}$	267 ${ }^{\circ} 59^{\prime}$	$87^{\circ} 59$	$347^{\circ} 11^{\prime}$	$167^{\circ} 11^{\prime}$	$66^{\circ} 24^{\prime}$	$246^{\circ} 24^{\prime}$	
$\begin{gathered} \text { LX (Yervádi) } \\ \text { and } \\ \text { LVIII (Uttarakoshamangai) } \end{gathered}$											$\begin{aligned} & \boldsymbol{M}=44^{\prime \prime} \cdot 18 \\ & w=15 \cdot 60 \\ & \frac{1}{w}=0 \cdot 06 \\ & \boldsymbol{C}=58^{\circ} 29^{\prime} 44^{\prime \prime} \cdot 18 \end{aligned}$
	44*50	44*34	$44 \cdot 83$	$43 \cdot 50$	$45^{\circ} 4 \mathrm{I}$	$43 \cdot 64$	44*95	44•16	$43 \cdot 51$	42.98	


At LIX (Kánjarangudi)-(Continued).										
Angle between	Circle readings, telescope being set on LX (Yervádi)									
LVIII (Uttarakoshamangai)   and   LVI (Ramnad)	    									$\begin{aligned} & M=30^{\prime \prime} \cdot 63 \\ & w=28 \cdot 60 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=51^{\circ} 4^{\prime} 30^{\prime \prime \prime} \cdot 63 \end{aligned}$
	$\begin{array}{ll}30 \cdot 46 & 29.67\end{array}$	30'24	30.60	30.69	$30 \cdot 87$	$30^{\prime} 46$	30'78	31*53	$31^{\circ} \times$	
March 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.										
Angle between	Circle readings, telescope being set on LXI (Tanichanthai)									$M=$ Meen of Groupe   ${ }_{C}^{w}=\begin{aligned} & \text { Relative Weight } \\ & \text { Concluded } \Delta \text { ngle }\end{aligned}$
$\begin{gathered} \text { LXI (Tanichanthai) } \\ \text { and } \\ \text { LVIII (Utarakoshamangai) } \end{gathered}$	    									$\begin{aligned} & M=44^{\prime \prime} \cdot 83 \\ & w=15 \cdot 90 \\ & \frac{1}{w}=\circ \cdot 06 \\ & C=99^{\circ} 25^{\prime} 44^{\prime \prime} \cdot 83 \end{aligned}$
	$\begin{array}{lll}45 \cdot 63 & 45 \cdot 18\end{array}$	$45 \cdot 03$	$45 \cdot 35$	$44 \cdot 57$	45.05	$44 \cdot 60$	43.40	$45 * 47$	43.97	
LVIII (Uttarakoshamangai)   and   LIX (Kánjarangudi)	    									$\begin{aligned} & M=32^{\prime \prime} \cdot 02 \\ & w=37 \cdot 00 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=69^{\circ} 20^{\prime} 32^{\prime \prime} \cdot 02 \end{aligned}$
	$\begin{array}{llllllllllll}32.18 & 32 \cdot 05 & 32 \cdot 60 & 31.38 & 32 \cdot 00 & 31 \cdot 72 & 31.60 & 31.86 & 32 \cdot 12 & 32 \cdot 67\end{array}$									

## At LXI (Tanichanthai)

February 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXIV (Opilán)										$M=$ Mean of Groups   ${ }^{20}=$ Relative Weight   C $=$ Concluded Angle
	$0^{\circ} \mathbf{z}^{\prime}$	$180^{\circ} 2^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 13^{\prime}$	$158^{\circ} 25^{\prime}$	$388^{\circ} \mathbf{2 5}{ }^{\prime}$	$237^{\circ} 37^{\prime}$	$57^{\circ} 87^{\prime}$	$816^{\circ} 49^{\prime}$	$136{ }^{\circ} 50^{\prime}$	
$\begin{aligned} & \text { LXIV (Opilán) } \\ & \text { and } \\ & \text { LXIII (Kadaládi) } \end{aligned}$	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=7^{\prime \prime} \cdot 57 \\ & w=18 \cdot 20 \\ & \frac{\mathbf{I}}{w}=0 \cdot 05 \\ & \boldsymbol{C}=3^{\circ} \cdot 48^{\prime} \quad 7^{\prime \prime} \cdot 57 \end{aligned}$
	77.59	$l 8.03$	77.68	h 8.83	$l 8.55$	$l 8.09$	h 7.27	${ }^{l} 71.12$	l $6 \cdot 78$	l 6.19	
	$\mathfrak{l} 77 \times 76$	$l$ $l$ $l$ 7 7	$l$ $h$ $h$ 6.03	$l$   $l$   $l$   8.90   96	$l$ $l$ $h$ 7	$l 8.52$ $l$ 9	$l$   $l$   $l$ 7.70	$l$ $l$ $l$ $l$ 7	$l 8 \cdot 16$ $h 7 \%$	$\begin{aligned} & l 6.91 \\ & l 6.76 \end{aligned}$	
	7'51	7'24	$6 \cdot 99$	$8 \cdot 56$	7•53	8.70	$7 \times 84$	7.05	$7 \cdot 61$	$6 \cdot 62$	
LXIII (Kadaládi)   and   LXII (Arapoth)	    										$\begin{aligned} M & =41^{\prime \prime} \cdot 77 \\ w & =18 \cdot 20 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =73^{\circ} 58^{\prime} 41^{N} \cdot 77 \end{aligned}$
	41*91	41*41	42*10	$42 \cdot 33$	41•53	41.25	40 71	41•6I	42'94	41*92	

## At LXI (Tanichanthai)-(Continued).



## At LXIII (Kadaládi)

February. 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-ineh Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXVI (Taraigudi)										$M=$ Mean of Groups   $w^{w}=$ Relative Weight   $C=$ Concluded Angle
LXVI (Taraigudi)   and   LXVVII (Pulápati)	    										$\begin{aligned} & M=35^{\prime \prime \cdot} \cdot 77 \\ & w=16 \cdot 70 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=39^{\circ} 26^{\prime} 35^{\prime \prime} \cdot 77 \end{aligned}$
	34*95	$36 \cdot 13$	36•58	$36 \cdot 16$	$34 \cdot 83$	36•82	$35^{\circ} 25$	35'10	36•25	$35 \cdot 61$	
LXVII (Pulápati)   and   LXV (Kidátirukai)											$\begin{aligned} M & =16^{\prime \prime} \cdot 37 \\ w & =11 \cdot 45 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =57^{\circ} 35^{\prime} 16^{\prime \prime} \cdot 37 \end{aligned}$
	15*95	15'13	$16 \cdot 92$	15.91	17.21	1717	$16 \cdot 47$	$17 \times 46$	$16 \cdot 33$	1510	
```LXV (Kidátirukai) and LXII (Arapoth)```	$\begin{array}{ll} l & 9 \cdot 70 \\ l & 6 \cdot 86 \\ l & 7.72 \end{array}$	$l 8.69$ $l 8.68$ $l 8.62$	$\begin{array}{rl} l & 6 \cdot 14 \\ l & 6 \cdot 01 \\ l & 7.72 \end{array}$	$l 8.41$   $l$   $l$   $l$   8.33	$l$ $l$ $7 \cdot 12$	$\begin{array}{cccc}l & 7 & 62 & l \\ l & 6.93 & l \\ l & 8 . & 15 & l\end{array}$	$\begin{array}{rr}l & 10 \cdot 57 \\ l & 10 \cdot 66 \\ l & 9.07\end{array}$	$\begin{array}{ll}l & 9 \\ l & 9 \\ 9 & 35 \\ h & 7 \\ 7\end{array}$	$\begin{aligned} & l \\ & l \end{aligned} 9.95$	$\begin{array}{ll} l & 7 \cdot 80 \\ l \\ l & 9.02 \\ l & 8 \cdot 45 \end{array}$	$\begin{aligned} & M=8^{\prime \prime} \cdot 23 \\ & w=11 \cdot 00 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=75^{\circ} 22^{\prime} 8^{\prime \prime} \cdot 23 \end{aligned}$
	$8 \cdot 09$	8.66	-729	8.04	7*30	$7 \cdot 57$	10'10	8-92	7-91	$8 \cdot 42$	
LXII (Arapoth) and LXI (Tanichanthai)	 										$\begin{aligned} & M=56^{\prime \prime} \cdot 47 \\ & w=17 \cdot 20 \\ & \frac{1}{w}=0 \cdot 06 \\ & \boldsymbol{C}=42^{\circ} 47^{\prime} 56^{\prime \prime} \cdot 47 \end{aligned}$
	57•04	$55 \cdot 8 \mathrm{I}$	56•92	$56 \cdot 63$	55.88	56•15	$55 \cdot 8 \mathrm{I}$	$56 \cdot 19$	57-31	56.98	
```LXI (Tanichanthai) and LXIV (Ópilán)```	    										$\begin{aligned} M & =22^{\prime \prime} \cdot 3^{6} \\ w & =17 \cdot 20 \\ \frac{\mathrm{I}}{w} & =0 \cdot 06 \\ C & =74^{\circ} 13^{\prime} 22^{\prime \prime} \cdot 3^{6} \end{aligned}$
	22.92	22•19	22.66	21•98	$23 \cdot 36$	22.38	21.26	$22 \cdot 15$	21•71	23.03	
LXIV (Ópilán)   and   LXVI (Taraigudi)	    										$\begin{aligned} & M=40^{\prime \prime} \cdot 95 \\ & w=20 \cdot 00 \\ & \frac{\mathbf{I}}{w}=0 \cdot 05 \\ & C=70^{\circ} 34^{\prime} 40^{\prime \prime} \cdot 95 \end{aligned}$
	41.51	41 39	41•30	41•68	41•23	40*07	$40 \cdot 84$	40'77	40•24	40*44	




## At LXVII (Pulápati)

February 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXV (Kidátirukai)										$\begin{aligned} & M=\text { Mean of Groups } \\ & 20=\text { Relative Weight } \end{aligned}$ $C=\text { Concluded Angle }$
```LXV (Kidátirukai) and LXIII (Kadaládi)```	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} & M=49^{\prime \prime} \cdot 23 \\ & w=7 \cdot 68 \\ & \frac{1}{w}=0 \cdot 13 \\ & C=44^{\circ} 12^{\prime} 49^{\prime \prime} \cdot 22 \end{aligned}$
	$\begin{array}{ll}l & 48 \cdot 43 \\ l \\ l & 49.64 \\ l \\ l\end{array}$	49.23 47.48 48.06	49.73 50.06 l 50.77 l	$\begin{aligned} & 47 \cdot 65 \\ & 48 \cdot 09 \\ & 51 \cdot 12 \\ & 50 \cdot 26 \end{aligned}$	$48 \cdot 91$ $50 \cdot 09$ $50 \cdot 32$		$49 \cdot 43$ $50 \cdot 85$ $49 \cdot 02$ l	$\begin{array}{ll} l & 47^{\circ} 30 \\ l & 49^{\circ} 09 \\ l & 46 \cdot 95 \\ l & 48^{\circ} \cdot 99 \end{array}$	$\begin{array}{r} h 8 \cdot 62 \\ h \begin{array}{l} 48 \cdot 16 \\ h \\ h \\ 50 \cdot 29 \end{array} \end{array}$	$51 \cdot 99$ 49.86 50.12	
	$49 \cdot 26$	$48 \cdot 26$	50'19	49*28	49×77	47×42	$49 \cdot 77$	47 ${ }^{\prime} 96$	$49 \cdot 69$	50.66	
LXIII (Kadaládi) and LXVI (Taraigudi)	 										$\begin{aligned} & M=23^{\prime \prime} \cdot 49 \\ & w=18 \cdot 64 \\ & \frac{I}{w}=0 \cdot 05 \\ & C=73^{\circ} 27^{\prime} 23^{\prime \prime} \cdot 49 \end{aligned}$
	23*74	23*54	23.65	22:70	23.70	$23 \cdot 87$	$22 \cdot 88$	$24 * 46$	23.61	$22 \cdot 72$	

At LXVIII (Annapúnáyakanpati)-(Continued).

Angle between	Circle readings, telescope being set on LXXII (Melakalúruni)										$M=$ Mean of Groups ${ }_{\infty} 0=$ Relative Weight $C=$ Concluded Anglo
LXVI (Taraigudi) and		$\prime \prime$ l $50 \cdot 08$ 49.86 l 48.13		$\prime \prime$ $h 50 \cdot 52$ $h 49.22$ $l 48.99$		$\prime \prime$ l $47 \cdot 92$ l $l 8 \cdot 84$ l $47 \cdot 24$ h 49			$\prime \prime$ l $70 \cdot 81$ $h 49 \cdot 82$ $h 50 \cdot 18$	h $50 \cdot 75$ h $5 \mathrm{I} \cdot 88$ $l 49.07$ $l 48 \cdot 77$	$\begin{aligned} M & =49^{\prime \prime} \cdot 52 \\ w & =13 \cdot 30 \\ \frac{\mathbf{I}}{w} & =0 \cdot 08 \\ C & =50^{\circ} \quad 3^{\prime} 49^{\prime \prime} \cdot 5^{1} \end{aligned}$
	$49^{\circ} 25$	49•36	50.27	49*57	49*98	48.31	48•79	$49^{\circ} 28$	50*27	50'12	
LXIX (Súrangudi) and LXXI (MƠtúruni)											$\begin{aligned} M & =42^{\prime \prime} \cdot 64 \\ w & =11 \cdot 9 \mathbf{I} \\ \frac{1}{w} & =0 \cdot 08 \\ C & =85^{\circ} 26^{\prime} 42^{\prime \prime} \cdot 62 \end{aligned}$
	$42 \cdot 40$	$42 \cdot 50$	41'14	42•34	$42 \cdot 77$	$43 \cdot 32$	$43^{\cdot 21}$	$43 \cdot 37$	42.55	$42 \cdot 80$	
```LXXI (MǑtúruni) and LXXII (Melakalúruni)```	      $l 27.44 \quad l 24.19$   l2791 l 27.04   $l 29^{\circ} 0$										$\begin{aligned} & M=27^{\prime \prime} \cdot 09 \\ & w=9 \cdot 15 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=40^{\circ} 31^{\prime} 27^{\prime \prime} \cdot 08 \end{aligned}$
	$28 \cdot 20$	$27 \cdot 30$	27.82	25.20	26.90	27.80	$26 \cdot 44$	27.51	$26 \cdot 87$	$26 \cdot 82$	

## At LXIX (Súrangudi)

January 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between		Circle readings, telescope being set on LXXI (Mŏtúruni)								$136^{\circ} 52^{\prime}$	$\boldsymbol{M}=$ Mean of Groups   $v 0=$ Relative Weight   C = Concluded Angle
$\qquad$	$\begin{aligned} & h 19 \cdot 74 \\ & l \\ & l \\ & l 22 \cdot 22 \\ & l \\ & l \\ & l \end{aligned} 21 \cdot 08$	$\prime \prime$ $20 \cdot 79$ 20.54 22.95 22.36				$\prime \prime$ 19.43 $l 21$ $l 23$ 23.38 $l$ 20.94	$\prime \prime$ $21 \cdot 73$ 20.64 21.69			$$	$\begin{aligned} & M=21^{\prime \prime} \cdot 22 \\ & w=13 \cdot 86 \\ & \frac{\mathrm{I}}{\boldsymbol{w}}=0 \cdot 07 \\ & \boldsymbol{C}=52^{\circ} 20^{\prime} 21^{\prime \prime} \cdot 23 \end{aligned}$
	21-10	21.66	22.36	21.65	20•93	$21 \cdot 31$	21•35	$19 \times 97$	20.33	21.54	
LXVIII (Annapánáyakanpati) and LXVI (Taraigudi)	       										$\begin{aligned} & M=32^{\prime \prime} \cdot 11 \\ & w=9 \cdot 5^{6} \\ & \frac{1}{w}=0 \cdot 10 \\ & C=67^{\circ} 34^{\prime} 32^{\prime \prime} \cdot 11 \end{aligned}$
	34*23	31.83	32*23	32*21	$32^{\circ} \mathrm{OI}$	32.2I	32*44	31•27	30*89	31*73	

## At LXX (Mutúruni)

January 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.


## At LXXI (Mŏtúruni)

January 1875; observed by Major B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXIII (Supalápuram)										$\boldsymbol{M}=$ Mean of $G_{\text {roups }}$   $v^{2}=$ Relative Weight   $\boldsymbol{C}=$ Concluded Angle
LXXIII (Supalápuram) and											$\begin{aligned} M & =16^{\prime \prime} \cdot 97 \\ w & =11 \cdot 00 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =53^{\circ} 20^{\prime} 16^{\prime \prime} \cdot 97 \end{aligned}$
	15.49	17.83	$16 \cdot 60$	17•20	15*60	1790	$16 \cdot 87$	16•95	17*03	18.19	
LXXIV (Mínákshi) and	        l22.07										$\begin{aligned} M & =21^{\prime \prime} \cdot 84 \\ w & =33 \cdot 54 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =66^{\circ} 43^{\prime} 21^{\prime \prime} \cdot 84 \end{aligned}$
	21•53	$22 \cdot 07$	21•70	22.40	22.36	21*69	22.44	21.54	21.67	21*01	
LXXII (Melakalúruni) and LXVIII (Annapánáyakanpati)	      $l 39$-60										$\begin{aligned} & M=39^{\prime \prime} \cdot 3^{\mathbf{I}} \\ & \boldsymbol{w}=16 \cdot 5^{1} \\ & \frac{\mathrm{I}}{w}=0 \cdot 06 \\ & \boldsymbol{C}=76^{\circ} 10^{\prime} 39^{\prime \prime} \cdot 3 \mathbf{I} \end{aligned}$
	39`53	38•94	$40^{\circ} 60$	$38 \cdot 41$	38•79	$39^{\circ} 00$	$39 \cdot 87$	39*91	39 13	38.93	
At LXXI (Mǒtúruni)-(Continued).											
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:
Angle between	Circle readings, telescope being set on LXXIII (Supalápuram)  										
LXVIII (Annapanáyakanpati) and LXIX (Sárangudi)	    										$\begin{aligned} & M=56^{\prime \prime} \cdot 03 \\ & w=16 \cdot 90 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=42^{\circ} 12^{\prime} 56^{\prime \prime} \cdot 03 \end{aligned}$
	$56^{\circ}$	$55^{\circ} 95$	55 79	56•35	56•96	56.25	$55^{22}$	$55^{\circ} 09$	56•29	$55^{*} 42$	

## At LXXII (Melakalúruni)

January 1875; observed by Major B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$199^{\circ} \mathbf{2 4}{ }^{\prime}$	Circle readings, telescope being set on LXX (Mutúruni)									$M=$ Mean of Groups   $v_{0}=$ Relative Weight   C = Concluded Angle
```LXX (Mutáruni) and```LXVIII (Annapánáyakanpati)	$\begin{aligned} & h 52 \cdot 16 h \\ & h_{52} 22 h \\ & h_{52} \cdot 59 h \end{aligned}$	$\begin{aligned} & 53 \cdot 48 \\ & 52 \cdot 95 \\ & 53 \cdot 14 \end{aligned}$	$\begin{gathered} \prime \prime \\ l \\ l \\ l 2 \cdot 87 \\ l \\ 73 \cdot 42 \\ 54 \cdot 94 \end{gathered}$	$\prime \prime$ 53.29 55.08 54.38		h $52 \cdot 82$   hi'60   h 53.41   53.39	$\prime \prime$ $52 \cdot 32$ $52 \cdot 55$ 51.45	$\begin{aligned} & 52.91 \\ & 52.71 \\ & 54.8 \end{aligned}$	$\begin{gathered} " \\ h_{51} \cdot 67 \\ h_{54} \cdot 88 \mathrm{~h} \\ h_{52} \cdot 32 \mathrm{~h} \\ h_{52} \cdot 90 \end{gathered}$		$\begin{aligned} & M=53^{\prime \prime} \cdot 18 \\ & w=15 \cdot 70 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=46^{\circ} 32^{\prime} 53^{N \cdot 17} \end{aligned}$
	52•32	$53 \cdot 19$	$53 \cdot 74$	54.25	$53 \cdot 65$	52.81.	52.11	53.48	52.94	$53 \cdot 31$	
LXVIII (Annapénáyakanpati) and LXXI (Mŏtúruni)	 $l 52 \cdot 37$ $l 54.44$										$\begin{aligned} M & =54^{\prime \prime} \cdot 47 \\ w & =8 \cdot 97 \\ \frac{I}{w} & =0 \cdot 11 \\ C & =63^{\circ} 17^{\prime} 54^{\prime \prime} \cdot 46 \end{aligned}$
	55*70	$55 \cdot 05$	$53 \cdot 56$	55*25	53•75	$54 \cdot 83$	$53 \cdot 26$	53.55	54.33	$55 \cdot 37$	
```LXXI (Mǒtúruni) and LXXIII (Supalápuram)```		9.69 8.70 8.68	$\begin{array}{ll} l & 7 \cdot 27 \\ l & 9.95 \\ l & 9.59 \\ l & 9.40 \end{array}$	$\begin{array}{ll} l & 7.55 \\ l & 8.76 \\ l & 7.92 \end{array}$	$\begin{array}{ll} h & 8 \cdot 71 \\ h & 7.43 \\ h & 8 \cdot 82 \end{array}$	$\begin{array}{ll} h & 7.59 l \\ h & 8.97 \\ h & 7.87 \end{array}$	$10 \cdot 40$ 9.43 10.19	$\begin{array}{lll} l & 7.92 \\ l & 9.35 \\ l & 8.35 \\ l \end{array}$	$\begin{array}{ll} h & 8 \cdot 76 \\ h & 8 \cdot 78 \\ h & 8 \cdot 23 \\ h & 7 \cdot 10 \end{array}$		$\begin{aligned} M & =8^{\prime \prime} \cdot 68 \\ w & =19 \cdot 84 \\ \frac{\mathbf{I}}{w} & =0 \cdot 05 \\ C & =36^{\circ} 53^{\prime} 8^{\prime \prime} \cdot 68 \end{aligned}$
	9•02	9•02	9*05	8.08	$8 \cdot 32$	8.14	10*01	8•73	$8 \cdot 22$.	$8 \cdot 20$	
```LXXIII (Supalápuram) and LXXIV (Mínákshi)```	    										$\begin{aligned} M & =17^{\prime \prime} \cdot 54 \\ w & =18 \cdot 50 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =52^{\circ} 3^{\prime} 17^{\prime \prime} \cdot 54 \end{aligned}$
	$16 \cdot 69$	$17^{\prime} 72$	17.59	$17 \cdot 64$	17*31	17×35	16.61	18.13	17×3	18.59	

At LXXIV (Mínákshi)

January 1875; observed by Major B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$166^{\circ} 46^{\prime}$	$\begin{array}{r} \text { Circle } \mathbf{r} \\ 846^{\circ} 45^{\prime} \end{array}$	readings, $245^{\circ} 56^{\prime}$	telescop $65^{\circ} 56^{\prime}$	being $325^{\circ} z^{\prime}$	set on L $145^{\circ} 7^{\prime}$	XXII $44^{\circ} 19^{\prime}$	Melakal $224^{\circ} 18^{\prime}$	$\begin{aligned} & \text { úruni) } \\ & 123^{\circ} 38^{\prime} \end{aligned}$	$303^{\circ} 32^{\prime}$	$\boldsymbol{M}=$ Mean of Groups ${ }^{v 0}=$ Relative Weight C $=$ Concluded Angle
LXXII (Melakalúruni) and LXXI (Mŏtúruni)	"	"	"	"	"	"	"	"	"	"	$\begin{aligned} M & =12^{\prime \prime} \cdot 02 \\ w & =22 \cdot 70 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =23^{\circ} 45^{\prime} 12^{\prime \prime} \cdot 02 \end{aligned}$
	12.03	11*22	$12 \cdot 82$	11*31	12.42	12*09	12•10	$12 \cdot 65$	11*49	12.04	

Nore.—Stations LXXXIII (Koilpati) and LXXXV (Kulayanallur) appertain to the Great Arc Meridional Series, Section $\mathbf{8}^{\circ}$ to 18°.

At LXXIV (Mínákshi)-(Continued).											
Angle between											
```LXXI (Mǒtúruni) and LXXIII (Supalápuram)```	    										$\begin{aligned} & M=51^{\prime \prime} \cdot 3^{2} \\ & w=33 \cdot 30 \\ & \frac{\mathbf{1}}{w}=0 \cdot \circ 3 \\ & C=3^{\circ} \cdot 6^{\prime} 51^{\prime \prime} \cdot 3^{2} \end{aligned}$
	51*45	51•98	$50^{\circ} 42$	51•72	51.02	51*48	51*45	51.52	51*37	50.82	
LXXIII (Supalápuram)   and   LXXXV (Kulayanallúr)											$\begin{aligned} & M=11^{\prime \prime} \cdot 39 \\ & w=25 \cdot 74 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=35^{\circ} 59^{\prime} 11^{\prime \prime} \cdot 39 \end{aligned}$
	12.03	II•84	12.16	11•05	12.02	11•00	$10 \cdot 82$	10•93	10:96	11•08	
LXXXV (Kulayanallúr)   and   IXXXIII (Koilpati)	   $l 59 \cdot 18 l 58 \cdot 8 \mathrm{I} l 60 \cdot 04 l 60 \cdot 83 l 59.48 l 59 \cdot 76 l 60 \cdot 29 l 62 \cdot 12 l 60 \cdot 57 l 61 \cdot 22$										$\begin{aligned} & M=60^{\prime \prime} \cdot 35 \\ & w=18 \cdot 50 \\ & \frac{\mathbf{I}}{w}=0 \cdot 05 \\ & C=68^{\circ} 52^{\prime} \quad 0^{\prime \prime} \cdot 35 \end{aligned}$
	$60 \cdot 05 \quad 59 \cdot 18 \quad 59 \cdot 83 \quad 60 \cdot 35 \quad 59 \cdot 81 \quad 60 \cdot 71 \quad 60 \cdot 50 \quad 60 \cdot 89 \quad 61 \cdot 04 \quad 61 \cdot 16$										

## At LXXXIII (Koilpati)

January 1875; observed by Major B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.


Nore.—Stations LXXXIII (Koilpati) and LXXXV (Kulayanallúr) appertain to the Great Arc Meridional Series, Section $8^{\circ}$ to $\mathbf{1 8}^{\circ}$.

## At LXXXV (Kulayanallúr)

December 1874; observed by Major B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXXIII (Koilpati)										$M=$ Mean of Groups   ${ }^{*}=$ Relative Weight   C = Concluded Angle
	$0^{\circ} 2^{\prime}$	$180^{\circ} 1^{\prime}$	$79^{\circ} 13^{\prime}$	$259^{\circ} 18^{\prime}$	$158^{\circ} 24^{\prime}$	$338{ }^{\circ} 24^{\prime}$	$237^{\circ} 36^{\prime}$	$57^{\circ} 36^{\prime}$	$316^{\circ} 50^{\prime}$	$136^{\circ} 50^{\prime}$	
LXXXIII (Koilpati)   and   LXXIV (Mínákshi)											$\begin{aligned} & M=59^{\prime \prime} \cdot 01 \\ & w=27 \cdot 80 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=26^{\circ} 57^{\prime} 59^{\prime \prime} \cdot 01 \end{aligned}$
	58.40	59.05	59.21	59*90	58.93	58*47	59'72	$59^{\circ} 00$	58*99	58.39	
```LXXIV (Mínákshi) and LXXIII (Supalápuram)```											$\begin{aligned} & M=57^{\prime \prime} \cdot 49 \\ & w=25 \cdot 82 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=34^{\circ} 27^{\prime} 57^{\prime \prime} \cdot 49 \end{aligned}$
	57*24	57`54	58•00	$56 \cdot 67$	$57 \cdot 41$	58.28	$56 \cdot 72$	57×42	57*51	58.10	

Note.-Stations LXXXIII (Koilpati) and LXXXV (Kulayanallúr) appertain to the Great Arc Meridional Series, Section 8° to 18°.

June 1882.

J. B. N. HENNESSEY,

In charge of Computing Office.

CEYLON BRANCH SERIES of THE SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

At LXXV (Púvarasanhalli Tívu)-(Continued).

At LXXVI (Appa Tívu)

April 1875; observed by MIV. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXV (Púvarasanhalli Tǐvu) $\begin{array}{llllllllll}0^{\circ} 2^{\prime} & 180^{\circ} 2^{\prime} & 79^{\circ} 13^{\prime} & 259^{\circ} 13^{\prime} & 158^{\circ} 25^{\prime} & 338^{\circ} 25^{\prime} & 237^{\circ} 37^{\prime} & 57^{\circ} 37^{\prime} & 816^{\circ} 49^{\prime} & 136^{\circ} 50^{\prime}\end{array}$	$\begin{aligned} & M=\text { Mean of Groups } \\ & x=\text { Relative Weipht } \end{aligned}$ $\begin{aligned} & \stackrel{x}{c}=\text { Relative Weight } \\ & =\text { Concluded } \Delta \mathrm{nglig} \end{aligned}$
$\begin{gathered} \text { LXXV (Párarasanhalli Tîru) } \\ \text { and } \\ \text { LX (Yerrádi) } \end{gathered}$	 	$\begin{aligned} & M=10^{\prime \prime} \cdot 94 \\ & w=15 \cdot 60 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=3^{8^{\circ}} 3^{8^{\prime}} 10^{\prime \prime \prime} \cdot 94 \end{aligned}$
	$\begin{array}{llllllllll}10.35 & 10.98 & 10.94 & 10.80 & 10.35 & 12.20 & 11.36 & 10.32 & 12.11 & 10.03\end{array}$	
$\begin{gathered} \text { LX (Yervádi) } \\ \text { and } \\ \text { LIX (Kánjarangudi) } \end{gathered}$	$l_{52} \cdot 34 l 52 \cdot 22 l 52 \cdot 64 l 52 \cdot 51 l 54 \cdot 82 l 53 \cdot 13 l 52 \cdot 50 l 52 \cdot 16 l 51 \cdot 80 l 54 \cdot 56$ 	$\begin{aligned} & M=53^{\prime \prime} \cdot 01 \\ & w=11 \cdot 80 \\ & \frac{1}{w}=\circ \cdot 08 \\ & C=46^{\circ} 15^{\prime} 53^{\prime \prime \prime} \cdot 01 \end{aligned}$
	$\begin{array}{lllllllllll}52.80 & 52.29 & 53 \cdot 13 & 53.43 & 55 \cdot 00 & 52 \cdot 64 & 52 \cdot 65 & 52 \cdot 34 & 52 \cdot 10 & 53.69\end{array}$	
$\begin{gathered} \text { LIX (Kánjarangudi) } \\ \text { and } \\ \text { LXXVII (Pěriyapatnam) } \end{gathered}$	 	$\begin{aligned} & M=40^{\prime \prime} \cdot 39 \\ & w=10 \cdot 50 \\ & \frac{\mathbf{I}}{w}=0 \cdot 10 \\ & C=54^{\circ} 29^{\prime} 40^{\prime \prime} \cdot 39 \end{aligned}$
	$\begin{array}{llllllllll}\text { 40'19 } & 41 \cdot 24 & 38 \cdot 93 & 41 \cdot 11 & 38 \cdot 78 & 40 \cdot 48 & 40 \cdot 22 & 41 \cdot 29 & 40 \cdot 59 & 41\end{array}$	
LXXVII (Păriyapatnam) and LXXVIII (Válai Tíru)	$l_{11} \cdot 48 l_{11} \cdot 71 l_{11} \cdot 52 l_{10} \cdot 96 h_{12} \cdot 76 l_{10} \cdot 1_{5} l_{12} \cdot 06 l_{10} \cdot 69 l_{11} \cdot 84 l_{10} l_{4}$ 	$\begin{aligned} & M=11^{\prime \prime} \cdot 34 \\ & w=13 \cdot 00 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=36^{\circ} 33^{\prime} 11^{\prime \prime \prime} \cdot 34 \end{aligned}$
	$\begin{array}{lllllllllll}10.94 & 11.53 & 12.54 & 11.86 & 11.13 & 10.30 & 12.26 & 10.53 & 11.51 & 10.80\end{array}$	

At LXXVII (Pĕriyapatnam)

April 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between											
LXXIX (Rámaswámi Madam) and LXXX (Musal Tívu)	$\begin{array}{cc} & " \\ h 26 \cdot 02 \\ l & 27 \cdot 94 \\ l & 26 \cdot 47 \end{array}$	$\begin{aligned} & 27.25 \\ & 25 \cdot 14 \\ & 25 \cdot 32 \end{aligned}$	$\begin{array}{ccc} " \\ l & 26 \cdot 04 & l \\ l & 27 \cdot 18 & l \\ l & 26 \cdot 38 & l \end{array}$	$\begin{gathered} \prime \prime \\ l \end{gathered} 27 \cdot 89.64$	$\begin{gathered} \prime \prime \\ l \end{gathered} 25 \cdot 27$	$\begin{array}{cc} n \\ l & n 7 \cdot 86 \\ l & 28 \cdot 02 \\ l & 28 \cdot 44 \end{array}$	$\begin{gathered} \prime \prime \\ h 26 \cdot 11 \\ h 25 \cdot 26 \\ l 25 \cdot 75 \end{gathered}$	$\begin{gathered} \prime \prime \\ h 28 \cdot 09 \\ h 27 \cdot 46 \\ l 27 \cdot 46 \end{gathered}$	$\begin{gathered} \quad " \\ l 26 \cdot 79 \\ l \\ l \\ l \\ l \\ 25 \cdot 55 \\ \hline \end{gathered}$	$\begin{gathered} \prime \prime \\ l \\ l \\ l \\ l \\ l \\ l \end{gathered} 27 \cdot 51$	$\begin{aligned} M & =26^{\prime \prime} \cdot 83 \\ w & =10 \cdot 60 \\ \frac{1}{w} & =0 \cdot 09 \\ C & =21^{\circ} 37^{\prime} 26^{\prime \prime} \cdot 83 \end{aligned}$
	26.81	25'90	$26 \cdot 53$	27•60	25'98	28.11	25*71	$27 \cdot 67$	26•10	27×85	
```LXXX (Musal Tívu) and LXXVIII (Válai Tívu)```	$\begin{aligned} & h_{4} 8 \cdot 88 \\ & l 46 \cdot 90 \\ & l 46 \cdot 36 \end{aligned}$	$\begin{aligned} & 47.47 \\ & 4941 \\ & 49.52 \end{aligned}$	$\begin{array}{lll} l & 45 \cdot 15 & l \\ l & 46 \cdot 92 & l \\ l 47 \cdot 02 & l \end{array}$	$l$ $46 \cdot 70$ 47 47 47	$l$ $l$ $l$ 48.88 $l$ $l$ 46.60	$l$ $l$ $5^{6} 63.6$	$h 48 \cdot 53$ $h 48 \cdot 84$ $h_{49} \cdot 33$	$\begin{aligned} & h 46 \cdot 91 \\ & h 48 \cdot 78 \\ & l \\ & l \end{aligned}$	$l$ $46 \cdot 33$ 47 48 48 4	$\begin{aligned} & l \\ & l \end{aligned}{ }^{\circ} \cdot 98$	$\begin{aligned} M & =47^{\prime \prime} \cdot 45 \\ w & =10 \cdot 50 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =46^{\circ} \cdot 49^{\prime} 47^{\prime \prime} \cdot 45 \end{aligned}$
	$47 \cdot 38$	48•80	$46 \cdot 36$	47*30	47•56	$46 \cdot 68$	48.90	47 51	47*52	$46 \cdot 46$	
LXXVIII (Válai Tívu)   and   LXXVI (Appa Tívu)	$\begin{aligned} & h 19 \cdot 62 \\ & l 21 \cdot 66 \\ & l 21 \cdot 42 \end{aligned}$	18.59   19.60   20.71	$\begin{aligned} & l 20 \cdot 98 \\ & l \\ & l \\ & l \\ & l \\ & 19.09 \\ & 19 \end{aligned}$	$\begin{aligned} & l 21 \cdot 67 \\ & l 21.43 \\ & l 2194 \end{aligned}$	$\begin{aligned} & l 21 \cdot 27 \\ & l \\ & l \\ & h 22 \cdot 83 \\ & h 20 \cdot 97 \end{aligned}$	$\begin{aligned} & l 21 \cdot 84 \\ & l \\ & l \\ & l \\ & l \end{aligned} 20 \cdot 731$	$\begin{aligned} & h 21 \cdot 34 \\ & h_{21} \cdot 35 \\ & h_{19} 92 \end{aligned}$	$1120 \cdot 22$ $h 18 \cdot 84$ h 18•94	$\begin{aligned} & l 19.22 \\ & l 18.91 \\ & l 20.46 \end{aligned}$	$\begin{aligned} & l 20.25 \\ & l 19.45 \\ & l \\ & l \\ & 19.00 \end{aligned}$	$\begin{aligned} & M=20^{\prime \prime} \cdot 44 \\ & w=9 \cdot 30 \\ & \frac{\mathbf{1}}{w}=0 \cdot 1 \mathbf{1} \\ & C=70^{\circ} 18^{\prime} 20^{\prime \prime} \cdot 44 \end{aligned}$
	20'90	19.63	19.89	21.68	21.69	21*33	$20 \cdot 87$	$19 \times 33$	19.53	19.57	
LXXVI (Appa Tívu)   and   LIX (Kánjarangudi)	    										$\begin{aligned} & M=59^{\prime \prime} \cdot 45 \\ & w=13 \cdot 90 \\ & \frac{\mathbf{I}}{w}=0 \cdot 07 \\ & C=44^{\circ} 33^{\prime} 59^{\prime \prime} \cdot 45 \end{aligned}$
	59•69	59*56	59*97	$58 \cdot 40$	$59^{116}$	58•13	59*07	60'54	59*92	60*08	

## At LXXVIII (Válai Tívu)

April 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$0^{\circ} 1^{\prime}$	Circle   $180^{\circ} \mathbf{2}^{\prime}$	reading $79^{\circ} 13^{\prime}$	s, telesco   $259^{\circ} 13^{\prime}$	pe being   $158^{\circ} 25^{\prime}$	set on $338^{\circ} \mathbf{2 5}^{\prime}$	$\begin{aligned} & \text { LXXVI } \\ & 2337^{\circ} 37^{\prime} \end{aligned}$	$\begin{aligned} & \text { (Appa } \\ & 57^{\circ} 37^{\prime} \end{aligned}$	Tívu)   $316^{\circ} 49^{\prime}$	$186^{\circ} 50^{\prime}$	$\boldsymbol{M}=$ Mean of Groups   ${ }^{w}=$ Relative Weight   $C=$ Concluded $\Delta$ ngle
```LXXVI (Appa Tívu) and LIX (Kánjarangudi)```	"	-	"	"	"	"	"	"	"	"	$\begin{aligned} & M=50^{\prime \prime} \cdot 37 \\ & \boldsymbol{w}=9 \cdot 20 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=35^{\circ}{ }_{2} 8^{\prime} 50^{\prime \prime} \cdot 37 \end{aligned}$
	$\begin{aligned} & l 48 \cdot 51 \\ & l 49.66 \end{aligned}$	$\begin{aligned} & 51.94 \\ & 51.60 \\ & 60 \end{aligned}$	$\begin{aligned} & 52 \cdot 19 \\ & 51 \cdot 06 \end{aligned}$	$\begin{aligned} & l 50 \cdot 63 \\ & l 51.99 \end{aligned}$	$\begin{aligned} & l 49 \cdot 78 \\ & l \\ & 50.68 \end{aligned}$	$\begin{aligned} & l 49.90 \\ & l \\ & 70.4 \mathrm{I} \end{aligned}$	$\begin{aligned} & h 50 \cdot 83 \\ & h 51 \cdot 17 \end{aligned}$	$\begin{aligned} & \begin{array}{r} 50.29 \\ l \\ l \end{array}{ }^{28 \cdot 64} \end{aligned}$	$\begin{aligned} & l 51 \cdot 30 \\ & l \\ & l \end{aligned}$		
	l 48.98	51'74	51•19	$l 50.03$	l 50'39		h50*73	50'25			
	$49^{\circ} 05$	51:76	51*48	50•88	50*28	50*32	5091	49*73	50*61	$48 \cdot 65$	

At LXXVIII (Válai Tívu)-(Continued).		
Angle between	Circle readings, telescope being set on LXXVI (Appa Tíru) $\begin{array}{lllllllll}0^{\circ} 1^{\prime} & 180^{\circ} 2^{\prime} & 79^{\circ} 13^{\prime} & 259^{\circ} 13^{\prime} & 158^{\circ} 25^{\prime} & 388^{\circ} 25^{\prime} & 287^{\circ} 87^{\prime} & 57^{\circ} 37^{\prime} & 316^{\circ} 49^{\prime} \\ 136^{\circ} & 50^{\prime}\end{array}$	
$\begin{gathered} \text { LIX (Kánjarangudi) } \\ \text { and } \\ \text { LXXVII (Pêriyapatnam) } \end{gathered}$	 	$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 82 \\ & w=16 \cdot 90 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=37^{\circ} 39^{\prime} 38^{\prime \prime} \cdot 82 \end{aligned}$
	$\begin{array}{lllllllllll}39.38 & 39.09 & 38 \cdot 54 & 39.11 & 38 \cdot 43 & 37 \cdot 51 & 38 \cdot 36 & 39.01 & 38 \cdot 69 & 40.06\end{array}$	
LXXVII (Płriyapatnam) and LXXIX (Rámaswami Madam)	 	$\begin{aligned} & M=9^{\prime \prime \prime} \cdot 42 \\ & w=14 \cdot 70 \\ & \frac{1}{w}=\circ \cdot \circ 7 \\ & C=82^{\circ} 55^{\prime} 9^{\prime \prime} \cdot 42 \end{aligned}$
	$\begin{array}{llllllllll} \\ 9.29 & 9.15 & 10.48 & 9.08 & 9.87 & 8.79 & 10.35 & 7.95 & 9.87 & 9^{* 32}\end{array}$	
LXXIX (Rámaswámi Madam) and LXXX (Musal Tívu)	$l 60 \cdot 92 l 60 \cdot 76 l 60 \cdot 79 l 62 \cdot 53 l 61 \cdot 60 l 62 \cdot 90 l 61 \cdot 83 l 61 \cdot 89 l 61 \cdot 77 l 62 \cdot 52$ 	$\begin{aligned} & M=61^{\prime \prime} \cdot 49 \\ & w=21 \cdot 70 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=25^{\circ} 22^{\prime} \quad \mathbf{I n}^{\prime \prime} \cdot 49 \end{aligned}$
	$\begin{array}{lllllllllll}60 \cdot 90 & 60 \cdot 55 & 60 \cdot 99 & 61 \cdot 96 & 61 \cdot 02 & 62 \cdot 40 & 61 \cdot 70 & 61 \cdot 98 & 61 \cdot 49 & 61 \cdot 90\end{array}$	
April 1875; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.		
Angle between	Circle readings, telescope being set on LXXXI (Marakayárpntaam)	$\begin{aligned} M & =\text { Mena of Groups } \\ \text { wo } & =\text { Relative Weipht } \\ C & =\text { Coucluded } \Delta \text { ngle } \end{aligned}$
LXXXI (Marakayárpatnam) and LXXXII (Púmurichán)	 	$\begin{array}{\|l\|} M=22^{\prime \prime} \cdot 57 \\ w=9 \cdot 80 \\ \frac{1}{w}=0 \cdot 10 \\ C=18^{\circ} 57^{\prime} 22^{\prime \prime} \cdot 57 \end{array}$
	$\begin{array}{llllllllll}22^{\prime} 90 & 22.14 & 21.87 & 21.68 & 23.09 & 22.64 & 21.40 & 23.59 & 22.03 & 24.39\end{array}$	
$\begin{array}{\|c} \text { LXXXII (Púmurichán) } \\ \text { and } \\ - \text { LXXX (Musal Tfru) } \end{array}$	 	$\begin{aligned} & M=29^{\prime \prime \prime} \cdot 72 \\ & w=19 \cdot 20 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=69^{\circ} 33^{\prime} 29^{\prime \prime \prime} \cdot 72 \end{aligned}$
	$\begin{array}{llllllllll}29.84 & 29.97 & 29.61 & 28.92 & 30.21 & 30.55 & 29.69 & 28.85 & 30.57 & 29.01\end{array}$	

At LXXIX (Rámaswámi Madam)-(Continued).

At LXXX (Musal Tívu)
April 1875; observed by Mr. G. Belcham with Troughton and Simms' 24 -inch Theodolite No. 1.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Angle between \& \(0^{\circ} \mathbf{2}^{\prime}\) \& \begin{tabular}{l}
Circle \\
\(180^{\circ} 2^{\prime}\)
\end{tabular} \& readings, \(79^{\circ} 13^{\prime}\) \& \begin{tabular}{l}
telescop \\
\(259^{\circ} 13^{\prime}\)
\end{tabular} \& \begin{tabular}{l}
e being \\
\(158^{\circ} 25^{\prime}\)
\end{tabular} \& set on L \(338^{\circ} 25^{\prime}\) \& xXVII \(237^{\circ} 37^{\prime}\) \& \begin{tabular}{l}
(Válai \\
b7 \(7^{\circ} \mathbf{3 7}\)
\end{tabular} \& \begin{tabular}{l}
Tívu) \\
\(816^{\circ} 50^{\circ}\)
\end{tabular} \& \(186^{\circ} 0^{\prime}\) \& \begin{tabular}{l}
\(M=\) Mean of Groups \\
\(v_{0}=\) Reintive Wenght \\
\(C=\) Concluded Angle
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
LXXVIII (Válai Tívu) and \\
LXXVII (Pěriyapatnam)
\end{tabular}} \& \(\begin{array}{ll}l \prime \prime \\ l \& 2.0 \\ l \& 2.3 \\ l \& 0.3\end{array}\) \& \[
\begin{array}{cc}
\& " \\
l \& 1 \cdot 87 \\
l \& 1 \\
l \& 13 \\
l \& 196
\end{array}
\] \& \(\begin{array}{cc}\prime \prime \\ l \& 3 \\ l \& 3 \\ l \\ h \& .08 \\ 3.16\end{array}\) \& \[
\begin{array}{cc}
c \\
l \& \prime \prime \\
l \& 2 \cdot 70 \\
l \& 1.46 \\
l \& 1.54
\end{array}
\] \& \[
\begin{array}{cc}
" \\
l l \& 3 \cdot 09 \\
l \& 3.32 \\
l \& 3 . \\
l
\end{array}
\] \& \[
\begin{array}{cc}
\& n \\
l \& 1 \cdot \infty \\
l \& 1 \cdot 23 \\
l \& 2 \cdot 16
\end{array}
\] \& \[
\begin{array}{cc}
\& \prime \prime \\
h \& 2 \cdot 00 \\
h \& 2 \cdot 78 \\
h \& 2 \cdot 05
\end{array}
\] \& \[
\begin{array}{ll}
\cdot \& \prime \prime \\
l \& 1 \cdot 70 \\
l \& 1 \\
l \& 1 \\
l \& 1 \cdot 21
\end{array}
\] \& \[
\begin{array}{lll}
\& \prime \prime \\
l \& 0 \cdot 09 \\
h \& 0 \cdot 60 \\
h \& 1 \cdot 55
\end{array}
\] \& \[
\begin{array}{lll}
h \& \circ \& \prime \\
h \& 2 \cdot 24 \\
h \& 2 \cdot \\
h \& 1 \& 79
\end{array}
\] \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& M=1^{\prime \prime} \cdot 85 \\
\& w=20 \cdot 00 \\
\& \frac{1}{w}=0 \cdot 05 \\
\& C=24^{\circ} 53^{\prime} 1^{\prime \prime} \cdot 85
\end{aligned}
\]} \\
\hline \& \(1 \cdot 5\) \& 1.65 \& \(2 \cdot 66\) \& 1-90 \& \(2 \cdot 93\) \& \(1 \cdot 46\) \& \(2 \cdot 28\) \& \(1 \cdot 63\) \& \(0 \cdot 75\) \& 1•65 \& \\
\hline \multirow[t]{2}{*}{```
LXXVII (Pěriyapatnam)
and
IXXIX (Rámaswámi Madam)
```} \& \multicolumn{10}{|l|}{\begin{tabular}{l}
 \\
 \\

\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& M=29^{\prime \prime} \cdot 78 \\
\& w=9 \cdot 60 \\
\& \frac{1}{w}=0 \cdot 10 \\
\& C=66^{\circ} 33^{\prime} 29^{\prime \prime} \cdot 78
\end{aligned}
\]} \\
\hline \& \(30 \cdot 2\) \& \(29 \cdot 65\) \& \(30 \cdot 69\) \& 29•17 \& 28.91 \& 30•97 \& 28.97 \& 30'91 \& \(28 \cdot 12\) \& 30.16 \& \\
\hline \multirow[t]{2}{*}{LXXIX (Rámaswámi Madam) and LXXXI (Marakayárpatnam)} \& \multicolumn{10}{|l|}{\begin{tabular}{l}
 \(l 59 \cdot 52 l 58 \cdot 60 l 60 \cdot 32 l 59 \cdot 28 l 59 \cdot 86 l 58 \cdot 23 l 59 \cdot 12 l 60 \cdot 77 h 58 \cdot 23 l 59.52\) \\

\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
M \& =59^{\prime \prime} \cdot 27 \\
w \& =17 \cdot 20 \\
\frac{1}{w} \& =0 \cdot 06 \\
C \& =49^{\circ} 12^{\prime} 59^{\prime \prime} \cdot 27
\end{aligned}
\]} \\
\hline \& \(58 \cdot 6\) \& 59`17 \& 60.02 \& 58.44 \& 59•66 \& 58.21 \& \(59^{\circ} 47\) \& 60:13 \& 59*63 \& 59*29 \& \\
\hline
\end{tabular}
```
80 - .

At LXXXI (Marakayárpatnam)

*April 1875; and †April 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$7{ }^{\circ} 25^{\prime}$	Circle readings, telescope being set on LXXXIV (Pisásu Mundal)									$M=$ Mean of Groups ${ }_{C}^{\infty}=$ Relative Weight $C=$ Concluded Δ ngle
$\left\lvert\, \begin{gathered} \dagger \\ \text { LXXXIV (Pisásu Mundal) } \\ \text { and } \\ \text { LXXXIII (Gandhamána) } \end{gathered}\right.$	 										$\begin{aligned} & M=30^{\prime \prime} \cdot 39 \\ & w=13 \cdot 50 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=7^{\circ} 24^{\prime} 30^{\prime \prime} \cdot 39 \end{aligned}$
	29*52	29.88	29*77	30•60	31•84	30.05	$30 \cdot 83$	30'28	31•50	29.63	
LXXXIII (Gandhamána) and LXXXII (Púmurichán)	Circle readings, telescope being set on LXXXIII (Gandhamána)										$\begin{aligned} & M=43^{\prime \prime} \cdot 00 \\ & w=12 \cdot 26 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=42^{\circ} 57^{\prime} 42^{\prime \prime} \cdot 99 \end{aligned}$
	 l41'73l43.11										
	$43 \cdot 86$	$43 \cdot 31$	41•85	44•16	. $\mathbf{2}^{2} 56$	$43 \cdot 46$	$43 \cdot 06$	$42 \cdot 46$	41 73	$43 \cdot 54$	
LXXXII (Púmurichán) and LXXX (Musal Tíru)	 $l{ }^{2} \mathbf{4} \cdot 06 l 42 \cdot 43$ $l 45^{\circ} 47 l 42 \cdot 71$ $l 46 \cdot 35 l^{42}$ - 11										$\begin{aligned} & M=43^{\prime \prime} \cdot 96 \\ & w=5 \cdot 94 \\ & \frac{1}{w}=0 \cdot 17 \\ & C=96^{\circ} 53^{\prime} 43^{\prime \prime} \cdot 96 \end{aligned}$
	42•33	$43 \cdot 92$	44*57	$43 \cdot 52$	$44 \cdot 28$	44*51	$44 * 35$	$43 \cdot 74$	46•46	41•95	
LXXX (Musal Tívu) and LXXIX (Rámaowami Madam)		$\begin{array}{ll}h & 4.45 \\ l & 5.83 \\ h & 889\end{array}$	$\begin{array}{ll}l & 8.01 \\ l & 5.90 \\ l & 6.63\end{array}$	$h 6063$ h h	$\begin{array}{cc}h & 7 \cdot 31 \\ h & 7 \cdot 71 \\ l \\ 5 & 51\end{array}$	$h 6.62$ $h 80.77$ l 7 7	l l $6 \cdot 88$	$\begin{array}{ll} l & 8 \cdot 15 \\ l & 7 \cdot 18 \\ l & 6 \cdot 67 \end{array}$	$\begin{array}{cc}l & 8 \cdot 12 \\ l & 6 \cdot 13 \\ h & 6.33\end{array}$	$\begin{aligned} & l 8.15 \\ & l 8.60 \\ & l \\ & l \\ & 7.69 \end{aligned}$	$\begin{aligned} M & =6^{\prime \prime} \cdot 96 \\ w & =14 \cdot 70 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =42^{\circ} 16^{\prime} \quad 6^{\prime \prime} \cdot 96 \end{aligned}$
	7*09	5*39	$6 \cdot 85$	7-00	6•81	7.52	6.61	7•33	$6 \cdot 86$	8.15	

At LXXXIII (Gandhamána)

April 1876; observed by Mr. G. Belcham with 'Ironghton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on LXXXV (Masínam Karai) $\begin{array}{llllllllll}0^{\circ} 1^{\prime} & 180^{\circ} 1^{\prime} & 79^{\circ} 18^{\prime} & 259^{\circ} 13^{\prime} & 158^{\circ} 25^{\prime} & 338^{\circ} & 25^{\prime} & 237^{\circ} 37^{\prime} & 57^{\circ} 37^{\prime} & 316^{\circ} 50^{\prime} \\ 136^{\circ} & 50^{\prime}\end{array}$											$=\mathrm{Menn}$ of Grouns $=$ Kelative Weight $=$ Concluded Angle
LXXXV (Masánam Karai) and LXXXII (Pamurichán)	$l 20.99 l 21.35 l 20.7 \mathrm{I} l 20.84 l 21.30 l 20.26 l 21.81 \quad l 19.71 l 19.31 l 19.04$ 										$\begin{aligned} & M=20^{\prime \prime} \cdot 72 \\ & w=21 \cdot 70 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=82^{\circ} 21^{\prime} \cdot 20^{\prime \prime} \cdot 72 \end{aligned}$	
		21.11	21.30	$20 \cdot 83$	$20 \cdot 54$	20'45	2133	$20 \cdot 24$	20'19	19.70		

At LXXXIII (Gandhamána)-(Continued).											
Angle between	Circle readings, telescope being set on LXXXV (Masainam Karai)										$M=$ Mean of Groups $w^{\infty}=$ Relative Weight C = Concluded Angle
```LXXXII (Púmurichán) and LXXXI (Marakayárpatnam)```		$\prime \prime$ $42 \cdot 37$ $44 \cdot 09$ 44.11		$\begin{array}{lll} l & 43 \cdot 94 & l \\ l & 44^{\circ} \cdot 47 & l \\ l & 44^{\circ} & 42 \end{array}$	$\begin{aligned} & l \\ & 44.96 \\ & l \\ & 42 \cdot 64 \\ & l \\ & 43 \cdot 83 l \end{aligned}$	$\begin{array}{cc} \prime \prime \\ l & 42 \cdot 80 \\ l & l \\ l 3.55 & l \\ l & 43 \\ \hline \end{array}$	$\prime \prime$   $43 \cdot 26$   $43 \cdot 21$   43   $43 \cdot 28$	$\prime \prime$ $42 \cdot 76$ $42 \cdot 57$ $43 \cdot 11$	$\prime \prime$ 45.00 $45^{\circ} 90$ $44^{\circ} 51$		$\begin{aligned} & M=43^{\prime \prime} \cdot 57 \\ & w=16 \cdot 90 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=17^{\circ} 6^{\prime} 43^{\prime \prime} \cdot 57 \end{aligned}$
	$43^{\circ} 07$	$43 \cdot 52$	42•88	44*28	$43 \cdot 81$	$43 \cdot 38$	$43^{\circ} 25$	42•81	$45^{1} 14$	$43 \cdot 54$	
LXXXI (Marakayárpatnam) and LXXXIV (Pisásu Mundal)	    										$\begin{aligned} & M=40^{N} \cdot 5^{2} \\ & w=8 \cdot 80 \\ & \frac{1}{w}=0 \cdot 11 \\ & C=110^{\circ} 49^{\prime} 40^{\prime \prime} \cdot 52 \end{aligned}$
	40'13	40*90	$40 \cdot 86$	39`75	$38 \cdot 63$	$41 \cdot 45$	40•02	42.21	40*22	40*98	
$\begin{gathered} \text { LXXXIV (Pisásu Mundal) } \\ \text { and } \\ \text { LXXXVI (Kachi Tíru, N.) } \end{gathered}$	    										$\begin{aligned} M & =33^{\prime \prime \cdot} \cdot 05 \\ w & =20 \cdot 40 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =55^{\circ} 4^{\prime} 33^{\prime \prime} \cdot 05 \end{aligned}$
	32•14	$33 \cdot 40$	32.93	$33 \cdot 34$	34*20	32•93	$32 \cdot 91$	32.52	33.63	32.48	
$\begin{gathered} \text { LXXXVI (Kachi Tívu, N.) } \\ \text { and } \\ \text { LXXXVII (Kachi Tíru, S.) } \end{gathered}$	    										$\begin{aligned} & M=59^{\prime \prime \cdot} \cdot 53 \\ & w=33 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=2^{\circ} 33^{\prime} 59^{\prime \prime \cdot} \cdot 53 \end{aligned}$
	59*79	$58 \cdot 81$	59.77	59•88	$58 \cdot 73$	$59 \cdot 36$	$59^{\prime} 72$	$59 \cdot 38$	59*91	59*93	
$\begin{gathered} \text { LXXXVII (Kachi Tívu, S.) } \\ \text { and } \\ \text { LXXXV (Masánam Karai) } \end{gathered}$	    										$\begin{aligned} M & =42^{\prime \prime} \cdot 13 \\ w & =16 \cdot 40 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =92^{\circ} \quad 3^{\prime} 42^{N \prime} \cdot 13 \end{aligned}$
	$43 \cdot 12$	41*48	41*97	41*47	$43 * 49$	$41 \cdot 65$	42•48	42.02	41'98	41.66	

## At LXXXIV (Pisásu Mundal)

April 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.


## At LXXXIV (Pisásu Mundal)-(Continued).

Angle between	Circle readings, telescope being set on LXXXVI (Kachi Tívu, N.)										$M=$ Mean of Groups   vo = Relative Weight   $\boldsymbol{C}=$ Concluded Angle
LXXXIII (Gandhamána)   and   LXXXI (Marakayárpatnam)	$\begin{array}{cc} \prime \prime \\ l & 48 \cdot 23 \\ l & 49 \cdot 44 \\ l & 47 \\ \hline \end{array}$	$\begin{gathered} \prime \prime \\ l 48 \cdot 37 \\ l \\ l 8 \cdot \cdot 78 \\ l \\ 47 \cdot 90 \end{gathered}$	$\begin{gathered} \prime \prime \\ l 48 \cdot 82 \\ l 47 \cdot 96 \\ 47 \cdot 70 \end{gathered}$	$\begin{aligned} & l 48 \cdot 17 \\ & l 48 \cdot 13 \\ & l \\ & l 7 \\ & \hline \end{aligned}$	$\begin{aligned} & l 49^{\circ} 16 \\ & l \\ & l \\ & l \\ & l \end{aligned} 4^{\circ} \cdot 23=85$	$\begin{array}{lc}  & n \\ l & 49^{\circ} 88 \\ l & 4.7 \\ l & 49^{\circ} 96 \\ \hline \end{array}$	$$	$\prime \prime$ $l$ $47 \times 50$ $l$ $l$ $l$ $50 \cdot 6$	$\begin{gathered} \prime \prime \\ l \\ l \\ l 0^{\circ} \circ 4 \\ 49^{\circ} 18 \\ 48^{\circ} 03 \end{gathered}$	$l 4^{\circ} 90$   $l 50 \cdot 68$   $l 48 \cdot 02$	$\begin{aligned} M & =48^{\prime \prime} \cdot 39 \\ w & =16 \cdot 40 \\ \frac{\mathbf{I}}{w} & =0 \cdot 06 \\ C & =61^{\circ} 45^{\prime} 48^{\prime \prime} \cdot 39 \end{aligned}$
	48•55	48•35	48'16	47'98	47'75	$49^{\circ} 25$	48'38	$47 \cdot 87$	$49 * 08$	48•53	

## At LXXXV (Masánam Karai)

April 1876; observed by Mr. G. Belcham with Troughton and Sinms' 24-inch Theodolite No. 1.



At LXXXVII (Kachi Tivu, S.)-(Continued).											
Angle between	Circle readings, telescope being set on LXXXV (Masánam Karai)   $183^{\circ} 46^{\prime} \quad 3^{\circ} 46^{\prime} \quad 262^{\circ} 58^{\prime} \quad 82^{\circ} 58^{\prime} \quad 342^{\circ} 10^{\prime} \quad 162^{\circ} 10^{\prime} \quad 61^{\circ} 22^{\prime} \quad 241^{\circ} 22^{\prime} \quad 140^{\circ} 35^{\prime} \quad 320^{\circ} 35^{\prime}$										M- Mean of Groups   \% $=$ Relative Weight   C $=$ Concluded Anglo
$\begin{gathered} \text { LXXXVI (Kachi Tívu, N.) } \\ \text { and } \end{gathered}$											$\begin{aligned} & \boldsymbol{M}=45^{\prime \prime} \cdot 98 \\ & \boldsymbol{w}=11 \cdot 80 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=69^{\circ} 27^{\prime} 45^{\prime \prime} \cdot 98 \end{aligned}$
	46-02	46•20	46•16	44*12	$47 \times 49$	$45^{\cdot 92}$	45:60	$46 \cdot 48$	45*91	45.93	
LIXXXIII (Ámanakamunai)andLXXXIX (Orimunai)	    										$\begin{aligned} M & =44^{\prime \prime} \cdot 84 \\ w & =9 \cdot 60 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =27^{\circ} 39^{\prime} 44^{\prime \prime} \cdot 84 \end{aligned}$
	$45 \cdot 24$	$43^{\circ} 47$	45*72	$44 * 45$	$44 \cdot 98$	$43 \cdot 70$	46•60	44*36	$44 \cdot 64$	$45 \cdot 25$	

## At LXXXVIII (Ámanakamunai)

March 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between										
LXXXIX (Urimunai)andLXXXVII (Kachi Tívu, S.)		$\prime \prime$ 18.41 $18.82 l$ 19 19.42			$\prime \prime$ 16.94 16.27 18.47	$\prime \prime$ h19 53 $h 1968$ $h 16.68$	" $h 19.75$ $h 20 \cdot 86$ $h 21.04$	" $h 21 \cdot 15$ $h 20 \cdot 83$ $h 21.35$	k 15. $h 153$ $h 17.04$ $h 17.25$	$\begin{aligned} & M=18^{\prime \prime} \cdot 88 \\ & w=4 \cdot 90 \\ & \frac{1}{w}=0 \cdot 20 \\ & C=75^{\circ}{ }_{26} 6^{\prime} 1^{\prime \prime \prime} \cdot 88 \end{aligned}$
	$18.75 \quad 18.31$	18.88	$19 \cdot 17$	19*58	17’23	18.63	20•55	21•11	16.61	
LXXXVII (Kachi Tívu, S.)   and-   LXXXVI (Kachi Tívu, N.)	    									$\begin{aligned} & M=60^{\prime \prime} \cdot 12 \\ & w=5 \cdot 50 \\ & \frac{1}{w}=0 \cdot 18 \\ & C=2^{\circ} 47^{\prime} 0^{\prime \prime} \cdot 12 \end{aligned}$
	$60 \cdot 71 \quad 60 \cdot 18 \quad 61.63$		59•19	61.56	$61 \cdot 82$	$58 \cdot 67$	59*43	58.28	59.72	
At LXXXIX (Úrimunai)   March 1876; observed by Mr. G. Belcham with Troughton and Simms' 24-inch Theodolite No. 1.										
Angle between										
LXXXVII (Kachi Tíru, S.)andLXXXVI (Kachi Tívu, N.)										$\begin{aligned} & M=46^{\prime \prime} \cdot 34 \\ & w=4 \cdot 12 \\ & \frac{1}{w}=0 \cdot 24 \\ & C=2^{\circ} 53^{\prime} 46^{\prime \prime} \cdot 34 \end{aligned}$
	48.15 $45 \cdot 39$	46•46	$45^{\circ} 10$	$49^{\circ} 04$	45'47	$47 \cdot 69$	$44 \cdot 87$	46•32	44*95	



May 1883.
-
W. H. COLE,

In charge of Computing Office.

In the calculations of the weights of the observed angles by the formula given in Section 4 of Chapter VII of Volume II and illustrated by an example in the foot note to page 342 of the same Volume, it is necessary to employ the squares of the apparent errors of observation and graduation. These data have been employed to ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m.s. of gradhation and observation, of the mean of the measures on a single rero, for each group of anglea measured with the same instrument, by the same observer, and under similar circumstances.

The instrument employed was Troughton and Simms' 24 -inch Theodolite No. 1, having 5 microscopes to read the azimuth circle; observations were taken on 5 pairs of zeros (face right and face left) giving circle readings at $7^{\circ} 12^{\prime}$ apart.

The e.m.s. of obsorvation of a single measure of an angle $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations-No. of angles } \times \text { No. of changes of zero. }}}$
$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times(\text { No. of changes of zero-1). }}}$


## SOUTH-EAST COAST SERIES.

## PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 55.


- In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the $q t h$ line being always the eame as the co-efficient of the $q t h$ term in the $p t h$ line.

Figure No. 56.


Fzgure No. 57.


Figure No. 57-(Continued).


SOUTH-EAST COAST SERIES.
Figure No. 58.


Figure No. 59.


Figure No. 60.


Figure No. 61.


Figure No. 62.


Figure No. 63.


Figure No. 64.


Figure No. 65.


Figure No. 66.


Figure No. 67.


Figure No. 68.


Figure No. 69.


Figure No. 70.


Figure No. 71.


June, 1883.
W. H. COLE,

In charge of Computing Office.

CEYLON BRANCH SERIES of the SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 82.


* Vide foot note on page 90-F.

Figure No. 83.


Frgure No. 84.


Figure No. 85.


Figure No. 86.


Nors.-For an explanation of some peculiarities in the reduction of this Figure see the next page.

The reduction of Figure No. 86 needs some explanation. This figure forms the connecting link between the Indian and Ceylon triangulation. To construct this link, two stations had to be placed on a small island named Kachi Tivu (Bitter Island) in Palk's Straits at a distance of only $\frac{s}{t}$ th of a mile apart, and the line joining them formed the side of continuation of a hexagon extending from the South East Coast Series, and the base of a quadrilateral uniting the triangulation with that of Ceylon. When the reduction of these figures was taken in hand it was found that the triangular errors on either side of the short ray connecting the stations on Kachi Tivu Island, were unduly large and of opposite sign, leading to the supposition that there might have been some slight displacement of one of the signals during observation, a displacement of one inch at right angles to the line of sight at so short a distance would have been equivalent to about $4 \frac{1}{8}$ seconds in angular measurement ; and as high scaffolds were employed both for signals as well as instruments, causing the drops for the plumb-lines to be considerable, while the sites were exposed to strong winds, a slight deviation might not be impossible. This supposed error of centering had no perceptible effect on the other rays; and it was ultimately decided to throw out the short ray on Kachi Tivu Island and form the hexagon and quadrilateral into one compound figure. The number of equations of conditions, which were originally 8 for the hexagon and 4 for the quadrilateral, became reduced to 10 for the compound figure, 7 of which were triangular, 1 quadrangular, 1 central and 1 side.

The 9 angular equations are of the usual kind and need no remark; but the side equation took a somewhat complex form in construction and requires to be explained.

The figure in the margin sufficiently represents the case; but it is designedly drawn out of
 proportion.
$B$ and $C$ represent the two stations on Kachi Tívu Island, $A$ the centre of the hexagon on the Indian side and $D$ an imaginary point where the diagonals of the quadrilateral on the Ceylon side of the small island cut one another. Now the side ratio $\frac{A B}{A C}$ can be expressed in terms of the angles of the hexagon and the side ratio $\frac{D C}{D B}$ can be expressed in terms of the angles of the quadrilateral. Denoting the former ratio by $r_{1}$ and the latter by $r_{2}$, we have

$$
r_{1}=\frac{\sin 11}{\sin 12} \cdot \frac{\sin 5}{\sin 6} \cdot \frac{\sin 2}{\sin 3} \cdot \frac{\sin 8}{\sin 9} \cdot \frac{\sin 14}{\sin 15}
$$

and

$$
r_{8}=\frac{\sin 20}{\sin 19} \cdot \frac{\sin 22}{\sin 21} \cdot \frac{\sin 24}{\sin 23}
$$

also from the quadrilateral $A B C D$ we have

$$
-r_{1} \sin 17+\sin (16+17)-r_{1} r_{2} \sin (16+18)+r_{2} \sin 18=e_{10}
$$

Differentiating and putting

$$
\begin{array}{ll}
a \text { for } \frac{r_{1} \sin 17}{M} ; & b \text { for } \frac{\sin (16+17)}{M} ; \\
c \quad, \quad \frac{r_{1} r_{8} \sin (16+18)}{M} ; & d \quad, \frac{r_{8} \sin 18}{M},
\end{array}
$$

and $\beta$ for the tabular difference of $\log$ sine for $1^{\prime \prime}, M$ being the modulus of common logs, and collecting the coefficients of the errors, the equation becomes

$$
\begin{aligned}
& (a+c) \beta_{\mathrm{s}} \mathrm{x}_{3}-(a+c) \beta_{2} \mathrm{x}_{2}+(a+c) \beta_{6} \mathrm{x}_{6}-(a+c) \beta_{5} \mathrm{x}_{6}+(a+c) \beta_{9} \mathrm{x}_{9}-(a+c) \beta_{8} \mathrm{x}_{8} \\
& +(a+c) \beta_{12} \mathrm{x}_{19}-(a+c) \beta_{11} \mathrm{x}_{11}+(a+c) \beta_{15} \mathrm{x}_{16}-(a+c) \beta_{14} \mathrm{x}_{14}+\left(b \beta_{16+17}-c \beta_{16+18}\right) \mathrm{x}_{16} \\
& +\left(b \beta_{16+17}-a \beta_{17}\right) \mathrm{x}_{17}-\left(c \beta_{16}-18-d \beta_{18}\right) \mathrm{x}_{18}+(c-d) \beta_{19} \mathrm{x}_{19}-(c-d) \beta_{20} \mathrm{x}_{20}+(c-d) \beta_{21} \mathrm{x}_{21} \\
& -(c-d) \beta_{29} \mathrm{x}_{29}+(c-d) \beta_{23} \mathrm{x}_{23}-(c-d) \beta_{24} \mathrm{x}_{24}=e_{10} .
\end{aligned}
$$

November, 1883.
W. H. COLE,

In charge of Computing Office.

[^14]
## J. B. N. HENNESSEY.

PRINCIPAL TRIANGULATION. TRIANGLES.


Nots.-1. The ralues of the sides are given in the same lines with the opposite angles.
2. Stations XXXIV (MÁrandur) and XXXIX (Avirimodu) appertain to the Madrae Longitudinal Series.








No. of Triangle		Number and Name of Station		Corrections to Observed Angle				Corrected Plane Angle	Distance		
Circrit	Noncircuit			Figure	Circuit	Noncircuit	Total		Log. feet	Feet	Miles
294	524	LXXI (Mytáruni)   LXXIV (Mínákshi)   LXXIII (Supalápuram)	$\begin{aligned} & \cdot 232 \\ & \cdot 232 \\ & \cdot 232 \end{aligned}$	$\left\|\begin{array}{c} 7 \\ + \\ \mathbf{-} \\ -157 \\ -\quad .334 \end{array}\right\|$		"	$\begin{array}{r}1.18 \\ +\quad .178 \\ \hline-179 \\ \hline-313 \\ \hline\end{array}$	$\begin{array}{rrrr} 53 & 20 & 16 \cdot 956 \\ 38 & 6 & 50 \cdot 909 \\ 88 & 32 & 52 \cdot 135 \\ \hline \end{array}$	$\begin{aligned} & 4.7906824,4 \\ & 4 \cdot 676818,6 \\ & 4 \cdot 8862753,1 \end{aligned}$	$\begin{aligned} & 61756 \cdot 46 \\ & 47518 \cdot 40 \\ & 76961 \cdot 82 \end{aligned}$	$\begin{array}{r} 11 \cdot 696 \\ 9.000 \\ 14.576 \end{array}$
			-696				$\cdot 274$	180 0-0.000			
		LXXII' (Melakalúruni)   LXXIV (Mínákshi)   LXXIII (Supalápuram)	$\begin{array}{r}\cdot 304 \\ \cdot 304 \\ \cdot \\ \hline\end{array}$	  $+116$		$\begin{array}{r}-\quad .005 \\ +\quad .009 \\ -\quad .004 \\ \hline\end{array}$	$\begin{array}{r}+\quad .121 \\ +\quad .078 \\ -\quad .034 \\ \hline\end{array}$	52 38 $17 \cdot 115$   61 52 $3 \cdot 114$   65 29 $39 \cdot 771$	$4.7906824,4$ $4.8358141,9$ $4.8494181,5$	$61756 \cdot 46$ $68519^{\circ} 50$ $70699^{-80}$	$\begin{aligned} & 11 \cdot 696 \\ & 12.977 \\ & 13.390 \end{aligned}$
		LXXIV (Mínákshi)   LXXIII (Supalápuram)   LXXXIII (Koilpati)	.913				- . 077	180	$\begin{aligned} & 4: 9373969,2 \\ & 4: 6709497,3 \\ & 4.7906824,4 \end{aligned}$	86575•88 46875:92 $61756 \cdot 46$	$\begin{gathered} 16 \cdot 397 \\ 8.878 \\ 11.696 \end{gathered}$
295			$\begin{array}{r}.221 \\ .221 \\ .221 \\ \hline\end{array}$	$=.023$ $=.354$ $=.010$	$\begin{array}{r}+018 \\ +\quad .013 \\ +\quad 005 \\ \hline\end{array}$		$-\quad .041$   $-\quad .341$   -005	$\begin{array}{rlll} 104 & 51 & 11 & 478 \\ 31 & 33 & 26 & 328 \\ 43 & 35 & 22 & 194 \\ \hline \end{array}$			
			$\cdot 663$				- 387	180		$96419 \cdot 75$ $64122 \cdot 16$ 86575•88	$\begin{aligned} & 18 \cdot 26 \mathbf{1} \\ & 12 \cdot 144 \\ & 16 \cdot 397 \end{aligned}$
296		LXXIII (Supalápuram)   LXXXIII (Koilpati)   LXXXV (Kulayanallír)	$\begin{array}{r} 429 \\ -429 \\ -429 \\ \hline \end{array}$	  $+\quad .408$   +158   $+\quad .267$	+006   $+\quad .023$   $+\quad .017$		$\begin{array}{r}+\quad 414 \\ \hline \cdots 181 \\ +\quad 284 \\ \hline\end{array}$	$\begin{array}{llll} 77 & 59 & 24 \cdot 825 \\ 40 & 34 & 38 \cdot 820 \\ 61 & 25 & 56 & 355 \end{array}$	4.9841659,6   4:8070081,8   49373969,2		
	525		$1 \cdot 287$				+ 517	180		$\begin{array}{r} 96419 \cdot 75 \\ 102836 \cdot 97 \\ 46875 \cdot 92 \end{array}$	$\begin{aligned} & 18.261 \\ & 19.477 \\ & 8.878 \end{aligned}$
		LXXIV (Mínákshi)   LXXXIII (Koilpati)   LXXXV (Kulayanallúr)	$\begin{array}{r} 355 \\ \cdot 356 \\ -355 \\ \hline \end{array}$	$\begin{array}{\|r} -\quad .209 \\ \hline \\ \hline \end{array} \quad .238$			$\begin{array}{r}+\quad .206 \\ \hline \quad .186 \\ +\quad .248 \\ \hline\end{array}$	$\begin{array}{ccc} 68 & 51 & 59: 789 \\ 84 & 10 & 1 \\ 26 & 57 & 58 \cdot 908 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 9841659,6 \\ & 5 \cdot 0121492,9 \\ & 4.6709497,3 \end{aligned}$		
			1.066				- 144	180 000.000			

Note.-Stations LXXXIII (Koilpati), and LXXXV (Kulayanallúr) appertain to the Great Arc Meridional Series, Section $\mathbf{8}^{\circ}$ to $\mathbf{1 8}^{\circ}$.
June, 1886.
W. H. COLE,

In Charge of Computing Office.

## CEYLON BRANCH SERIES of the SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.


No.of Tringgle		Number and Name of Station		Corrections to Observed Angle				Corrected Plane Angle	Distance		
Oirouit	Noncircuit			Figure	Circuit	Noncircuit	Total		Log. fobt	Feet	Miles
-	531	LIX (Kánjarangudi)   LXXVI (Appa Tívu)   LXXVIII (Válai Tívu)   LXXVII (Pěriyapatnam)   LXXVIII (Válai Tívu)   LXXIX (Rámaswámi Madam)		$+\quad .123$ $+\quad .064$ $+\quad .017$	"	"	$\begin{array}{r}\prime \prime \\ +\quad .123 \\ +\quad .064 \\ +\quad .017 \\ \hline\end{array}$	$\begin{array}{rrr} 53 & 28 & 18 \cdot 022 \\ 91 & 2 & 51 \cdot 692 \\ 35 & 28 & 50 \cdot 286 \\ \hline \end{array}$	$\begin{aligned} & 4.6244425,2 \\ & 4.7193501,8 \\ & 4.4831709,4 \end{aligned}$	$\begin{aligned} & 42115 \cdot 56 \\ & 52402 \cdot 27 \\ & 30420 \cdot 82 \end{aligned}$	$\begin{aligned} & 7.976 \\ & 9.925 \end{aligned}$ $5.762$
			$\cdot 304$				+ 204	180			
	532		$\begin{array}{r} 108 \\ \cdot 108 \\ 1088 \\ \hline \end{array}$	+ $1391 \begin{array}{r}+ \\ +\quad .49 \\ -\quad 164\end{array}$			$\begin{array}{r}+\quad 139 \\ +\quad .049 \\ \hline-164 \\ \hline\end{array}$	68 27 14 311   82 55 9 361   28 37 36 328   8	$4.7136637,6$ $4.7417985,2$ $4.4255512,6$	$51720 \cdot 63$ $55182 \cdot 14$ $26641 \cdot 05$	9.796 10.451 5.046
			324				+ 024	180 '0 0.000			
	533	LXXVIII (Válai Tívu)   LXXIX (Rámaswámi Madam)   LXXX (Musal Tíva)	$\begin{array}{r} \cdot 08 \mathbf{I} \\ \cdot 08 \mathrm{I} \\ \cdot 08 \mathrm{I} \\ \hline \end{array}$	  $-\quad 109$   +   +   + 1			$\begin{array}{r}\text { - } 109 \\ +\quad .011 \\ +\quad .111 \\ \hline\end{array}$	25 22 1.300   63 11 27.040   91 26 31.660	$4.3456662,5$ $4.6644162,7$ $4.7136637,6$	22164.93 46175.99 51720.63	4.198 8.745 9.796
			$\cdot 243$				+ . 013	$180 \quad 0 \quad 0.003$			
	534	LXXVII (PYrriyapatnam)   LXXVIII (Válai Tíva)   LXXX (Musal Tívu)   LXXIX (Rámaswámi Madam)   LXXX (Musal Tívu)   LXXXI (Marakayárpatnam)	$\begin{array}{r} \cdot 092 \\ \cdot 093 \\ \cdot 092 \\ \hline 092 \\ \hline \end{array}$	- 105   -.060   $+\quad .232$			$\begin{array}{r}+.105 \\ \hline-.060 \\ +\quad .232 \\ \hline\end{array}$	46 49 47 253   108 17 10 757   24 53 1.990	$\begin{aligned} & 4 \cdot 6644162,2 \\ & 4 \cdot 7789905,8 \\ & 4 \cdot 4255512,6 \end{aligned}$	$46175 \cdot 99$ 60116.07 26641.05	$\begin{array}{r} 8 \cdot 745 \\ 11 \cdot 386 \\ 5 \cdot 046 \end{array}$
			$\cdot 277$				+.067	180			
	535		$\begin{array}{r} \cdot 044 \\ \cdot \\ \cdot 044 \\ \cdot 043 \\ \hline \end{array}$	$\begin{array}{\|} +1.039 \\ +.554 \\ +\quad .018 \\ \hline \end{array}$			$\begin{array}{\|} +1.039 \\ +\quad .554 \\ +\quad .018 \\ \hline \end{array}$	$\begin{array}{llr} 88 & 30 & 53 \cdot 285 \\ 49 & 12 & 59 \\ 42 & 780 \\ 42 & 16 & 6 \cdot 935 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 5177590,0 \\ & 4.3971065,8 \\ & 4.3456662,5 \end{aligned}$	$\begin{aligned} & 32942 \cdot 69 \\ & 24952 \cdot 07 \\ & 22164 \cdot 93 \end{aligned}$	$\begin{aligned} & 6 \cdot 239 \\ & 4 \cdot 726 \\ & 4 \cdot 198 \end{aligned}$
			$\cdot 131$				+1.611	180			
	536	LXXX (Musal Tívu) LXXXI (Marakayárpatnam) LXXXII (Púmurichán)	$\begin{array}{r} \cdot 056 \\ \cdot 057 \\ \cdot 056 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{rr} + & .272 \\ + & 133 \\ + & 454 \\ \hline \end{array}\right.$			$\begin{array}{r}+\quad .272 \\ +\quad 133 \\ +\quad .454 \\ \hline\end{array}$	31 16 $20 \cdot 926$   96 53 $44 \cdot 036$   51 49 $55 \cdot 038$	$\begin{aligned} & 4.3374832,8 \\ & 4.6190722,3 \\ & 4.5177590,0 \end{aligned}$	$\begin{aligned} & 21751 \cdot 20 \\ & 41597 \cdot 97 \\ & 32942 \cdot 69 \end{aligned}$	$\begin{aligned} & 4 \cdot 120 \\ & 7 \cdot 878 \\ & 6 \cdot 239 \end{aligned}$
			$\cdot 169$				+ 859	180			
	537	LXXIX (Rámaswámi Madam)   LXXX (Musal Tívu)   LXXXII (Púmurichán)	$\begin{aligned} & 072 \\ & 0.072 \\ & -072 \\ & \hline 072 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{\|c} +\quad .357 \\ + \\ +\quad .826 \\ + \\ \hline \end{array}\right.$			$\begin{array}{\|} +\quad .357 \\ +\quad 826 \\ +\quad .673 \\ \hline \end{array}$	$\begin{array}{\|ccc} 69 & 33 & 30 \cdot 005 \\ 80 & 29 & 20 \cdot 734 \\ 29 & 57 & 9 \cdot 261 \\ \hline \end{array}$	$\begin{aligned} & 4 \cdot 6190722,1 \\ & 4 \cdot 6413083,3 \\ & 4.3456662,5 \end{aligned}$	$\begin{aligned} & 41597 \cdot 97 \\ & 43783 \cdot 29 \\ & 22164.9 \end{aligned}$	$7 \cdot 878$ $8 \cdot 292$ $4 \cdot 198$
			$\cdot 216$				+ $\mathrm{I} \cdot 856$	$180 \quad 0 \quad 0.000$			
	538	LXXXI (Marakayárpatnam) LXXXII (Púmurichán) LXXXIII (Gandhamána)	$\begin{array}{r} \cdot 075 \\ \cdot 075 \\ \cdot 075 \\ \hline \end{array}$	$\begin{array}{\|} +\quad .528 \\ +\quad 784 \\ +\quad 283 \end{array}$			$\begin{array}{r} +\quad 528 \\ +\quad 784 \\ +\quad 283 \\ \hline \end{array}$		$4 \cdot 7022517,1$ $4.806318,6$ $4 \cdot 3374832,8$	50379.25 $64066 \cdot 63$ $2175 \mathrm{I} \cdot 20$	9.542 12.134 4.120
			- 225				+1.595	$180 \quad 0 \quad 0.000$			
	539	LXXXII (Púmurichán) LXXXIII (Gandhamána) LXXXV (Masánam Karai)	$\begin{aligned} & \cdot 056 \\ & \cdot 057 \\ & \cdot 056 \\ & \hline \end{aligned}$	$\left\|\begin{array}{rr} + & .078 \\ \hline & .032 \\ + & .03 \end{array}\right\|$			$\begin{array}{r} +\quad .078 \\ \hline+.032 \\ +\quad 163 \\ \hline \end{array}$	$\begin{array}{\|llll} 16 & 16 & 44 \cdot 882 \\ 82 & 21 & 20 \cdot 631 \\ 81 & 21 & 54 \cdot 487 \\ \hline \end{array}$	$4.1548521,1$ $4.7033256,5$ $4.7022517,1$	$14284 \cdot 08$ $50503 \cdot 98$ $50379 \cdot 25$	$\begin{aligned} & 2.705 \\ & 9.565 \\ & 9.542 \end{aligned}$
			$\cdot 169$				+ 209	$180 \quad 0 \quad 0.000$			
	540	LXXXIII (Gandhamána) LIXXXV (Masánam Karai) LXXXVII (Kachi Tíru, S.)	$\begin{array}{r} \cdot 097 \\ \cdot 097 \\ \cdot 097 \\ \hline \end{array}$	$\left\|\begin{array}{cc} -0.057 \\ + & 066 \\ + & 002 \end{array}\right\|$			$\begin{array}{rr} -0.057 \\ + & .066 \\ + \\ \hline \end{array}$	92 3 41.976   78 34 2.089   9 22 15.935	$4.9428413,4$ $4.9344186,8$ $4.154852 \mathrm{I}, \mathrm{I}$	$87668 \cdot 05$ $85984 \cdot 22$ $14284 \cdot 08$	$\begin{aligned} & 16 \cdot 604 \\ & 16.285 \end{aligned}$ $2.705$
			-291				+ ${ }^{+11}$	180			
	541	LXXXIII (Gandhamána) LXXXVI (Kachi Tívu, N.) LXXXVII (Kachi Tívu, 8.)	$\begin{array}{r} \cdot 026 \\ \cdot 026 \\ \cdot 026 \\ \hline \end{array}$	--03x			- .03r	$\begin{array}{rrr} 2 & 33 & 59 \cdot 473 \\ 100 & 10 & 29 \cdot 221 \\ 77 & 15 & 31 \cdot 306 \\ \hline \end{array}$	$\begin{aligned} & 3.5923797,8 \\ & 4.9344187,6 \\ & 4.9304749,0 \end{aligned}$	$\begin{array}{r} 3911 \cdot 83 \\ 85984 \cdot 22 \\ 85206 \cdot 92 \end{array}$	$\begin{array}{r} 0.741 \\ 16.285 \\ 16.138 \end{array}$
			$\cdot 078$					$180 \quad 0 \quad 0.000$			
	542	LXXXI (Marakayárpatnam)   LXXXIII (Gandhamána)   LXXXIV (Pisásu. Mundal)	$\begin{array}{r} \cdot 044 \\ \cdot 045 \\ \cdot 044 \\ \hline \end{array}$	$\begin{array}{\|} +\quad .248 \\ +\quad 308 \\ +\quad 277 \\ \hline \end{array}$			$\begin{array}{r} +\quad 248 \\ +\quad 308 \\ +\quad 277 \\ \hline \end{array}$	$\begin{array}{r} 72430 \cdot 594 \\ \begin{array}{rl} 70 & 49 \\ 60 & 40 \cdot 783 \\ 61 & 45 \\ \hline \end{array} \mathbf{4 8 \cdot 6 2 3} \\ \hline \end{array}$	$\begin{aligned} & 3 \cdot 9720515,3 \\ & 4 \cdot 8323047,8 \\ & 4 \cdot 8066318,6 \end{aligned}$	$\begin{array}{r} 9376 \cdot 73 \\ 67968 \cdot 04 \\ 64066 \cdot 63 \end{array}$	$\begin{array}{r} 1.776 \\ 12.873 \\ 12.134 \end{array}$
			-133				+ 833	$180 \quad 0 \quad 0.000$			


No.of Triangle		Number and Name of Station		Corrections to Observed Angle				Corrected Plane Angle	Distance		
Circuit	Noncircuit			Figure	Circuit	Noncircuit	Total		Log. feet	Feet	Milen
			"	"	"	"	"	- "			
			-052	+ $\cdot 009$			+ $\cdot 000$	$\begin{array}{lll}55 & 4 & 33 \cdot 007\end{array}$	4,9042183,3	80208-12	15.191
	543	LXXXIV (Pisásu Mundal)	-052	+.601			$+601$	$11925 \quad 25.769$	4.9304749,0	85206.92	$16 \cdot 138$
		LXXXVI (Kachi Tívu, N.)	-051	$\begin{array}{r}+655 \\ \hline\end{array}$			+ 655	53011224	3.9720515,3	9376•73	1•776
			- 155				+ 1.265	$180 \quad 0 \quad 0.000$			
		LXXXVI (Kachi Tívu, N.)	-023					$795842 \cdot 582$	4.8821782, 1	76239-18	14.439
	544	LXXXVII (Kachi Tívu, S.)	-024					$97 \quad 731.019$	$4 \cdot 8854886,3$	76822.53	14.550
		LXXXIX (Urimunai)	-023	+ .082			+ .082	$253 \quad 46 \cdot 399$	3.5923797,8	3911•83	0.741
			-070					$\begin{array}{lll}180 & 0 & 0.000\end{array}$			
		LXXXVI (Kachi Tívu, N.)	-213	+ 114			+ 114	2746 30.751	4.5631194,9	36569.54	6.926
	545	LXXXIX (Urimunai)	- 213	+ 155			+ 155	74 O 10.152	4.8775777,8	$75435 \cdot 85$	14.287
		LXXXVIII (Åmanakamunai)	- 214	+ 311			+ 311	$\begin{array}{llll}78 & 13 & 19.097\end{array}$	4*8854886,3	76822. 53	14.550
			-640				+ 580	180			
		LXXXVI (Kachi Tívu, N.)	-023					1074513.547	4*8849040,9	76719.21	14.530
	546	LXXXVII (Kachi 'lívu, S.)	$\cdot 022$					6927 46-171	$4 \cdot 8775779,1$	$75435 \cdot 85$	14.287
		LXXXVIII (Âmanakamunai)	. 022	$\underline{+184}$			+ 188	24700.282	3'5923797,8	3911*83	0.741
			$\cdot 067$					180			

W. H. COLE,

In charge of Computing Office.

## SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

Station A				Side A B			Station B
Circuit No.	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at $B$	Number and Name of Station
$\begin{gathered} 74 \\ " \\ " \end{gathered}$	XXXIV (Mávandúr)   $"$ $"$   XXXIX (Avirimodu)   $"$ $"$	$\left[\begin{array}{ccc} \circ & \prime & \prime \prime \\ 12 & 44 & 37.47 \\ & \prime \prime \\ & \prime \prime \\ 12 & 27 & 13.49 \\ \prime \prime \prime \end{array}\right.$	$\left\lvert\, \begin{array}{ccc} 79 & 42 & 25 \cdot 53 \\ " \prime \\ 79 & 57 & 8 \cdot 3^{2} \\ 7 \end{array}\right.$	- , "		- ,	
				320174510	5.1359072,7	140205743	XXXIX (Avirimodu)
				2915 312	50118938,3	209131234	I (Pŏnnúr)
				97570.25	50375262,0	$2775^{2} 59.12$	II (Kaniyanúr)
				$962941 \times 08$	51412892,3	276244108	I (Prnnúr)
				33501701	$5 \cdot 0488086,3$	21348288	IV (Pěrumukkal)
$\begin{gathered} 121 \\ " \\ " \\ " \end{gathered}$	$\begin{aligned} & \text { I (Pơnnúr) } \\ & " \quad " \\ & " \quad " \\ & \text { II (Kanizanár) } \end{aligned}$		$7933 \text { 59.51 }$	$\begin{array}{\|rl\|} 151 & 5 \\ 151 \cdot 18 \\ 95 & 227 \cdot 66 \end{array}$	$\begin{aligned} & 5 \cdot 0777967,0 \\ & 4 \cdot 9598288,7 \end{aligned}$	33134330	II (Kaniyanúr)   III (Narasingapuram)
		$\begin{gathered} 122947 \cdot 84 \\ " \end{gathered}$				$27459 \quad 9 \circ 09$	
			"	3251153.47	5-1209849,5		III (Narasingapuram)   IV (Perrumukkal)
		12476642	"	$271140 \cdot 64$	5-0047771,0	207100.77	V (Gingee)
			$792415 \cdot 17$	184819.29	5.0093783,6	19847645	III (Narasingapuram)
	III (Narasingapuram)   IV (Pðrumukkal)	$\begin{array}{lll}12 & 31 & 6 \cdot 87 \\ 12 & 11 & 51\end{array}$	$791842 \cdot 60$	$3352731 \times 1$	5.0318900,0	155298.60	V (Gingee)
			$79 \quad 46 \quad 39.97$	9843 22.53	5*0899994,0	2783928	VI (Kallapat)
	" "	$\left.\right\|_{12 \text { II } 5 \text { I•34 }} ^{\#}$	"	$\begin{aligned} & 34 \quad 4633.56 \\ & 57 \\ & 57 \end{aligned}$	$5 \cdot 0328607,7$	214442389	
		,			51866803,8	$2365556 \cdot 05$	VI (Kallapat)   VII (Mallipat)
122	V (Gingee)	121455.66	$79 \quad 2613.45$	330401730	$5 \cdot 0896705,3$	1504224.49	VI (Kallapat)
"	$\stackrel{n}{\text { VI }} \text { (Kallapat) }$	$11 \begin{array}{ll} \\ & 5712 \cdot 30\end{array}$	$7936 \text { 20•14 }$	$\begin{array}{rrr} 4 & 1 & 1 \cdot 33 \\ 94 & 7 & 20 \cdot 48 \end{array}$	5-0111996,7	184	VII (Mallipat)
					$4 \cdot 8297847,7$	$274 \begin{array}{lll}189\end{array}$	
	$\begin{aligned} & " \quad " \\ & \text { VII (Mallipat) } \end{aligned}$	$\text { II } 58 \text { " } 0.26$		$\begin{array}{rr} 40 & 426.08 \\ 8 & 21 \\ 05 & 45.53 \\ 0 & 52 \\ 57.47 \end{array}$	$\begin{aligned} & 50288119,2 \\ & 50373916,7 \\ & 4.9377134,1 \end{aligned}$	$\begin{array}{ccc} 220 & 2 & 3 \cdot 97 \\ 188 & 21 & 12 \cdot 89 \\ 180 & 52 & 54 \cdot 71 \end{array}$	VIII (Chð̌ndamangalam)
							X (Vallain)   VIII (Chěndamangalam)
128							

Nosz-Stations XXXIV (Mérandir) and XXXIX (Avirimodu) appertain to the Madras Longitudinal Serice.



Station A				Side AB			Station B
Cirenit No.	Number and Name of Station	Latitude North	Longitude Rast of Greenwich	Aximuth at A	Log. Feet	Asimuth at B	Number and Name of Station
181	XXV (Mutuváncheri)	- 1	- 1	- 1		- .	
		$\begin{array}{llll}11 & 2 & 10 & 14\end{array}$	79 18 31:26	346 54i*or	477888200,7	166689	XXVII (Víramangalam)
	XXVI (Alangudi)	$104952 \cdot 44$	79 26 42.25	1131535.27	4.5700746,7	$2931430 \cdot 76$	
	$"$ $"$   $"$	"	"	$422036 \cdot 74$	4.7190502,1	2221930.56	XXVIII (Arasspat)
		"	"	$\begin{array}{llll}358 & 27 & 3 & 27\end{array}$	4.6981064,6	$17827 \quad 580$	XXIX (Parutikota)
	XXVII (Víramangalam)	105317.97	$79 \quad 30 \quad 59 \times 58$	11152.25	47274703,0	1811150.15	XXVIII (Arasapat)
$182$		"	"	4215457	4'7149455,1	2221358.88	XXX (Rárámutiraikota)
	XXVIII (Arasapat)	$10 \quad 43 \quad 28 \cdot 40$	$79 \quad 30 \quad 48 \cdot 39$	$28657 \quad 1789$	4.5830769,9	10658 26.16	XXIX (Parutikota)
"		"	"	113 554542	4.5674708,7	$2935442 \cdot 26$	$\mathbf{X X X}$ (Rárámutiraizota)
	"	"	"	0514239	4*7365938,5	1805140.87	XXXI (Púvatúr)
"		"	"	37501730	4.7429881,1	217491431	XXXII (Kakkrákota)
"	XXIX (Parutikota)   XXX (Rárámutiraikota)	104137.57	$79 \quad 26$ 55*79	405013.47	4.7580418,7	220494115	XXXI (Púvatur)
		$1045 \quad 56 \cdot 99$	$\begin{array}{llll}79 & 15 & 9.62\end{array}$	- 931.65	477685048,8	$180 \quad 93135$	XXXII (Kakkrákota)
	XXXI (Pávatúr)	$103427 \cdot 54$	$792040 \cdot 16$	$108 \quad 517.63$	$4.5421461,0$	$288 \quad 41659$	"
	" "	"	"	$401438 \cdot 14$	477064143,1	22013 3799	XXXIII (Pátharankota)
	" "	"	"	1320.59	4*6941152,8	$\begin{array}{llll}181 & 318.93\end{array}$	XXXIV (Patukota)
188	XXXII (Kakkrákota)	103614.82	$7915 \quad 7 \times 99$	359404750	4.6958703,5	1794048.01	XXXIII (Pátharankota)
184	XXXIII (Pátharankota)	"	"	43331773	4*6595516,9	2233219.93	XXXV (Kallakota)
		$1028 \quad 2 \cdot 31$	$79 \quad 15 \quad 10 \cdot 77$	288211942	4.5271855,4	1082217.52	XXXIV (Patukota)
"	" "2	"	"	11732 28111	4.5538470,9	297313018	XXXV (Kallakota)
"	"	"	"	$35758 \quad 729$	4.6646312,7	177581025	XXXVI (Kalúrunikad)
"	XXXIV (Patukota)	"	"	$504010 \cdot 32$	4.6870859,9	$23039 \quad 2.08$	XXXVII (Kárakkurchi)
		$10 \quad 2617.09$	$792031 \times 03$	$4027 \quad 26.51$	4.6696365,8	22026 3r'71	XXXVI (Kalúrunikád)
	XXXV (Kallakota)	$103046 \cdot 48$	$\begin{array}{llll}79 & 9 & 52 \cdot 55\end{array}$	$\begin{array}{llll}7 & 4 & 12.81\end{array}$	4.6789821,8	$\begin{array}{llll}187 & 4 & 2113\end{array}$	XXXVII (Kárakkurchi)
	XXXVI (Kalúrunikád)	$10 \quad 20 \quad 24.26$	$\begin{array}{llllll}79 & 15 & 27 & 17\end{array}$		46248698,3	291184756	" "
	" "	"	"	$50 \quad 8 \quad 59.35$	47022853,1	23075010	XXXVIII (Merpanaikád)
185	XXXVII (Kárakkurchi)	"	"	6182736	4.6697170,5	1861818 19	XXXIX (Rětavayal)
		$102256 \cdot 34$	$\begin{array}{llll}79 & 8 & 53.65\end{array}$	35916 21.69	4.6778291,4	1791622.78	XXXVIII (Merpanaikád)
" 136	" "	"	"	342916.32	4.6582686, 1	214283001	XL (Kulamaugalam)
	XXXVIII (Merpanaikád)   "   "	$1015 \quad 3 \cdot 90$	$\begin{array}{llll}79 & 8 & 59.71\end{array}$	292532001	4.5613036,8	112541970	XXXIX (Rettavayal)
"		"	"	110561936	44509986,9	2905532.26	XL (Kulamangalam)
"	" $\quad "$XXXIX (Ř̌tavayal)XL (Kulamangalam)XLI (Mánúr)	"	"	$35743 \quad 507$	4.6786174,3	$\begin{array}{llll}177 & 43 & 8.44\end{array}$	XLI (Mánúr)
		"	"	42573299	4.6863290,4	2225634.29	XLII (Pallathivayal)
		101243.33	$791435 * 74$	432256.24	4.6636337, 1	223220.29	XLI (Mánúr)
		10 1644.02	79 4133.40	8211783	4.6639698,1	$18821 \quad 5 \cdot 93$	XLII (Pallathivayal)
		$\begin{array}{llll}10 & 7 & 10.93\end{array}$	$79 \quad 9 \quad 18 \cdot 73$	10978.02	4.5686575,7	$\begin{array}{lll}289 & 6 & 6.35\end{array}$	" "
$\begin{gathered} 187 \\ 138 \end{gathered}$	" " XL̈III (Okkúr)	"	"	464015.80	47147618,7	$22639 \quad 978$	XLIII (Okkúr)
		,		357164786	4.7140951,3	177165215	XLIV (Kánád)
		$10 \quad 911.23$	79 $\quad 3 \quad 28 \cdot 28$	3145512	4.6793252,8	$1831450 \cdot 38$	XLIII (Okkúr)
		0	"	3958 O.11	47234621,2	219570.48	YLV (Sembalavayal)
		$10 \quad 1 \quad 17.88$	$7931 \times 17$	291514175	4.6364236,0	III 525158	XLIV (Kánád)



Station A				Side AB			Station B
$\begin{gathered} \text { Circuit } \\ \text { No. } \end{gathered}$	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B .	Number and Name of Station
$\begin{gathered} 144 \\ " \end{gathered}$		1	- ' "	,		- 1	
	LXI (Tanichanthai)	$913 \quad 4 \cdot 19$	784013.23	$532549 \cdot 89$	4.6958404,0	$2332446 \cdot 41$	LXIV (Opilán)
	LXII (Arapoth)	918 52.33	$78{ }^{78} 47 \cdot 21$	492547.31	4.7085216,5	$2292444 \cdot 86$	LXIII (Kadaládi)
	" "	-	"	8412724	4.7216095,9	2641042.58	LXV (Kidátirukai)
	LXIII (Kadaládi)	91322.46	$78 \quad 32 \quad 19.48$	$346 \quad 26 \quad 3.49$	4.5095301,7	1662615.57	LXIV (Ǒpilán)
	" "	"	"	$\begin{array}{llll}154 & 236.96\end{array}$	4.4920408,4	334215 II	LXV (Kidátirukai)
145		"	"	$57 \quad 044 \cdot 57$	4.6566115,7	2365943.92	LXVI (Taraigudi)
	" - "	"	"	962720.41	4.6393199,1	2762611.04	LXVII (Pulápati)
	LXIV (Opilán)	$9 \quad 810.69$	$78 \quad 3335 \cdot 18$	982337.78	4.6638673,1	2782225.38	LXVI (Taraigudi)
	LXV (Kidátirukai)	91759.43	$78 \quad 30 \quad 3.73$	$\begin{array}{llllll}5214 & 9\end{array}$	4.5750515,1	2321321.69	LXVII (Pulápati)
	LXVI (Taraigudi)	9 91741	$78 \quad 25$ 59.64	$1695343 \cdot 16$	4.4779605,7	349533474	" "
146	" "	"	"	11255737	4.5769156,9	292541201	LXVIII (Annapúnáẏíanpati)
	" ${ }^{\text {\% }}$	"	"	503328.84	4*4957216,9	2303250.54	LXIX (Súrangudi)
	LXVII (Pulápati)	91411.00	$78 \quad 25 \quad 6.97$	63123947	$4.5190659,3$	2431152.30	LXVIII (Annapúnáa̧akanpati)
	" ${ }^{\text {, }}$	"	"	$1175416.41^{\circ}$	4.6167447,7	297531762	LXX (Mutúruni)
147	LXVIII (Annapánáyakanpati)	9 1143.21	$78 \quad 2012 \cdot 43$	$342 \begin{array}{ll} & 58 \\ 1.27\end{array}$	4.5584408.5	1625818.09	LXIX (Súrangudi)
"	" $"$	"	"	1681936.44 6824	$4 * 5437929,7$	348192509   248   18	LXX (Mutúruni)   LXXI (Mătúruni)
	" "	"	"	6824 43.86	4•6296490,6	$248 \quad 2340 \cdot 77$	LXXI (Mŏtúruni)
"	IXIX (Súrangudi)	6		$1085610 \cdot 39$	4.6658602,5	$288550 \cdot 30$	LXXII (Melakalúruni)
	LXIX (Súrangudi)	96	78 21 58.23	1103757.06	4•7297469,0	2903637.52	LXXI (Mŏtúruni)
148	LXX (Mutúruni)	91723.07	$78 \quad 19 \quad 1 \cdot 75$	62236.28	4.6177160,3	24222721	LXXII (Melakalúruni)
	LXXI (Mŏtúruni)	$9 \quad 9 \quad 7 \times 5$	7813 36.71	17213166	4.4913802,1	$35^{21254.92}$	"
	" "	"	"	$\begin{array}{llll}52 & 922.55\end{array}$	4.6768618,6	232823.23	LXXIII (Supalápuram)
	$\cdots$ -	"	"	1052939.73	4-8862753,1	2852741.57	LXXIV (Mínákshi)
	LXXII (Melakalúruni)	91412.31	781254.78	$\begin{array}{llll}29 & 6 & 3 & 86\end{array}$	4.8358141,9	$209510 \cdot 93$	LXXIII (Supalápuram)
149	" $\quad$	"	"	81 4421.28	4-8494181,5	261 4229.30	LXXIV (Míuákshi)
	LXXIII (Supalápuram)	$9 \quad 418 \cdot 26$	78-722.12	$1433530 \cdot 86$	4•7906824,4	$3233432 \cdot 71$	
		"		$112 \begin{array}{lll}11 & 2 & 41\end{array}$	4.9373969,2	2915957.35	LXXXIII (Koilpati)
	" ${ }^{\prime \prime}$	"		$34 \quad 239.06$	4-8070081,8	$214143{ }^{\circ} \mathrm{O}$	LXXXV (Kulayanallúr)
149	LXXIV (Mínákshi)	$91231 \cdot 34$	$78 \quad 116.09$	682544.41	4.6709497,3	2482434.94	LXXXIII (Koilpati)
"	" .	"	"	3593344.27	5-0121492,9	1793345.50	LXXXV (Kulayanallúr)
150	LXXXIII (Koilpati) LXXXV (Kulayanallúr)	$\begin{array}{lr} 9 & 9 \\ 8 & 40 \cdot 27 \\ 85 & 31 \cdot 05 \end{array}$	$\begin{array}{ccc} 77 & 54 & 0 \cdot 82 \\ 78 & 1 & 23.92 \end{array}$	$3323436 \cdot 60$	4.9841659,6	1523546.25	" "

Nore.-Stations LXXXIII (Koilpati) and LXXXV (Kulayanallár) appertain to the Great Arc Meridional Series, Section $8^{\circ}$ to $\mathbf{1 8}^{\circ}$.

January, 1888.
M. W. ROGERS,

In charge of Computing Office.

## CEYLON BRANCH SERIES of THE SOUTH-EAST COAST SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.



Station A				Side A B			Station B
Circuit No.	Number and Name of Station	Latitude North	Longitude East of Greenwich	Azimuth at A	Log. Feet	Azimuth at B	Number and Name of Slation
	LXXXIII (Gandhamána)   LXXXV (Masánam Karai)   LXXXVI (Kachi Tívu, N.)   LXXXVIII (Amanakamunai)   LXXXIX (Crimunai)			$1921534^{\circ} 10$ $3415748 \cdot 73$ $24720 \quad 716$ $249546 \cdot 66$ 2525011.50   $2403158 \cdot 04$   327 II $45^{\circ} 49$   2192631.92   $24713 \quad 2.89$   $2163935^{\circ} 14$   2441919.99   3211431*45			LXXXIV (Pisásu Múndal)   LXXXV (Masánam Karai)   LXXXVI (Kachi Tíru, N.)   LXXXVII (Kachi Tívu, S.)   LXXXVI (Kachi Tívu, N.)   LXXXVII (Kachi Tíru, S.)   LXXXVIII (Åmanakamunai)   LXXXIX (Orimunai)   LXXXVIII (Amanakamunai)   LXXXIX (Orimunai)

January, 1888.
M. W. ROCERS,

In charge of Computing Office.

## SOUTH－EAST COAST SERIES．

## PRINCIPAL TRIANGULATION．HEIGHTS ABOVE MEAN SEA LEVEL．

The following table gives，first，the usual data of the observed vertical angles and the heights of the signal and instrument， \＆c．，in pairs of horizontal lines，the first line of which gives the data for the lst or the fixed station，and the second line the data for the 2nd or the deduced station．This is followed by the arc contained between the two stations，and then by the terrestrial refraction and the height of the 2 nd station above or below the lst，as computed from the vertical angles in the usual manner． This difference of height applied to the given height above mean sea level of the fixed station，gives that of the deduced station． Usually there are two or three independent values of the height of the deduced station；the details are so arranged as to show these consecutively and their mean in the columns of＂Trigonometrical Results．＂The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations，which are shown up by the spirit levelling operations，wherever a junction between the two has been effected．The spirit levelled determinations are always accepted as final，and the trigonometrical heights of stations lying between those fixed by the levelling operatious are adjusted by simple proportion to accord with the latter．In the table the spirit levelled values are printed thus，202．69，\＆c．，to dis－ tinguish them from the adjusted trigonometrical valnes．The column in which the mean trigonometrical heights are given is barred across where necessary，as after deduction of Stu．VII from Stn．VI，page 134＿ $\boldsymbol{F}_{F}$ ，to indicate that one set of adjustments ends and another begins．The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood＊；when a spirit levelled height does not refer to either of these surfaces，it is given in combination with a correction，thus $\left\{\begin{array}{c}202.69 \\ -3.5\end{array}\right.$ ，and the sum of these two quantities，in this case $199^{\circ} 19$ ，represents the value with which the corres－ ponding trigonometrical mean height $202 \cdot \circ$ is comparable．Descriptions follow these tables，exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights．

When the pillar of the station is perforated，the height given in the last column is that between the upper surface of pillar and the ground level mark－stone in the floor of the passage；otherwise，it is the approximate height of the structure above the ground at the base of the station．

The heights of the initial stations above Mean Sea Level are taken from the Madras Longitudinal Series and are as follows：－

XXXIV（Mávandúr）429．8 feet；XXXIX（Avirimodu） $\mathbf{4 9 0} \cdot \mathbf{4}$ feet．

Astronomical Date		Number and Name of Station	Observed Vertical Angle	suongeaserqo jo requmn	Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			Height of Pillar or Tower
1879－80	Mean of Times of obser－ vation				继	莒		若			$\underset{\text { Res }}{\text { Trigono }}$	metrical alts		
					\％	宫		$\begin{aligned} & \text { 』 } \\ & \text { ㅁ } \end{aligned}$			By each deduc－ tion	Mean	Result	
Jan．4，5   Dec．29，30，31   Jan．$\quad 9,10$   Dec．29，30，31．	$\begin{array}{ll} h & m \\ 2 & 16 \\ 2 & 16 \end{array}$	XXXIV（Mávandúr）   I（Pornnúr）	$\begin{array}{cccc}  & 0 & 1 & 11 \\ \text { D } & 0 & 1 & 43^{\circ} \\ \text { D } & 1 & 1 & 19^{\circ} \end{array}$				＂							foet
					$5 \cdot 9$						$601 \cdot 8$			
				12	$2 \cdot 5$	$5 \cdot 2$	1017	59	－ 058	＋1720	6018			
	$\begin{array}{ll} 2 & 25 \\ 2 & 24 \end{array}$	XXXIX（Avirimodu）	D 0.714 .9	8	5＊9	$5 \cdot 2$	1369		－ 068	＋III9	$602 \cdot 3$	602	602	30
		I（Pŏnnúr）	D 01243.2		$2 \cdot 5$	$5^{\prime 2}$	1369	93	－68	＋ 111	6023			

[^15]NOTR．－In no case does the trigonometrical height refer to the summit of the rectangular protecting pillar．

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			TerrestrialRefraction			Height in feet of 2nd 8tation above Mean Soe Leval			
1879－80	Mean of Times of obser－ vation				d	若		茘			$\underset{\text { Res }}{\text { Trigono }}$	netrical ults		
					\％	曾		$\stackrel{8}{\mathbf{a}}$			$\begin{gathered} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{gathered}$	Mean	Result	
			，				＂							foat
Jan．4，5	$\begin{array}{ll}n & n \\ 2 & 5\end{array}$	XXXIV（Mávandúr）	D ○ ○ 37．3	8	$2 \cdot 5$	$5 \cdot 2$	1078							
Dec．6，7，8	2.6	II（Kaniyanúr）	D 0156.9	12	$2 \cdot 5$	$5 \cdot 2$	1078	72	－067	＋229 8	659.6			
＂29，30，31	215	I（Pŏnnưr）	D 077114	12	$2 \cdot 5$	$5 \cdot 2$		80				$658 \cdot 6$	658	$3 \cdot 0$
＂ 6 ，7，8	219	II（Kaniyanúr）	D 01012.4	12	$2 \cdot 5$	$5 \cdot 2$	1183	80	－068	$+55.4$	657.5			
＂29，30，31	210	I（Pŏnnúr）	E 0748.2	12	2.4	$5 \cdot 2$		65	． 072	$+380 \cdot 4$	$982 \cdot 5$			
＂ 10,11	210	III（Narasingapuram）	D ○ $2052 \cdot 7$	8	$2 \cdot 5$	$5 \cdot 2$	902						981	
＂6，7，8	229	II（Kaniyanúr）	E 0338.4	12	$2 \cdot 3$	$5 \cdot 2$			76	． 5	982．1			
＂10，11	230	III（Narasingapuram）	D○18 $6 \cdot 9$	8	$2 \cdot 5$	$5 \cdot 2$	1010	77	076	＋323 5				
Jan．$\quad 9,10$	220	XXXIX（Avirimodu）	Do 9 3．2	8	$6 \cdot 0$	$5 \cdot 2$								
Dec．24，25	221	IV（Perrumukkal）	Do $7 \quad 304$	8	$2 \cdot 5$	$5 \cdot 2$	1106	72	． 065	343	$456 \cdot 1$			
＂29，30，31	214	I（Pŏnnúr）		12	$6 \cdot 0$	$5^{\circ} 2$	1306	87	－067	－149＊4	$452 \cdot 7$	$453 \cdot 7$	452	18
$" 1879^{24,25}$	211	IV（Perrumukkal）	Do $537 \%$	8	$2 \cdot 5$	$\dot{5 \cdot 2}$	1306	87	067	－149 4	4527	453	45	
Mar．26，27，28	24	$\nabla$（Gingee）	D 024 II•8	12	2.7 2.6	5．2								
＂20，22	23	IV（Perrumukkal）	E 0654.1	6	$2 \cdot 6$	$5 \cdot 2$	1217	94	－077	$-556.5$	$452 \cdot 2$			
Dec．29，30，31	145	I（Pŏnnúr）	E 06632.9	12	$2 \cdot 6$	$5 \cdot 2$	1000	69		＋406．5	$1008 \cdot 6$			
Mar．26，27，28	142	$\nabla$（Gingee）	D○21 5．5	12	$2 \cdot 5$	$5 \cdot 2$	1000	69	－069	$+406.5$	1008			
Dec．10，11	230	III（Narasingapuram）	D o $644 \cdot 8$	8	$2 \cdot 7$	$5 \cdot 2$	1064	82		$+26 \cdot 5$	$1008 \cdot 8$	1009.4	1007	$25 \cdot 7$
Mar．26，27，28	229	V（Gingee）	Do 826.9	12	$2 \cdot 3$	$5 \cdot 2$	1064	82	－77	＋ 26.5	$1008 \cdot 8$	10094	1007	25
＂20，22	23	IV（Pěrumukkal）	E $0654^{\circ} \mathrm{I}$	6	$2 \cdot 6$	5．2								
＂26，27，28	24	$\nabla$（Gingee）	D 024 II•8	12	$2 \cdot 7$	$5 \cdot 2$	1217	94	－077	$+556.5$	1010＇9			
＂21，22，23	142	IV（Părumukkal）	D ○ 14 55\％9	12	$30 \cdot 8$	$5 \cdot 2$			－066		$202 \cdot 2$			
＂11，12，13，14	138	VI（Kallapat）	D ○ ○ $33^{\prime} 7$	16	$2 \cdot 5$	$29^{\circ} \mathrm{O}$	1067	70	． 066	－2515	$202 \cdot 2$			
＂26，27，28	219	$V$（Gingee）	D o $3037 \cdot 2$	12	30．7	5．2							－3．5	
＂11，12，13，14	219	VI（Kallapat）	E○13 5．6	16	$2 \cdot 6$	29．0	1215	83	－068	－807．6	201．8			
＂22，23	154	IV（Pěrumukkal）	D 01421.6	8	$6 \cdot 0$	5．2					$311 *$			
＂6，7，8	138	VII（Mallipat）	D 084.5	12	$2 \cdot 5$	$5 \cdot 2$	1520	89	－059	－142．3	$311 \cdot 4$			
27，28	158	V （Gingee）	D 03053.2	8	$6 \cdot 0$	$5 \cdot 2$								
＂6，${ }^{\text {，7，8 }}$	159	VII（Mallipat）	E $\circ 1617.3$	12	2.6	$5 \cdot 2$	1014	71	－070	－705．8	303.6			
＂11，12，13，14	20	VI（Kallapat）	D ○ $045 \cdot 8$	16	$6 \cdot 0$	29．0						305	302	
＂6，7，8	149	VII（Mallipat）	D 0853.6	12	311	$5 \cdot 2$	668	40	－060	＋104＊	$306 \cdot 4$			
\％11，12，13，14	157	VI（Kallapat）	D 0456.5	12	$38 \cdot 5$	29.0					$280 \cdot 9$			
Feb．24，25，26	146	VIII（Chĕndamangalam）	D 01027.8	12	31＇1	29.8	1057	57						
Mar．6，7，8	221	$\dot{\text { VII }}$（Mallipat）	Do 6 2．1	12	38．4	5．2						279	279	
Feb．24，25，26	220	VIII（Chĕndamangalam）	Do 627.1	12	2.5	29.8	857	47	055	－ $25^{\circ} 0$	277			
Mar．6，7，8	21	VII（Mallipat）	D o 3 53．1	12	$6 \cdot 0$	$5 \cdot 2$								
＂ 2,3	20	IX（Kiliyúr）	D ○ $730^{\circ} \mathrm{O}$	8	$2 \cdot 5$	$5 \cdot 2$	759	41	$\cdot 054$	＋ $38 \cdot 7$	340＇9	$341 \cdot 5$	342	3.0


Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet		$\begin{aligned} & \text { 曷 } \\ & \text { "d } \\ & \text { 罣 } \\ & 0 \end{aligned}$	Terrestrial   Refraction			Height in feet of 2nd Station above Mean Sea Level			
1879	Mean of   Times   of obser－   vation				＇6	$\begin{aligned} & \text { 䓪 } \\ & \text { 置 } \end{aligned}$		若			Trigonom Resu	metrical   alts		
					\％	畧		$\begin{aligned} & \mathbf{8} \\ & \text { 벽 } \end{aligned}$			By each deduc－ tion	Mean	Result	
	$\boldsymbol{n} \boldsymbol{m}$		－＂				＂							feet
Feb．24，25，26	213	VIII（Chĕndamangalam）	Do 1 9＊1	12	$2 \cdot 6$	29．8								
Mar．1，2，3	212	IX（Kiliyúr）．	Do $531 \cdot 7$	12	$38 \cdot 4$	$5^{\circ} 2$	509	43	－084	$+62.9$	$342{ }^{\circ} \mathrm{O}$		－	
＂11，18，18，14	141	VI（Kallapat）	D 0414.8	14	$30 \cdot 4$	29．0	1078	61		＋116．7				
Feb． 13	133	$\mathbf{X}$（Vallam）	$\text { D ○ II } 35^{\circ} 2$	4	$3 \mathrm{I} \cdot 0$	$29^{\circ}$	1078	61	－057	$+1167$	3159			
$\Rightarrow \quad 24,25,26$	26	VIII（Chĕndamangalam）	Do 2 8．1	12	30＇5	29.8						5	317	II＇O
$" \begin{array}{ll} " & 13 \end{array}$	26	$\mathbf{X}$（Vallam）	D 0662.4	8	$38 \cdot 6$	29.0	584	29	－050	＋ 38.0	3171			
＂24，25	I 52	VIII（Chěndamangalam）	D O 521.4	8	6．0	29.8		26			$273 \cdot 7$			
＂19，21	150	XI（Ulundúrpet）	E 0054.5	8	38．9	$5 \cdot 2$	371	26	－070	－ 54	2737			
Mar．1，2，3	237	İX（Kiliyúr）	Do 818.5	12	5＊9	5＊2						273＊9	274	0
Feb．20，21	236	XI（Ulundúrpet）	E O 1 $25^{\circ} 9$	8	$2 \cdot 6$	$5 \cdot 2$	459	28	－06I	$-67^{\circ} 5$	$274{ }^{\circ}$			
＂24，25，26	20	VIII（Chěndamangalam）	E O 3 9＊0	12	$32 \cdot 0$	29.8					346•9			
$" 16,17$	155	XII（Koilánkuppam）	D ○ 747.6	8	$38 \cdot 6$	$29^{\circ}$	398	30	－075	$67 \cdot 8$	$346 \cdot 9$			
$" \quad 13$	142	X（Vallam）	D o 0 41．8	$4$	$31 \cdot 3$	29．0					348＊2		348	11．0
$\text { " } \quad 16,17$	I 42	XII（Koilánkuppam）	D o 536\％	8	$30 \cdot 8$	$29^{\circ} 0$	442	23	－052	$+317$	348＊2	$347{ }^{2}$	348	II＇O
，19，21	222	XI（Ulundúrpet）	E \％3．56．0	8	32．1	$5 \cdot 2$	461			$+72.5$	$346 \cdot 4$			
＂ 16,17	220	XII（Koilánkuppam）	D 01028.6	8	$5 \cdot 6$	$29^{\circ} 0$	461	27	059	＋ 725	3464			
\％ 13	27	$\mathbf{X}$（Vallam）	D ○ 1533.7	4	$37 \cdot 8$	29．0	408			－159．8	$156 \cdot 7$			
＂8，9，10	27	XIII（Seppalánattam）	E 01029.3	12	31•2	$29^{\circ}$	408	25	－061	－159 8	1567			
＂16，17	219	XII（Koilánkuppam）	D o $1617 \times 7$	8	37＊7	29．0	511	21	－041	－194＊5	$152 \cdot 7$	$154{ }^{\circ}$	155	11．0
＂8，9，10	218	XIII（Seppalánattam）	EO 911．2	12	31•5	$29^{\circ} 0$	517	21	041	－194 5	152	154	155	110
＂${ }^{\prime}$－4，5	142	XIV（Kánádakŏndán）	D ○ $1028 \cdot 9$	8	$36 \cdot 8$	28．8								
＂8，9，10	144	XIII（Seppalánattam）	EO $23^{\circ} \mathrm{I}$	12	$35 \cdot 2$	29＊0	586	25	043	－III 8	152．5			
$\text { " } 19,20,21$	227	XI（Ulundúrpet）	D o $226 \cdot 2$	$12$	$35 \cdot 6$	$5^{\circ} 2$					264．2		1	
$\# \quad 4,5$	27	XIV Kánádakǒndán）	D o 444.3	8	5．5	$28 \cdot 8$	508	25	－ 049	－ 97	264.2			
＂16，17	227	XII（Koilánkuppam）	D ○ I 1 13．9	8	35．6	29.0	290	6	－22	$-82 \cdot 8$	264＊	$265^{\circ}$	266	II•O
＂ 4,5	225	XIV（Kánádakǒndán）	E 0743.4	8	31－8	$28 \cdot 8$	290	6	O2I	－82 8	2644	2650	266	11
＂8，9，10	I 44	XIII（Seppalánattam）	E o 223.1	12		$29^{\circ} 0$				＋111．8	$266 \cdot 5$			
＂．4，5	142	XIV（Kánádakŏndán）	Do 1028.9	8	36．8	$28 \cdot 8$	586	25	－043	＋111•8	$266 \cdot 5$			
＂8，9，10	159	XIII（Seppalánattam）	D o 922．9	12	31．4	$29^{\circ} \mathrm{O}$		26			68－5			
Jan．25，26	153	XV（Pǒdaiyúr）	D o 0．29．4	8	36．9	31．2	667	26	－039	－85．5	$68 \cdot 5$			
Febr $\quad 5$	246	XIV（Kánádakŏndán）	D O 1424.4	8	$31 \cdot 3$ 35	$28 \cdot 8$	906	22		－195＊3	$69^{\circ} 7$	$67 \cdot 8$	69	11－0
Jan．25，26	224	XV（Pǒdaiyúr）	E O O 19， 4	8	35＇5	31．2	906	22	－024	－195 3	69	67	69	11
＂29，30	25	XVI（Ayyanpet）	D 01782.4	8	31．4	29.4	374	8	－021	－156．4	$65^{\circ} 1$			
＂25，26	23	XV（Pǒdaiyúr）	EOII 33.5	8	34＊7	31－2	374	8		－156 4	$65^{1}$			
Feb．8，9	142	XIII（Seppalánattam）	Do 23.9	8	36．5	$29^{\circ} 0$								
Jan．29，30	I 39	XVI（Ayyampet）	Do 811：9	8	$37^{\circ}$	29.4	749	46	－061	$+67.7$	22177			


Astronomical Date		Nrumber and Namo of Station	Obserred Vertical Angle		Height in foet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Soa Level			Height of Pillar or Tower
1878-79	Mean of Times of observation				J	若			$\left\|\begin{array}{l} -\frac{y}{4} \\ 0 \\ a \\ a \\ 0 \\ 0 \end{array}\right\|$		$\begin{gathered} \text { Trigonom } \\ \text { Resul } \end{gathered}$	metrioal ulte		
						曾			\|rig		$\begin{array}{\|c\|} \hline \text { By eosh } \\ \text { deduo- } \\ \text { tion } \end{array}$	Mean	Result	
	$h m$		- ' "											foet
Feb. 4,5	23	XIV (Kánádakǒndán)	Do 7 3.2	8	$37^{\circ} 0$	$28 \cdot 8$								
Jan. 29,30	156	XVI (Ayyampet)	D ○ 256.2	6	$35^{\circ} 6$	29.4	706	32	045	- $43 \cdot 8$	$22 \mathrm{I} \cdot 2$	$222 \cdot 8$	224	11-2
" 25,26	23	XV (Pŏdaiyúr)	E O $1133{ }^{\circ} 5$	8	34’7	31-2								
" 29,30	25	XVI (Ayyampet)	D 017	8	31-4	29.4	374		021	+156.4	225.5			
" 25,26	23	XV (Podaiyúr)	E 0213.7	8	$47 \cdot 4$	31-2								
" 14,15,16,17	21	XVII (Salpai)	Do 859.2	16	31•4	29.4	472	- 6	013	+ $70 \cdot 8$	138.6			
" 29,30	224	XVI (Ayjampet)	D 0848.8	8	47.5	$29^{\circ} 4$						$137 \cdot 2$	138	His
" 14,15,16,17	224	XVII (Salpai)	EO $355^{\prime} \mathrm{I}$	16	34.7	29.4	430	13	030	$-87 \cdot 0$	$135 * 8$			
" 25,26	154	$X V$ (Pǒdaiyúr)	Do $416 \cdot 3$	8	$49 \cdot 8$	31'2								
" 20,21,22	153	XVIII (Kuchúr)	D 0252.8	12	31.4	27.9	504	8	016	$-179$	$49^{\circ} 9$			
" 14,15,16,17	217	XVII (Salpai)	Do 856.3	16	50'3	29.4						$49 \cdot 6$	51	II ${ }^{\circ}$
" 20,21,22	227	XVIII (Kuchúr)	E○ 625.7	14	47.6	27.9	386	11	028	$-87 \cdot 9$	$49 \cdot 3$			
" 29,30	154	XVI (Ayyampet)	D ○ $154{ }^{\circ} 5$	6	$33^{\circ} 4$	29.4								
Dec. 27,28,29	152	XIX (Kulattúr)	D o 359.6	12	34.8	29.1	393		013	$+13.0$	$235 \cdot 8$			
Jan. 14,15,16,17	21	XVII (Salpai)	Eo 544*O	16		29.4						$236 \cdot 8$	238	$10 \cdot 0$
Dec. 27,28,29	21	XIX (Kulattúr)	D $01031 \cdot 3$	12	46•8	29.1	394	6	O15	+100.6	$237 \cdot 8$			
Jan. 14,15,16,17	155	XVII (Salpai)	EO 5 54.1	16	31.5	29.4								
1,2	153	XX (Kachipłrumál)	D 0136.7	12	$47 \cdot 6$	$29 \cdot 3$	494	-11	022	+146.3	$283 \cdot 5$			
Dec. 27,28,29	138	XIX (Kulattúr)	E 0219.5	12	30.6	2911						282.0	283	11]1
Jan. 1,2,	21	XX (Kachipěrumál)	D ○ $655^{\prime} \mathrm{I}$	8	34.1	29.3	308	- 5	016	$+43 \cdot 6$	$280 \cdot 4$			
$" \begin{aligned} & 18,15,16,17 \\ & 1878 \end{aligned}$	253	XVII (Salpai)	Do $714^{\circ} \mathrm{O}$	14	$26 \cdot 8$	29.4								
	254	XXI (Tirupanandál Mandap)	D ○ 118.3	8	39.8	$27 \cdot 2$	564		014	$-41.6$	$95 \cdot 6$			
Jan. ${ }_{1878}{ }^{20,22}$	218	XVIII (Kuchứ)	D 025.8	6	26•8	27.9								
$\begin{array}{ll}\text { Mar. } & 25,26\end{array}$	217	XXI (Tirupanandál Mandap)	Do 5 52.3	8	49.2	$27 \cdot 2$	566		OII	$+43 \cdot 1$	92.7	$94 \cdot 3$	96	32
" 21,22	231	XXII (Nayinipiriyan)	D ○ $752 \cdot 2$	8	32.6	$25^{\circ} \mathrm{I}$								
" $1879{ }^{25,26}$	231	XXI (Tirupanandál Mandap)	E O 339.9	8	$47 \cdot 3$	27.2	404			$-62 \cdot 1$	94.5			
Jan. 14,15,16,17	1 57	XVII (Salpai)	D ○ $220 \% 9$	16	51.1	29.4								
" 7,8,9,10	156	XXII (Nayinipiriyán)	D 0519.1	22	47.5	31-8	539	31	058	$+20 \cdot 5$	$157 \times 7$			
" 1,2	214	XX (Kachipèrumál)	D 015 5*3	8	50.7									
" $18788^{8,9,10}$	214	XXII (Nayinipiriyán)	EO12291	12	31.2	31-8	285		032	-126.6	155.4	$156 \cdot 5$	158	10
Mar. 25,26	231	XXI (Tirupanandál Mandap)	E ○ $339^{\circ} 9$	8	$47 \cdot 3$	$27^{\circ} 2$								
" 21,22	231	XXII (Nayinipiriyán)	D ○ $75^{2 \cdot 2}$	8	32.6	$25 \cdot 1$	404		015	+ $62 \cdot 1$	156.3			
" 25,26	216	XXI (Tirupanandál Mandap)	D o o 20.7	8	$39^{\circ} 5$	$27^{\circ} 2$								
n 11,12,13,14	216	XXIII (Kumbakonam)	D ○ $635^{\circ} 4$	16	26.2	22.2	504	11		+ $42 \cdot 2$	$136 \cdot 5$			
" 21,22	245	XXII (Nayinipiriyan)	D $054^{1} 1$	8	39.5	$25^{11}$						$136 \cdot 3$	$\begin{array}{r} 91 \cdot 20 \\ +46 \cdot 78 \end{array}$	51
" 11,12,18,14	245	XXIII (Kumbakonam)	Do 26.2	16	$47 \cdot 7$	22.2	593	13	022	- 20.4	$136 \cdot 1$			


Astronomical Date		Number and Name of Station	Observed Vertical Angle	suongeadesqo jo xequmn	Height in feet		$\begin{aligned} & 8 \\ & 4 \\ & 0 \\ & .8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Inevel			
1878	Mean of   Times   of obser－   vation				J	$\begin{aligned} & \text { 蓸 } \\ & \text { 号 } \end{aligned}$					Trigonom   Resu	metrical ults		
					$\cdots$	总			曷荡		By each deduc－ tion	Mean	Result	
	$\boldsymbol{\pi} \quad \mathrm{m}$		－ 1				$"$							feet
Mar．25，26	241	XXI（Tirupanandal Mandap）	D o $445^{\prime} 7$	8	50•3	$27^{\circ} 2$								
＂29，30	251	XXIV（Putagaram）	D 0334.7	8	31.8	31．6	549	－18	－033	－21＊0	74＊8			
＂11，12，13，14	223	XXIII（Kumbakonam）	$\text { Do } 73^{6 \cdot 3}$	16	38．4	$22 \cdot 2$	369		－ 011	－ $66 \cdot 2$	71．8	$73 \cdot 3$	73	II
＂29，30	228	XXIV（Putagaram）	$\text { E O } 348 \cdot 4$	8	$39^{\circ} 5$	31－6	369		－ 011	－ $66 \cdot 2$	718			
＂21，22	210	XXII（Nayinipiriyán）	E o 0 24．4	8	28．1	25．1		－10			$210^{\circ} 2$			
＂17，18	2 II	XXV（Mutuváncheri）	D $0 \quad 552.2$	8	$47 \cdot 8$	21．9	441	－10	－023	$+522$	$210{ }^{2}$			
＂11，12，13，14	232	XXIII（Kumbakonam）	E O $145^{\circ} 5$	16	$28 \cdot 3$	22.2				6	$208 \cdot 6$	209＊4	209	110
＂17，18	237	XXV（Mutuváncheri）	D o $729^{\circ} \mathrm{O}$ ，	8	$39^{\circ} 5$	21＇9	477			70.6				
＂11，12，13，14	257	XXIII（Kumbakonam）	Do 6 9＊2	16	$42 \cdot 4$	22．2			－016		$86 \cdot 8$			
＂2，3，4	257	XXVI（Álangudi）	E O 010.5	12	$39^{\prime 7}$	28．9	499	8	－016	－51：2	$86 \cdot 8$			
＂29，30	233	XXIV（Putagaram）	D o 2 25．7	8	$42 \cdot 8$	31．6	485		－021	$+143$	$87 \cdot 6$	$87^{\circ} 6$	87	$10 \cdot 0$
＂2，3，4	239	XXVI（Alangudi）	D 0435.6	16	$37 \cdot 9$	28•9	485	－10	O21	＋143	87.6	87	87	
＂7，8	242	XXVII（Víramangalam）	D o 328.8	8	42．5	28．9	368			$-18 \cdot 6$	$88 \cdot 5$			
＂2，3，4	242	XXVI（Álangudi）	D 0022.3	12	$39^{\circ} \mathrm{O}$	28．9	368		． 05	－ 18.6	885			
＂11，12，18，14	35	XXIII（Kumbakonam）	D o 452.4	16	$3 \cdot 3$ 3	22．2	438				$106 \cdot 0$			
＂7，8	24	XXVII（Víramangalam）	Do 019．5	8	39＊7	28．9	438	0		－ 32.0	$100^{\circ} 0$			
＂17，18	38	XXV（Mutuváncheri）	Do $936 \cdot 2$	8	38．2	21．9	608			－101 3	108．1	106．6	106	$10 \cdot 0$
＂7，8	251	XXVII（Víramangalam）	E O O 46．4	8	28．2	28．9	608		－021	－101 3	1081			
＂2，3，4	242	XXVI（Alangudi）	D O 0 22．3	12	39＊0	28．9								
＂7，8	242	XXVII（Víramangalam）	D o 328.8	8	$42 \cdot 5$	$28 \cdot 9$	368		－005	$18 \cdot 6$	05＊8			
＂2，3，4	222	XXVI（Ǎlangudi）	Do 116．3	12	$45^{\circ} 4$	28．9	8							
Feb．24，25，26	223	XXVIII（Arasapat）	D $0528{ }^{\circ}$	12	$42^{1} 1$	$29^{\circ} 0$	8		2	3	9	118．4	118	$10^{\circ}$
Mar．7，8	231	XXVII（Víramangalam）	D o $239^{\circ} \mathrm{O}$	8	$45 \cdot 4$	28．9					118．8			
Feb．24，25，26	232	XXVIII（Arasapat）	D $0439^{\prime} 9$	12	38．5	$29^{\circ} 0$	528	6	－ 011	＋122	118.8			
Mar．2，3，4	218	XXVI（Alangudi）	D o 3 29＊1	12	43＇9	28．9				$6 \cdot 2$	$8 \mathrm{I} \cdot 4$			
Feb． 21	238	XXIX（Parutikota）	D 0243.9	8	42．8	$29^{\circ} 1$	493		－002		81.4			
＂24，25，26	30	XXVIII（Arasapat）	D o $448 \cdot 1$	12	43－8	29＊0								
＂ 21	258	XXIX（Parutikota）	E $0140^{\circ} 5$	8	$46 \cdot 2$	29＊1	379		－ 026	－ $35^{\circ}$	83.4			
Mar．7，8	221	XXVII（Víramangalam）	D O O 15．0	8	42．8．	28．9								
Feb． 10	222	XXX（Rárámutiraikota）	D 0552.5	8	40＇7	$22 \cdot 5$	513	9	－018	＋ 447	1513			10
＂24，25，26	257	XXVIII（Arasapat）	E o 1 32.8	12	$43^{\circ} 2$	$29^{\circ} 0$	365		－022	$+33 \cdot 7$	152.1		－3．5＊	
＂ 10	257	XXX（Rárámutiraikota）	Do 354.5	4	$45^{\prime} 5$	$22 \cdot 5$	365		－022	$+337$	152			
$" \quad 24,25,26$	243	XXVIII（Arasapat）	D o 512.8	$12$	$33 \cdot 5$	$29^{\circ} 0$	539		－ 004	－13．9	104．0			
$\text { " } 16,17$	243	XXXI（Púvatúr）	D 02663	8	46＊	$22 \cdot 7$	539		－ 004	－13＇9	1040	104．7	105	8．9
＂ 21	31	XXIX（Parutikota）	Do 3 32．0	12	33．4	$29^{\circ} 1$				＋ $23 \cdot 6$	105＊3			
＂16，17	231	XXXI（Púvatúr）	D $0520 \cdot 3$	8	44．0	$22 \cdot 7$	566	－29	．051	＋ 236	1053			

＊Assumed height of the rectangular protecting pillar above the circular pillar．

Astronomical Date		Number and Name of Station	Observed   Vertical Angle		Height in feet			Terrestrial   Refraction			Height in feet of 2nd Station above Mean Sea Level			Height of Pillar or Towor
1878	$\left\|\begin{array}{c} \text { Mees of of } \\ \text { Times } \\ \text { of obser- } \\ \text { vation } \end{array}\right\|$				砳	若		若			$\left.\right\|_{\substack{\text { Trigono } \\ \text { Res }}}$	netrical ults		
						，		，	ค\％		$\left\|\begin{array}{c} \text { By each } \\ \text { deduc. } \\ \text { tion } \end{array}\right\|$	Mean	Result	
	${ }^{\prime} \quad m$		－＇＂				＂							foot
Feb．24，25，26	211	XXVIII（Arasapat）	D 0 3 3 3.7			$29^{\circ} \mathrm{O}$								
14.	255	XXXII（Kakkrákota）	D ○ 439.4	8	$45 \cdot 8$	22.4	547	－31	． 057	＋ 16.6	$134 * 5$			
＂$\quad 10$	348	XXX（Rárámutiraikota）	D ○ 4 40．2	8	40•6	22.5	580			$-10{ }^{\circ}$	140．6			
$" 1877{ }^{14}$	36	XXXII（Kakkrákota）－	D○ 3159	8	$43 \cdot 7$	22.4	580	$-17$		－10．4	$140 \cdot 6$			
Freb．27，28，Mar． 1	312	XXXI（Púvatúr）	E O O 26.0	12		20.5								
＂23，24	39	XXXII（Kakkrákota）	D 042.6	8	36.4	20.4	345	－ 15	043	＋ 25.4	$130 \cdot 1$	$130^{\circ} 1$	$\left\|\begin{array}{c} 12074 \\ +9.29 \end{array}\right\|$	－0
$\left\|\begin{array}{c} , 27,28, \mathrm{Mar} .1 \\ \mathrm{Mar} .10,13,15,19, \end{array}\right\|$	257	XXXI（Pávatúr）	D o 138.6	12		30．5								
Mar． $10,13,15,19$,	258	XXXIII（Pátharankota）	D 0454.2	20	$36 \cdot 5$	29.6	503		． 018	＋ 15.3	120.0			
Feb． 23,24	316	XXXII（Kakkrákota）	D o 314．9	8	44.9	20.4						120＇7	12	－ 9
Mar． $10,13,15,19,1$	318	XXXIII（Pátharankota）	D ○ 337.9	20	31－1	29.6	491	－15	O31	$-8.7$	1213			
Feb．27，28，Mar． 1	327	XXXI（Pávatúr）	Do $339^{\circ} \mathrm{O}$	12	46•8	20．5								
Mar．$\quad 5,6$	328	XXXIV（Patukota）	D ○ 238.3	8	$36 \cdot 4$	$29 \cdot 3$	489	－15	．031	－16．9	$87 \cdot 8$			
" 10,13,15,19,	250	XXXIII（Pátharankota）	D 0415.6	20	46•7	29.6						$88 \cdot 4$	88	$1 \cdot 0$
＂ 5 5，6	253	XXXIV（Patukota）	E 0.24 .7	8	44＊9	29.3	333		6	－31•8	$88 \cdot 9$			
Feb．23，24，	259	XXXII（Kakkrákota）	E $01243^{\circ}$	8	$38 \cdot 3$	20.4								
＂17，19，21	3 －	XXXV（Kallakota）	D $0740 \cdot 2$	12	31．4	29.4	452	－ 7		＋52．4	182.4			
Mar．10，13，15，19，	338	XXXIII（Pátharankota）	Eo $346 \cdot 3$	20	38．3	29.6						182．9	$\left[\begin{array}{c} 185 \cdot 62 \\ -3 \cdot 5 \end{array}\right.$	1
Feb．17，19，20，21	$33^{8}$	XXXV（Kallakota）	D ○ $733 \cdot 5$	16	$45 \cdot 3$	29.4	354	－8	． 023	＋ 62.6	183.3			
Mar．10，13，15	324	XXXIII（Pátharankota）	D o 434.3	12	45.3	29.6								
Feb．6，7，8	323	XXXVI（Kalúrunikád）	D ○ 049.5	12	$45^{\circ} 4$	28.4	457	－ 7		$-24.6$	$95^{\prime} 7$			
Mar．5，6	247	XXXIV（Patukota）	D 0218.0	8	$45 \cdot 3$	$29 \cdot 3$								
Feb．6，7，8	247	XXXVI（Kalúrunikád）	Do 313.2	12	46＊9	$28 \cdot 4$	462	－ 11	O24	$+7.5$	95 ${ }^{1}$	94＊9	95	1
＂12，13，14，15	258	XXXVII（Kárakkurchi）	D ○ 822.1	16	45．6	29.5			2					
＂6，7，8	259	XXXVI（Kalúrunikád）	E 0334.4	12	$40 \cdot 4$	$28 \cdot 4$	417	5	2	$-753$	$93 \cdot 8$			
Mar．10，13，15，19．${ }^{\text {2 }}$	38	XXXIII（Pátharankota）	E ○ o 6．1	20	40•3	29.6								
Feb．12，13，14	37	XXXVII（Kárakkurchi）	D o 625．7	12	$45^{\prime} 4$	29.5	481	－ 6		＋ $48 \cdot 8$	169 1			
＂17，19，20，21	249 249	XXXV（Kallakota） XXXVII（Kárakkurchi）		16	$40 \cdot 4$ 38.3	29.4   29.5	472		－006	$-1311$	$169 \%$	169＊6		
＂12，13，14，15	249	XXXVII（Kárakkurchi）	Do $218{ }^{\circ}$	16	38．3	29.5	472	3	O，	$-131$	169	1696	$-3.5$	
＂6，7，8	259	XXXVI（Kalúrunikád）	E ○ 3 34．4	12	$40 \cdot 4$	28.4								
＂12，13，14，15	258	XXXVII（Kárakkurchi）	D○ $822 \cdot 1$	16	$45 \cdot 6$	29.5	417	5	O12	$+753$	1707			
＂6，7，8	332	XXXVI（Kalúrunikád）	D 03119	12	37＇1	28.4								
Jan．26，27，29	341	XXXVIII（Merpanaikád）	Do 359.5	12	$45 \cdot 8$	29.4	498			＋9\％7	$105 \%$			
Feb．12，13，14，15	320	XXXVII（Kárakkurchi）	Do 914.2	16	$37^{1} 1$	29.5						53		
Jan．26，27，29	319	XXXVIII（Merpanaikád）	E○ $022 \cdot 1$	12	41＊0	29.4	471	－73	155	－64．5	105.5			
Feb．$\quad 6,7,8$	312	XXXVI（Kalúrunikád）	D ○ 732.7	12	33．9	28.4								
＂1，2，3	313	XXXIX（Rertavayal）	E O O 33．0	12	45.6	28.5	462		：063	－ 49.2	$46 \cdot 1$	$47 \cdot 3$	48	

－Rejocted．

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet		$\begin{aligned} & \text { 号 } \\ & \text { "0 } \\ & \text { 䒼 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			Height of Pillar or Tower
1876－77	Times of obser－ vation				『	$\begin{aligned} & \text { 总 } \\ & \text { 品 } \end{aligned}$		若			Trigonom	netrical ults		
					－	$\begin{aligned} & \text { 旨 } \\ & \text { 品 } \end{aligned}$		口	$\begin{aligned} & \text { 弟哥 } \\ & \text { ค } \end{aligned}$		By each deduc－ tion	Mean	Result	
	$h m$		－＇＂				＂							feet
Jan．26，27，29	248	XXXVIII（Merpanaikád）	Do 8 2I＇I	12	33.4		360		－06r					
Feb．1，2，3	250	XXXIX（Rětavayal）	E 0249.8	12	$37^{\prime 2}$	28． 5	360	－22	－061	－56．9	$48 \cdot 4$			
＂12，13，14，15	330	XXXVII（Kárakkurchi）	D o 337.6	16	41．0	29．5				$+0.8$	$170 \cdot 8$			
Jan．23，24，	327	XL（Kulamangalam）	D 04119	8	41．2	$33 \cdot 5$	450	－49	109	$+0.8$	$170 \cdot 8$			
＂26，27，29	257	XXXVIII（Merpanaikád）	E o 7 9＊0	12	40．9	29.4				$+66 \cdot 9$	172．2		17515 -3.5	0
＂23，24	30	XL（Kulamangalam）	Do 101.6	8	37＇5	$33 \cdot 5$	279		014	＋669	172			
＂26，27，29	35	XXXVIII（Merpanaikád）	$\text { Do } 535^{\circ} 3$	12	$37 \cdot 0$ 37.8	$29^{\circ} 4$	472	－56	－119	－17\％7	$87 \cdot 7$			
＂13，15，16	37	XLI（Mánúr）	Do 3 3．8	12	37－8	30．6	472	5	，	－				
Feb．1，2，3	325	XXXIX（Rettavayal）	D o 1 36．7	12	$37^{1} 1$	$28 \cdot 5$	456	－60		$+34.2$	8I＇7	84.2	84	I
Jan．13，15，16	322	XLI（Mánúr）	Do 7 8．1	12	$33 \cdot 6$	$30 \cdot 6$	45	－60	2	＋ 342	81	84	84	1
＂18，19，20	251	XLII（Pallathivayal）	D o 8 32．7	． 12	36．9	29.5	367	－19	$\cdot 052$	$-63.2$	$83 \cdot 3$			
＂13，15，16	248	XLI（Mánúr）	EO 334.4	12	42．3	$30 \cdot 6$	367	19	－ 5		83			
＂26，27，29	330	XXXVIII（Merpanaikád）	E o I 4.0	12	57＊3	29．4	480		$\cdot 002$	$+43.5$	$148 \cdot 9$			
＂18，19，20	326	XLII（Pallathivayal）	Do $630^{\circ}$	12	$37 \cdot 6$	$29^{\circ} 5$	480		－002	＋ 435	148			
＂23，24	343	XL（Kulamangalam）	D o 425.9	8	57.4	33．5	456	－2I	$\cdot 046$	$-277$	$144{ }^{\circ} \mathrm{O}$	$146 \cdot 9$	$150 \cdot 11$	$0 \cdot 7$
＂18，19，20	341	XLII（Pallathivayal）	D o 1 18.6	12	40＇1	29.5	45	－ 21	O46		1440		－3．5	0
＂13，15，16	248	XLI（Mánúr）	E o $334{ }^{\prime} 4$	12	42．3	$30 \cdot 6$	367	－ 19	$\cdot 052$	$+63.2$	147＊9			
＂18，19，20	251	XLII（Pallathivayal）	D o 832．7	12	36．9	29.5	367	－19	052	＋632	1479			
＂13；15，16	3 4I	XLI（Mánúr）	D o $347 \%$	12	43＊7	$30 \cdot 6$								
＂2，3，4	346	XLIII（Ǒkúr）	D o 5 3．5	12	$37^{\circ}$	29.6	513	$-51$	－ 099	$+6.7$	90．6			
＂18，19，20	$35$	XLII（Pallathivayal）	Do 72.5	12	$43 \cdot 7$	$29^{\circ} 5$								1
$" \quad 2,3,4,5$	36	XLIII（Ơkkúr）	E O O 48．2	16	42．7	29.6	473	－10	－22	－ $55 \cdot 1$	915			
＂13，15	456	XLI（Mánúr）	D o 610.7	8	46．1	$30 \cdot 6$				$-38 \cdot 2$	－ 457			
＂9，10	456	XLIV（Kánád）	D o 1 20．9	8	$37^{\circ} 1$	$25^{\circ} 1$	512	－25	049	$-3^{8} 2$	457			
＂2，3，4，5	318	XLIII（Ơkkúr）	Do $626 \cdot 5$	16	45．7	29.6						44＊3	44.73 -3.5	1•1
＂ $\begin{array}{rr}\text {＂，} & \mathbf{9 , 1 0}\end{array}$	3 19	XLIV（Kánád）	E O 1 24.9	8	43．7		428	－20	－ 047	$-48 \cdot 3$	42．8			
＂9，10	319	XLIV（Kánád）	EO 1249	8	437	251								
＂18，20	324	XLII（Pallathivayal）	D o $535 \cdot 6$	8	40．5	29．5		－ 16		$-25 \cdot 8$	$120 \cdot 8$			
Dec． 29	325	XLV（Sembalavayal）	D o 1 $45^{\circ} 5$	4	42＇9	24•5	523	－16	O31	－ 258	120			
Jan．2，3，4，5	311	XLIII（Okkúr）	EO 1 51．8	16	40＇9	29.6	317			$+31.4$	22.5			＇9
Dec．29，30	311	XLV（Sembalarayal）	D ○ 359.7	8	44＊0	24．5	317			＋314	22			
$\left.\begin{array}{\|l\|l}  & 1877 \\ \text { Jan. } \\ & 2,3,4,5 \end{array} \right\rvert\,$	245	XLIII（Ǒkkúr）	$\text { D } \circ 626 \cdot 9$	$16$	51．9	$29 \cdot 6$		－26						
Feb．${ }_{1877}^{1876} \mathbf{2 8 , 2 9}$	245	XLVI（Sirukambúr）	$\text { Do I } 9 \circ 3$	8	40\％	$29^{\circ} 7$	531	－26	－049	－ 473	42：3			
$\begin{array}{\|lll}  & 1877 \\ \text { Jan. } & 9,10 \\ & 1876 & \end{array}$	$246$	XLIV（Kánád）	D o 3330.4	8	51•7	$25^{\circ} 1$	524	$-62$	－118	$+0.2$	4 ${ }^{\circ} 4$	41＇9	42	I
Feb．28，29	256	XLVI（Sirukambúr）	D o $420^{\circ} 7$	8	$46 \cdot 0$	29＊7	524	－62	1	＋ 02	414	419	42	1
＂25，26	234	XLVII（Manikamkota）	D o $630 \cdot 1$	12	52．9	29.6	375	－26	－ 069	$-55 \cdot 8$	41＇9			
＂，28，29	236	XLVI（Sirukambúr）	E 0239.6	8	$42 \cdot 7$	29＊7	375	－26	－69	－ 55.8	419			



[^16]+ Bee description of this atation, page 16-F.

Astronomical Jate		Number and Name of station	Obsorved Fertical Auglo		Ileight in fect		$\begin{aligned} & \stackrel{0}{4} \\ & \text { 品 } \\ & \stackrel{E}{g} \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	＇Terrentrial Refraction			Height in feet of 2nd Station above Mean Sea Inavel			Height of Pillar or Tower
1876	Mean of   t＇inos   of obser－   ration				尚			品			Trigonom Reat	netrical ilt		
					$\omega$	者			菏淢		By each deduc－ tion	Mean	Reeult	
	$h \quad n$		0＇＇				＂							feet
Mar．13，14	229	LIII（Kŏdikulara）	D o 625．5		$28 \cdot 8$	$5 \cdot 2$								
＂17	228	LIV（Pŏragudi）	E o 315．3	8	21．5	$26 \cdot 7$								
7，8，0	54	LII（Mutupatnam）	D $0240^{\circ}$	12	479	$25^{\prime 2}$					＊			
May $\quad 3$	$44^{8}$	LV（Nayanárkoil）	D ○ 733.5	8	$46 \cdot 8$	$34 \cdot 6$								
Mar．13，14	221	LIII（Kŏdikulam）	E o 1 7 7	8	48＇1	$5 \cdot 2$	405	－ 12	． 030	＋ 13.2	79＇5	79＇5	82	O＇0
May 4	155	LV（Náyanirkoil）	D o 549．7	8	21•1	$34 \cdot 6$	405	－ 2	－3	＋132	795	795		
Mar．13，14	231	LIII（Kǒdilıulam）	D o 546.4	8	10＇7	$5 \cdot 2$								
dpr． 28	254	LVI（Ramnad）	D ○ 21518	4	21．5	$5 \cdot 2$	493	－39	－79		$47^{\prime} 7$			
Mar． 17	227	LIV（Pŏragudi）	Do $349^{\circ} \mathbf{2}$	8	10＊7	26．7							$48 \cdot 22$	$3^{1} 1$
Apr． 28	335	LVI（lamnad）	D 0521.8	4	32．5．	$5^{\circ} 2$	529	－33		$+33^{\circ} 7$	$47^{\circ}$			
Mar．13，14	256	LIII（Ködikulam）	D 0454.6	8	19.8	$5^{\prime 2}$								
May 2	136	LVII（Sambuttiyendal）	D 0459.4	4	$21^{\circ} 4$	4＇7	$55^{2}$	－ 55						
$\cdots \quad 3$	448	LV（Náyanírkoil）	D o 5 41．7	4	20＇1	$34 \cdot 6$	547	－23	＇042	$+2.5$	$84 \cdot *$	77．5	78	$20 \cdot 8$
＂ 1875	240	LVIJ．（Sambuttiyeudal）	1） $0 \quad 227 \% 7$	4	$47 \cdot 3$	$4 \cdot 7$	547	－23	042	＋ 25	849	775	78	$20 \cdot 8$
Mar．20，21，22	253	LVI（Ramnad）	D ○ 1 39．5	12	$10^{\circ} 0$	$5 \cdot 2$								
＂ 12	253	LVII（Sambultiyendal）	D 0630.0	12	10．7	$5^{\cdot 2}$	435	－ 50	115	－ 4				
＂20，21，22	214	LVI（Ramnad）	E 0 o 3．7	12	$2 \cdot 7$	$5 \cdot 2$					$80 \cdot 1$			
，14，15，16	$2 \begin{array}{lll}2 & 18\end{array}$	LVIII（Uttarakoshamangai）	D 0528.0	12	10.6	$5 \cdot 2$	343		000	＋ 319	$80 \cdot 1$			
＂10，11，12	219	LVII（Sambuttiyendal）	Do $236 \cdot 2$	16	$2 \cdot 6$	$5{ }^{\circ} 2$						$80 \cdot 8$	30.68 $+49^{\prime} 34$	$0 \cdot 7$
＂ $14,15,16$	218	LVIII（Uttarakoshawangai）	Do $231^{\circ} \mathrm{O}$	12	$9 \cdot 8$	$5 \cdot 2$	298	－12	－ 040	$+3{ }^{2}$	5			
＂20，21，22	210	LVI（Ramnad）	Do o 2＇9	I 2	28.0	5＊2								
＂25，26，27	241	LIX（kúnjarangudi）	Do 439 0	12	10.8	$5 \cdot 2$	427		＇ 012	＋20＇3	68．5			
＂ $14,15,16$	227	LVIII（Uttarakoshamangai）	D 0146.7	12	$28 \cdot 0$	$5 \cdot 2$								
＂25，26，27	239	LILX（Kínjarangudi）	D o I 54.8	12	$2 \cdot 6$	$5 \cdot 2$	354				6			
＂14，15，16	235	LVIII（Uitarakoshamangai）	Doo o 0 O	12	$33^{\circ}$	$5^{\prime 2}$					$76 \cdot 9$			
＂28，29，30	233	LX（Tervádi）	Do $234^{\prime}$	12	2.6	5＇3	322			－ 31	769			
＂25，26，27	218	LIX（Kánj̣arangudi）	E○13 $5^{\circ} 2$	12	33•5	$5 \cdot 2$						$77^{11}$	6	
＂28，29，30	217	LKX（Yecrádi）	D 0 1 7，9	12	27＇9	$5 \cdot 3$	298	－ 11	－037	$+9.0$	$77 \times 3$			
＂14，15，16	325	LVIII（Uttnralioshamangai）	Do 616.4	12	$30 \cdot 5$	5＊2		－63		$-38 \cdot 4$	4 $1 \cdot \frac{\square}{6}$			
Feb．25，26，2i，28	323	LXI（＇Ianichanthai）	Do 353.7	16	$2 \cdot 7$	17.6	523	－63		－ $38 \cdot 4$	41＇6			
Mar．28，29，30	213	LX（Yervádi）	Do 526．1	16										
Feb． $24,25,26,27$,	215	LXI（Tanichanthai）	EO 126.5	20	$33^{\circ} 0$	$\begin{array}{r} 53 \\ 17.6 \end{array}$	363	$-5^{2}$	－143	$-41 \cdot 6$	35＊5			
Mar．2，3，4，5			D o $6 \quad 0.9$					－				$35^{\prime 2}$	33＇25	0.0
$\left\|\begin{array}{r} \text { Feb. } 24,25,26,27, \\ 2 \kappa \end{array}\right\|$	2	I．XII（Arnpoth）		16	30＇3	5＇2	357	$-28$	＇078	－52＇1	34＊9			
$2 k$	217	LXI（＇Tanichmethni）	E o I 50.4	20	21＇2	$17^{\prime} 6$	357	28		$-521$	349			
Mar．10，11，12	316	LVII（Snmbutitiyendal）	D o 323．6	16	20.4	5＇2		－101		18.7				
$\cdots \quad 6$	39	LXXII（Arapoth）	D 0540.8	8	8．9	$5 \cdot 2$	431	－101	－ 234	＋8．7	$87^{\circ}$			

－Rejocted．

Astronomical Date		Number and Name of Station	Observed Vertical Angle		Height in feet			TerrestrialRefraction			Height in feet of 2nd Station above Mean Sea Level			
1875	Mean of   Time   of obsor-   vation				]	若					$\left\lvert\, \begin{gathered} \text { Trigono } \\ \text { Res } \end{gathered}\right.$	metrical   ults		
						号		ag			By each deduction	Mean	Result	
	$h \mathrm{~m}$		- 1				"							feot
Mar. 14,15,16	31	LVIII (Uttarakoshamangai)	D o 238.5							+ $12 \cdot 1$	$92 \cdot 1$		85	
" 2,4,5,6	32	LXII (Arapoth)	D ○ 536.9	20	$2 \cdot 7$	$5 \cdot 2$	479	-35	073	+ $12 \cdot 1$	$92 \cdot$	$87 \cdot 3$	85	
Feb. 24,25,26,27, ${ }^{\text {28, }}$	217	LXI (Tanichanthai)	E 0.150 .4	20	21'2	17.6								
Mar. 2,3,4,5	216	LXII (Arapoth)	Do 6009	16	$30 \cdot 3$	$5 \cdot 2$	357		-078	$+52 \cdot 1$	$87 \cdot 6$			
Feb. 24,25,26,27	237	LXI (Tanichanthai)	D o 3 29.7	16	12.1 $30 \cdot 0$	17.6	469	-80		+ 29.7	$63^{\circ} \mathrm{O}$			
" 16,17,18,19	232	LXIII (Kadaládi)	D ○ 535.6	16	$30 \cdot 0$	$5 \cdot 2$	469		17	$+297$	63		2	
$\left.\begin{array}{\|c\|} \text { Mar. } \\ \text { Feb. } 16,17,18,19,5 \end{array} \right\rvert\,$	258	LXII (Arapoth)	D o 635.5	20		$5 \cdot 2$								
Feb. 16, 17, 18, 29	251	LXIII (Kadaládi)	D ○ 233.5	20	$20 \cdot 8$	$5 \cdot 2$	506		132	- 25.6	59.8			
" 25,26,27,28	258	LXI (Tanichanthai)	D o 4.412 .7	16	22.5 30.2	$17 \cdot 6$	491			$+6.7$	$40^{\circ} 0$			
" 21,22,2:3	258	LXIV (Ópilán)	D o $339^{\circ} 9$	12	$30 \cdot 2$	$4 \cdot 1$	491			+67	40.0	$39 \cdot 6$	40	0
" 16,17,18,19	236	LXIII (Kadaládi)	D o 333.2	16	22.5	$5 \cdot 2$								
" 21,22,23	236	LXIV (Opilán)	E ○ 011.6	12	12.1	$4 \cdot 1$	320	-21		$-223$	391			
Mar. 2,3,4,5	323	LXII (Arapoth)	D o 4 52.8	20	18.9	$5 \cdot 2$					84.6			
Feb. 14,15	35	LXV (Kidátirukai)	D $0438 \cdot 0$	12	21-1	$5 \cdot 2$	521				84.6	$84^{\circ} 1$	85	
$\begin{array}{r} 17,18,19,20 \\ " 11,12,13,14, \end{array}$	227	LXIII (Kadaládi)	E O 1 4.9	16	18.8	$5^{\circ} 2$								
$" 11,12,13,14$,	223	LXV (Kidátirukai)	D $0432 \cdot 6$	20	12.3	$5 \cdot 2$	307	-18	-059	$+22 \cdot 1$	835			
" 17,18,19,20	233	LXIII (Kadaládi)	$\begin{array}{ll}\text { D o } & 3 \\ \text { D } & 0.9\end{array}$	16	29.0	$5 \cdot 2$ $5 \cdot 2$					$56 \cdot 4$			
" 3,4,5	232	LXVI (Taraigudi)	D. 0466	12	4.6	$5 \cdot 2$	449				564			
" 21,22,23	222	LXIV (Opilán)	D ○ 1 30.5	12	$28 \cdot 6$	$4^{\cdot 1}$				$+16 \cdot 3$				
" 2,3,4,5	2.22	LXVI ('Taraigudi)	D 0427.8	16	$22 \cdot 8$	$5 \cdot 2$	456	-45	$\bigcirc 99$	$+163$	559	564	57	
" 7,8,9	233	LXVII (Pulápati)	D 0216.1	12	29.3	$5 \cdot 2$								
" 2,3,4,5	233	LXVI (Taraigudi)	D ○ 043.6	16	$2 \cdot 6$	$5 \cdot 2$	297		.051	- 20.1	56.9			
${ }^{\prime \prime}$ 16,17,18,19,	35	LXIII (Kadaládi)	D o $2433^{\prime} 1$	20	$16 \cdot 2$	$5 \cdot 2$								
" 6,7,8,9	38	LXVII (Pulápati)	D 063.0	16	$4 \cdot 6$	$5 \cdot 2$	43 I	-72	-167	$+153$	$76 \cdot 7$			
" 11,12,13,15	235	LXV (Kidátirukai)	D o 3 46.2	16	16.1		372	-62		- 6.8	$77 \cdot 3$	76•8	78	2
" 6,7,8,9	234	LXVII (Pulápati)	Do 3 4.2	16	10.1	$5 \cdot 2$	372			- 6.8	773			21
" 2,3,4,5	233	LXVI (Taraigudi)	D o 043.6	16	$2 \cdot 6$	$5 \cdot 2$				+ 20.1	$76 \cdot 3$			
" 7,8,9	233	LXVII (Pulápati)	Do 216.1	12	29.3	$5 \cdot 2$	297	15		$+20.1$	76			
¢", $24.4,4,5$	214	LXVI (Taraigudi)	D o 138.7	12	13.7	$5 \cdot 2$								
Jan. 24,25, 26, ${ }^{28} \mathbf{2 8}$	216	LXVIII (Annapúnáyakanpati)	Da $235^{\circ}$	20	$29^{\circ} 2$	$5 \cdot 2$	373		-078	+ 13.0	69.4			
Feb. ${ }_{\text {\% }}$ 6,7,8,9	239	LXVII (Pulápati)	Do 3001	16	13.6	$5 \cdot 2$						$70 \cdot 0$	71	19.6
Jan. 24,25,26,27, 28	239	LXVIII (Annapúnáyakanpati)	D 0.252 .3	20	$2 \cdot 3$	$5 \cdot 2$	327			$-6.3$	$70 \cdot 5$			
$\begin{array}{lr}\text { Feb. } & 2,3,4,5 \\ \text { Jan. } & 30,31\end{array}$	225	LXVI (Taraigudi)	E 0 O 0 O. 0.9	20	13.8	5.2					$76 \cdot 1$			
Jan. $\quad 30,31$	29	LXIX (Sárangudi)	D $0236 \cdot 1$		29.3	$5 \cdot 2$	310			+ 197	76	$75 \cdot 8$		
" 24,25.26, ${ }^{27,28}$	234	LXVIII (Annapúnáyakanpati)	D ○ 23.9	20	13.9	$5 \cdot 2$	358			$+5.5$		$7 \underline{-}^{8}$	77	9
" 30,31	225	LXIX (Súrangudi)	D○ 3 7.3	8	13.8	$5 \cdot 2$	358							

- Rejected.


[^17](1). The mean of observations taken on 12th, 13th and 14th January, and 30th December, 1874.
(2). The mean of observations taken on 12th, isth and January, 1874, and 2nd January, 1875.

* Assumed height of the rectangular protecting pillar above the circular pillar. t See description of this station, page 16d-p


Nots．－Stations LXXXIII（Koilpati）and LXXXV（Kulaynnallúr）appertain to the Great Arc Meridional Series，Soction $8^{\circ}$ to $18^{\circ}$ ． （1）．The mean of observations taken on 8th and 9th January，1874，and 2nd January， 1875. $\begin{array}{lll}\text {（2）．} & \text { Do．} & \text { do．} \\ \text { 12th，13th and 14th January，and 30th Decomber，} 1874 .\end{array}$

CEYLON BRANCH SERIES of the SOUTH－EAST COAST SERIES．
principal triangulation．Heights above mean sea level．

Astronomical Date		Number and Name of Station	Observed   Verticul Angle	suongsaresqo jo aəqiun $N$	Height in feet		$\begin{aligned} & \text { 星 } \\ & \text { 豆 } \\ & \text { 豆 } \\ & 00 \end{aligned}$	Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1875	Mean of   Times   of obser－   vation				可	若 見					Trigonom Res	netrical ults		
					$\infty$	苗					By each deduc－ tion	Mean	${ }_{\text {Final }}^{\text {Result }}$	
			${ }^{\circ}{ }^{\circ} \quad 17$				$"$							feet
Mar．25，26，27	232	LIX（Kánjarangudi）	D o 7 55．5	12	13.3	$5 \cdot 2$	387							Jeat
Apr．1，2	232	LXXV（Púvarasanhalli Tívu）	E○ $432 \cdot 7$	8	$28 \cdot 0$	$5 \cdot 2$	387			$-63 * 7$	$4^{\circ} 0$			
Mar．28，29，30	222	LX（Yervádi）	D 01024.4	12.	$13^{\circ} 3$	5＊3				－72．1				
Apr．1，2	222	LXXV（Púvarasanhalli Tívu）	E 01055.6	8	$33 \cdot 4$	$5 \cdot 2$	262	6	023	$-72.1$	3＇7	$4 \cdot 0$	4	0.0
＂ 4,5	211	LXXVI（Appa Tívu）	D o 240.6	8	13.0	6•5								
＂1，2	212	LXXV（Púvarasanhalli Tivu）	Do 0 21．9	8	$13 \cdot 6$	$5 \cdot 2$	273	－10	037	－8．3	$4 * 4$			
Mar．25，26，27	226	LIX（Kánjarangudi）	D o $738 \cdot 3$	12	$13^{\circ} 7$	$5 \cdot 2$								
Apr．4，5	223	LXXVI（Appa＇I＇ivu）	E 0620.6	8	$28 \cdot 6$	6．5	301		027	$-55^{1} 1$	12.6			
Mar. 28,29,30	245	LX（Yervádi）	Do $745^{\prime 2}$	12	13.6	5•3								
Apr．4，5	246	LXXVI（Appa Tívu）	E O 4 9．4	8	$33 \cdot 1$	$6 \cdot 5$	412		029	$-63^{\circ} 0$	$12 \cdot 8$	12．5	12	0.0
＂ 1,2	212	LXXV（Púvarasanhalli Tívu）	D o 0 21．9	8	$13 \cdot 6$			$-10$	－037					
＂4，5	2 II	LXXVI（Appa Tivu）	D $0 \quad 240.6$	8	13.0	$6 \cdot 5$	273	－10	－037	$+8.3$	12．2			


Astronomical Date		Number and Name of Station	Observed Vertical Angle	Number of observations	Height in feet			Terrestrial Refraction			Height in feet of 2nd Station above Mean Sea Level			
1875	Mean of Times of obser－ vation				吕	若		䔺			$\underset{\substack{\text { Trigonom } \\ \text { Res }}}{ }$	metrical ults		
						豆		a	－${ }^{\circ}$		By each deduc－ tion	Mean	Result	
	$h \quad m$		－＇				＂							feet
Mar．25，26，27	222	LIX（Kánjarangudi）	D o 618.8	12	12.4	$5 \cdot 2$	349		． 017	－41＇0	$26 \cdot 7$			
Apr．11，12，13	222	LXXVII（Periyapatnam）	E 0309.2	12	28.8	$6 \cdot 5$	349		O17	－ 410	26.7			
＂4，5	238	LXXVI（Appa Tívu）	D ○ ！ 39.8	8	12.4	$6 \cdot 5$	423			＋ 15.3	27.8	28.4	28	10＊5
＂11，12，13	238	LXXVII（Periyapatnam）	Do 388	12	24.5	$6 \cdot 5$	423			$+153$	278			10.5
＂8，9，10	227	LXXVIII（Válai Tívu）	E O 1118.9	12	12．0	$5 \cdot 2$	264			＋193	$30 \cdot 8$			
＂11，12，13	227	LXXVII（Pěriyapatnam）	D o 251.6	12	19.5	$6 \cdot 5$	264			＋ 193	$30 \cdot 8$			
Mar．25，26，27	220	LIX（Kánjarangudi）	D ○ 653.4	12	19.0	$5 \cdot 2$				－58．I	$9 \cdot 6$			
Apr．8，9，10	222	LXXVIII（Válai Tivu）	E $0121 \cdot 8$	12	$28 \cdot 6$	$5 \cdot 2$	519			$-58 \mathrm{I}$	96			
＂ 4,5	339	LXXVI（Appa Tívu）	D ○ $3 \mathbf{3 8 . 2}$	12	19．1	$6 \cdot 5$	417			＋ 0.9	13.4	$10 \cdot 3$	10	5
＂8，9	410	LXXVIII（Válai Tíru）	Do 34.3	12	24.5	$5 \cdot 2$	417			$+0.9$	134	103	10	5
＂11，12，13	227	LXXVII（Pyriyapatnam）	Do 251.6	12	19.5	6．5	264				$8 \cdot 0$			
＂8，9，10	227	LXXVIII（Válai Tívu）	E ○ 118．9	12	12.0	5.2	264			$-193$	$8 \cdot$			
＂11，12，13	224	LXXVII（Pěriyapatnam）		12	24.5	6．5	546			＋21：3	$49^{\circ} 7$			
＂15，16	254	LXXIX（Rámaswámi Madam）	Do 518.8	8	12.9	7•5	546			$+213$	497			
＂8，9，10	221	LXXVIII（Válai Tívu）	D ○ ○ 15．2	12	24.5	$5 \cdot 2$				＋ 38.0	$48 \cdot 3$	$48 \cdot 5$		0.8
＂15，16	222	LXXIX（Rámaswámi Madam）	Do $547 \times 9$	8	19.4	7•5	512			＋ 38.0	483	$48 \cdot 5$	－${ }^{6178}{ }^{\text {c }}$	0.8
＂19，20	217	LXXX（Musal Tíru）	E o 539.9	8	24.5	$22 \cdot 8$	219			＋ 45.5	$47 \cdot 6$			
＂15，16	216	LXXIX（Rámaswámi Madam）	Do $340 \cdot 5$	8	$40 \cdot 0$	$7 \cdot 5$	219			$+455$	476			
＂11，12，13	237	LXXVII（P̌riyapatnam）	D ○ 4 11．0	12	$40 \cdot 3$	$6 \cdot 5$				－26．0				
＂19，20	236	LXXX（Musal Tívu）	Do 342.5	8	13.0	$22 \cdot 8$	595			－ 26.0	2.4			$\cdots$
＂8，9，10	218	LXXVIII（Válai Tíru）	D o 1 44.7	12	$40 \cdot 7$	5.2	457			－ 8.6	$1 \cdot 7$	2.5	2	0.8
＂19，20	224	LXXX（Musal Tívu）	D○ 323.5	8	18.9	22．8	457			－8．6	1	2		
＂15，16	216	LXXIX（Rámasıwámi Madam）	D ○ $340 \cdot 5$	8	$40 \cdot 0$	$7 \cdot 5$								
19，20	217	LXXX（Musal Tívu）	E ○ 539.9	8	24.5	$22 \cdot 8$	219			－ 455	35			
＂15，16	230	LXXIX（Rámaswámi Madam）	E ○ 1199	8	23.9	$7 \cdot 5$				$+10 \cdot 1$	$58 \cdot 4$			
＂27，28，29	230	LXXXI（Marakayárpatnam）	Do 14.9	12	$24 \cdot 3$	$5 \cdot 2$	247							
＂19，20	226	LXXX（Musal Tívu）	E ○ 327.7	8	23.7	$22 \cdot 8$	326							
＂27，28，29	227	LXXXI（Marakayárpatnam）	D 0442.7	12	$39^{\prime} 9$	$5 \cdot 2$	326			$+561$	58.4	578	$\begin{array}{r} 6176 \\ -3 \cdot 5^{4} \end{array}$	0.9
＂24，25	232	LXXXII（Púmurichán）	E o 5 33．7	8	23.6	3.2								
＂27，28，29	232	LXXXI（Marakayárpatnam）	D ○ $530 \cdot 3$	12	$6 \cdot 0$	$5 \cdot 2$	215				567			
＂15，16	32	LXXIX（Rámaswámi Madam）	D o $510 \cdot 0$	12	$6 \cdot 1$	7•5								
24，25	31	LXXXII（Púmurichán）	D 0.32 .6	8	24.6	3.2	433				$30^{\circ} 3$			
＂19，20	224	LXXX（Musal Tívu）	D ○ 200.2	8	6.2	22.8	411			$+30 \cdot 4$		32．1	33	28
24，2．	225	LXXXII（Púmurichán）	D $0237{ }^{\text {2 }}$	8	$40 \cdot 0$	$3 \cdot 2$	411			$+304$	32	32	33	28
＂27，28，29	232	LXXXI（Marakayárpatnam）	D ○ $530 \cdot 3$	12		$5 \cdot 2$			$\cdot 047$		$33 \cdot 2$			
24，25	232	LXXXII（Púmurichán）	EO 533.7	8	23.6	$3 \cdot 2$	215		047	$-252$	332			

＊Assumed height of the rectangular protecting pillar above the circular pillar．

Astronomical Dato		Number and Name of Station	Observed Vertical Angle		Height in feet		$\begin{aligned} & \frac{0}{4} \\ & \text { at } \\ & \text { 䨤 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Terrestrial } \\ \text { Refraction } \\ \hline \end{array}$			Height in feet of 2nd Station above Mean Sea L．evel			
1875．76	Mean of   ＇Times   of obser－   vation				$\mathrm{d}$	免		范			$\underset{\text { Res }}{\text { Trigor }}$	metrical   ults		
						－		$\stackrel{\sim}{\square}$	مٌ		$\left\lvert\, \begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}\right.$	Mean	Result	
	$h m$		－，＂				＊							foet
Apr．${ }_{1876}{ }^{27,28,29}$	216	LXXXI（Marakayárpatnam）	D ○ 226.8			$5 \cdot 2$	633	6						
$\cdots \begin{array}{ll}1876 & 14\end{array}$	212	LXXXIII（Gandhamána）	Do 7 7 3.4	4	24.3	$5 \cdot 3$	633			$+53.8$	112．1			
＂ $1875{ }^{24,25}$	231	LXXXII（Púmurichán）	E O 124.8	8	$2 \cdot 6$	$3 \cdot 2$							80.00 +34.72	
$\begin{array}{lll}  & 1876 \\ & 14,15 \end{array}$	229	LXXXIII（Gandhamána）	D○ 9315	8	$6 \cdot 2$	5＊3	498	5		$\cdot$	113.6			
$\begin{aligned} & 1875 \\ & \hline \end{aligned}$	224	LXXXI（Marakayárpatnam）	D ○ 830.8	8	4.0	$5 \cdot 2$					$t$			
$\begin{array}{lll}  & 1876 & \\ 10,11 \end{array}$	27	LXXXIV（Pisásu Mundal）	Do 315.8	8	24.4	29.2	672	－ 8	2	$-53 \cdot 7$	$4 \cdot 6$			
＂14，15	159	LXXXIII（Gandhamána）	D $02246 \cdot 3$	8	47．0	5．3								
＂10，11	159	LXXXIV（Pisásu Mundal）	E $\bigcirc 2646 \cdot 6$	8	$2 \cdot 7$	29.2	93			7	$13^{\circ} 0$	13.0	$13 \cdot 8+$	1
＂ 23	213	LXXXII（Púmurichán）	D ○ 22291	8	$2 \cdot 9$	5•3	500			$+26 \cdot 8$	59.4			
＂18，19	213	LXXXY（Masánam Karai）	D ○ 555.3	8	$6 \cdot 1$	$5 \cdot 3$	500			$+268$	594			
＂14，15	159	LXXXIII（Gandhamána）	D $01436 \cdot 2$	8	$2 \cdot 7$	$5 \cdot 3$								
＂18，19	157	LIXXXV（Masánam Karai）	E ○ 1059.5	8	$2 \cdot 6$	$5 \cdot 3$	141			$-53 \cdot 3$	61.4			
＂14，15	211	LXXXIII（Gandhamána）	D ○ 917.9	8	37＇3	$5 \cdot 3$	843				$8 \cdot 8$			
＂$\quad \mathbf{8 , 4}$	211	LXXXVI（Kachi Tívu，N．）	Do 3.4 .6	8	$2 \cdot 7$	$28 \cdot 3$	843	43			$8 \cdot 8$			
$" \quad 17$	220	LXXXIV（Pisásu Mundal）	D o 61919	4	37＊3		793	25		$-4.5$	$9 \cdot 3$	$9 \cdot 1$	10．4 ${ }^{+}$	1
$" \quad 3,4$	219	LXXXVI（Kachi Tíru，N．）	Do $510 \cdot 9$	8	$47 \cdot 5$	$28 \cdot 3$	793	5		$-45$	93	91	$104+$	1
＂6，7	26	LXXXVII（Kachi Tívu，S．）	E $\circ 642 \cdot 9$	8	$37 \cdot 6$	$25 \cdot 0$								
＂3，4	25	LXXXVI（Kachi Tivu，N．）	E 01213.5	8	$37 \cdot 7$	$28 \cdot 3$	39				9•1			
＂14，15	28	LXXXIII（Gandhamána）	Do $910 \cdot 2$	8	37.4	5•3	851							
＂6，7	29	LXXXVII（Kachi Tívu，S．）	Do $3^{10 \cdot 1}$	8	$2 \cdot 7$	25\％	851				124			
＂18，19	218	LXXXV（Masánam Karai）	D ○ $71 \begin{aligned} & \text { 17．7 } \\ & \text { D }\end{aligned}$	8	37.4 2.8	$5 \cdot 3$	867			－45＊3		13.8		
＂• 6，7	219	LXXXVIl（Kachi Tívu，S．）	D $0552 \cdot 8$	8	2.8	$25^{\circ} \mathrm{O}$	867				151	13.8	15	15
＂3，4	25	LXXXVI（Kachi Tíva，N．）	E O 1213.5	8	$37 \cdot 7$	$28 \cdot 3$								
＂6，7	26	LXXXVII（Kachi Tívu，S．）	E 0642.9	8	$37 \cdot 6$	25．0	39				13.8			
3，4	222	L．XXXVI（Kachi Tívu，N．）	Do $513^{\circ} \mathrm{O}$	8	35．3	$28 \cdot 3$		18						
Mar．25，26	226	LXXXVIII（Amanakamunai）	Do $547 \cdot 0$	8	$37 \cdot 3$	25．9	746	18			18.8			
Apr．$\quad \mathbf{6 , 7}$	21	L．XXXVII（Kachi Tívu，S．）	D ○ 535.8	8	35.6	25．0		12		＋1．4				
Mar．25，26	22	LXXXVIII（Ȧmanakamunai）	D $0540 \cdot 7$	8	$37 \cdot 4$	25．9	759	12		$+14$	$16 \cdot 5$	170	$139+$	1
29	157	LXXXIX（Urimunai）	D ○ $217 \%$	8	$35^{\prime 2}$	25．1	362			$+3.8$				
＂25，26	156	LXXXVIII（Ȧmanakamunai）	D o 247.9	8	38．1	25.9	362	－35		＋ 38	15.6			
Apr．3，4	211	LXXXVI（Kıchi Tívu，N．）	D ○ $525{ }^{\prime} 9$	8	$37 \cdot 6$	$28 \cdot 3$	760							
Mar． 29	211	LXXXIX（Orimunai）	Do 534.7	8	$37 \cdot 3$	$25^{\prime} 1$					13.5			
Apr．6，7	218	LXXXVII（Kachi Tívu，S．）	D o 529.8	8		$25^{\circ} \mathrm{O}$						12.5	11．4！	1
Mar． 29	219	LXXXIX（Orimunai）	Do 54.6	8	$37 \cdot 2$	25.1	754			$-50$	101	125	$114+$	1
＂25，26	1 56	LXXXVIII（Ȧmanakamunai）	D ○ 247.9	8	$38 \cdot 1$	25．9	362	－35		$-\quad 3.8$	$13^{\circ} 9$			
29	1 57	LXXXIX（Orimunai）	Do 217.5	8	$35^{\circ} 2$	$25^{\prime} 1$	362	－35	－097	－ 38	139			

## Description of Spirit-levelled Points.

When determining the Spirit-levelled heights, given on pages 133_ ${ }_{F}$ to 146 _ $_{F}$, the levelling staff stood on the surfaces hereafter described.

VI (Kallapat)

XXIII (Kumbakonam)

XXXII (Kakkrákota)

XXXV (Kallakota)

XXXVII (Kárakkurchi)

XXX (Ráramutiraikota) - On a peg at the foot of the station, height $=144.01$ feet. To this value, 10.50 feet (the height of the upper surface of the rectangular protecting pillar above this peg) being added, the height of the upper surface of the protecting pillar was found to be 154.51 feet.
On a peg at the foot of the mound on which the station is built, height $=189.31$ feet. To this value, 13.38 feet (the height of the upper surface of the rectangular protecting pillar above this peg) being added, the height of the upper surface of the protecting pillar was found to be $202 \cdot 69$ feet.

On an unmarked spot on the platform of the tower on which the station is fixed, height $=91 \cdot 20$ feet. To this value, $46: 78$ feet (the height of the upper mark-stone of the pillar on the tower above this spot) being added, the height of the upper mark-stone was found to be 137.98 feet.

On a peg at the foot of the station, height $=120 \cdot 74$ feet. To this value, $9 \cdot 29$ feet (the height of the upper surface of the circular pillar above this peg) being added, the height of the upper surface of the pillar was found to be 130.03 feet.

On a peg at the foot of the station, height $=181 \cdot 51$ feet. To this value, 4:11 feet (the height of the mark-stone in the upper surface of the rectangular protecting pillar above this peg) being added, the height of the mark-stone on the protecting pillar was found to be $\mathbf{1 8 5} \cdot 62$ feet.

XL (Kulamangalam)
XLII (Pallathivayal)
XLIV (Kánád)
XLIX (Nambudalai)
LI (Ưrannankudi)
LIV (Pŏragudi)
LVI (Ramnad)

## LVIII (Uttarakoshamangai)

LXI (Tanichanthai)

For further particulars of these etations, see pages 7 - ${ }^{\text {p. }}$ to ${ }^{16 b}$-r.

148-8.	SOUTH-EAST COAST SERIES.
Description of Spirit-levelled Points-(Continued).	
IXXXIII (Koilpati)	On rock at the foot of the hill, height $=457 \cdot 04$ feet. To this value, $89 \cdot 10$ feet (the height of the upper surface of the rectangular protecting pillar above this rock) being added, the height of the upper surface of the protecting pillar was found to be $546 \cdot 14$ feet.
CEYLON BRANCH SERIES of the SOUTH-EAST COAST SERIES.	
IXXIX (Rámaswámi Madam)	On a peg at the foot of the station, height $=49.01$ feet. To this value, 2.77 feet (the height of the mark-stone in the upper surface of the rectangular protecting pillar above this peg) being added, the height of the markstone on the protecting pillar was found to be 51.78 feet.
LXXXI (Marakayárpatnam)	On a peg at the foot of the pillar, height $=58.37$ feet. To this value, 3.38 feet (the height of the mark-stone in the upper surface of the rectangular protecting pillar above this peg) being added, the height of the mark-stone on the protecting pillar was found to be 61.75 feet.
LXXXIII (Gandhamána)	On a peg at the foot of the station, height $=80.00$ feet. To this value, 34.72 feet (the height of the mark-stone on the roof of the temple above this peg) being added, the height of the mark-stone was found to be 114.72 feet.

For further particulars of these stations, see pages $16 d_{-r}$ to $16 f$ - .

April, 1888.
s. a. BURRARD,

In charge of Computing Office.

# PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS. 

## At VI (Kallapat)

 March 1879; observed by Lieut.-Colonel B. R. Branfill with 'Troughton and Simms' 24 -inch Theodolite No. 1.

Star observed
Mean Right Ascension $1879 \cdot 0$
Mean North Polar Distance 1879.0
Local Mean Time of Elongation, March 10




Abstract of Astronomical Azimuth observed at VI (Kallapat) 1879.
By Western Elongation of a Ursæ Minoris.


Astronomical Azimuth of Referring Mark or IV (Pěrumukkal) $\}$ by Western Elongation ... ... $2144418 \cdot 74$

Geodetical Azimuth of " by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 126_f. ante ... ... ... ... ... $2144423 \cdot 89$

Astronomical - Geodetical Azimuth at VI (Kallapat) $\qquad$

## At XXII (Nayinipiriyan)

Lat. N. $11^{\circ} 7^{\prime} 49^{\prime \prime} \cdot 06$; Long. E. $79^{\circ} 23^{\prime} 18^{\prime \prime} \cdot 37=$| $\boldsymbol{n}$ |
| :---: |
| 5 |
| 17 |
| $m$ | $3^{\circ} \cdot 2$; Height above Mean Sea Level, 158 feet.

Jauuary 1879; observed by Lieut.-Colonel B. R. Branfill with 'Troughton and Simms' 24 -inch Theodolite No. 1.

Star observed
Mean Right Ascension 1870.0
Mean North Polar Distance 1879.0
Local Mean Time of Elongation, January 6
$\delta$ Ursæ Minoris (East).
$18^{\mathrm{h}} 11^{\mathrm{m}} 22^{\mathrm{a}}$
$3^{\circ} 23^{\prime} 28^{\prime \prime} \cdot 66$
Eastern $\mathbf{1 7}^{\mathrm{h}}$ 9m $^{\text {m }}$


Abstract of Astronomical Azimuth observed at XXII (Nayinipiriyan) 1879.
By Eastern Elongation of $\delta$ Ursæ Minoris.

Face   Zero	$\mathbf{L}$ $247^{\circ}$	$\begin{gathered} \mathbf{R} \\ 67^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 826^{\circ} \end{gathered}$	$\begin{gathered} \text { R } \\ 146^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 45^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 225^{\circ} \end{gathered}$	$\begin{gathered} \text { L } \\ 125^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \mathbf{8 0 5} \end{gathered}$	$\begin{gathered} L \\ 204^{\circ} \end{gathered}$	R $244^{\circ}$
Date	Janu	ry ${ }^{\prime \prime}$	Janu	" 7	Janu	ry	Janu		Janus	
	$\begin{aligned} & 34 \div 25 \\ & 3 \mathrm{I} \cdot 99 \end{aligned}$	$35 \cdot 76$ $33 \cdot 35$		$32 \cdot 54$ $3 \mathrm{I} \cdot 05$						
Observed difference of Circle-Readings,	$\begin{aligned} & 3 \mathrm{I} 99 \\ & 35 \cdot 90 \end{aligned}$	33.35 33.90	32.85 29.88	$31 \cdot 05$ $30 \cdot 62$	33.60 32.83	$\begin{aligned} & 32 \cdot 88 \\ & 32 \cdot 30 \end{aligned}$	$33 \cdot 10$ 33.34	33.65 35.08	$32 \cdot 40$ 33.66	32.95 35.79
Ref. M. - Star	33.07	35.12	29.62	$32 \cdot 62$	32.44	33.39	34**	35.13	31.68	35.48 35
reduced to Elongation	$34 \cdot 01$	33.94	31.84	$32 \cdot 17$	$32 \cdot 45$	$32 \cdot 49$	32.48	34.60	31.43	33.55
	31-30	$32 \cdot 48$	29.49	$30 \cdot 85$	31.52	3172	$32 \cdot 35$	$35 \cdot 75$	$32 \cdot 80$	33.41
Means	33•39	34*09	31-03	31•64	3247	$32 \cdot 68$	$33^{\circ} 00$	34*70	$32 \cdot 66$	34-28
	$\bigcirc 1$									
Means of both faces	- 303033			34						
Level Corrections	- 0		- 0		- 0		+		-	
	- 303033									
Az. of Star fr. S., by W.	1832732									
Az. of Ref. M. "	1525658									
Astronomical Azimuth of Referring Mark or XX (Kaohipęrumál)			by Eastern Elongation							
			-	...	152					
Geodetical Azimuth ofat Kalianpur, see page $127 \ldots$ by calculation from that adopted (Vol. II, page 141)										
									152	57
Astronomical - Geodetical Azimuth at XXII (Nayinipiriyan)						...	...	...	-	

## At XXXIII (Pátharankota)


March 1877; observed by Captain T. T. Carter, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.
Stars observed $\quad a$ Ursæ Minoris (West) and $\beta$ Ursie Minoris (East).
Mean Right Ascension $1877 \cdot 0$
Mean North Polar Distance $1877 \cdot 0$

$$
\begin{array}{lll}
1^{\mathrm{h}} 13^{\mathrm{m}} 41^{\mathrm{a}} & 14^{\mathrm{h}} 51^{\mathrm{m}} 5^{\mathrm{a}} \\
1^{\circ} 20^{\prime} 48^{\prime \prime} \cdot 11 & 15^{\circ} 20^{\prime} & 31^{\prime \prime \prime} \cdot 34
\end{array}
$$

Local Mean Times of Elongation, March 19
Western $\boldsymbol{7}^{\text {h }}{ }^{23}{ }^{\text {m }}$
Eastern $9^{\text {h }} 14^{\text {m }}$



Abstract of Astronomical Azimuth observed at XXXIII (Pátharankota) 1877.

1. By Eastern Elongation of $\beta$ Ursæ Minoris.

Face   Zero	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ 0^{\circ} & 180^{\circ} \end{array}$	$\begin{gathered} \mathbf{L} \\ \mathbf{7 9 ^ { \circ }} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 259^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ 158^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \mathbf{3 3 8 ^ { \circ }} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 238^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 58^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 317^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 137^{\circ} \end{gathered}$
Date	March 19	March 20		March 21		March 22		March 23	
Observed difference of Circle-Readings, Ref. M. - Star reduced to Elongation	$16 \cdot 24 \quad 12 \cdot 93$	13.61	13.07	$13.75 \quad 12.00$		$\begin{array}{cc} " \prime & " \\ \text { II } 69 & \text { II } 89 \end{array}$		$\begin{array}{cc} " & " \\ 12 \cdot 96 & 11 \cdot 93 \end{array}$	
	13.7112 .59	14.20	12.57	12.99	11.40		11.37		9.44
	$14.30 \quad 13.78$	14.30	13.04	12.78	$12 \cdot 83$	$13^{\circ} 05$	12.98	13.16 12.59	
	11.84 12.52	13.47	12.63	11.27	11.23	13.60	9.72	$13.95 \quad 11.82$	
	$15.47 \quad 14.61$	15.12	14.24	12.79	$15^{\circ} \mathrm{O} 9$	12.94	13.71	13.64	11.99
	$13.61 \quad 12.83$	13.57	13.54	11.93	II• 59	13.50	11.84	12.45	12.89
Means	14.20 13.21	14.0513 .18		12.59	$12 \cdot 36$	$12 \cdot 87$	II• 92	13.03	11)78
	- 11	"		"		"		"	
Means of both faces	- 154813.70	13.61		12.47		12.40		12.40	
Level Corrections	+1.52	$+\quad 127$		+114		+ 1.33		+ 0.97	
Corrected Means	-1548 12.18	$12 \cdot 34$		11.33		11.07		II 43	
Az. of Star fr. S., by W.	$\begin{array}{llll}195 & 36 & 55^{\circ} 91\end{array}$	$55 \cdot 68$		55$44 *$44		$55^{\circ} 21$		$54 \cdot 97$	
Az. of Ref. M. "	$1794843 \cdot 73$	$43 \cdot 34$				44*14		$43 \cdot 54$	

2. By Western Elongation of $a$ Ursæ Minoris.

Face Zero	$\begin{array}{cc} \mathbf{L} & \mathbf{R} \\ \mathbf{0}^{\circ} & 180^{\circ} \end{array}$	$\begin{gathered} \mathbf{L} \\ 79^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 259^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 158^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 338^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 238^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 58^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ 317^{\circ} \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 137^{\circ} \end{gathered}$
Date	March 19	March 20		March 21		March 22		March 23	
	$\begin{array}{ll}35 \cdot 29 & 35 \cdot 06 \\ 35.49 & 36.85\end{array}$	34.54 $35 \cdot 54$	$35 \cdot 41$ $36 \cdot 55$	$36 \cdot 27$ $37 \cdot 48$	$38 \cdot 93$ $38 \cdot 78$	$37 \cdot 48$ $37 \cdot 18$	$37 \cdot 43$ $38 \cdot 33$	$36 \cdot 11$ $36 \cdot 60$	$\begin{aligned} & 37 \cdot 76 \\ & 28 \cdot n 8 \end{aligned}$
Observed difference of Circle-Readings,	$\begin{array}{ll}35 \cdot 49 & 36 \cdot 85 \\ 34.27 & 37.25\end{array}$	$35 \cdot 54$ $34 \cdot 56$	$36 \cdot 55$ $33 \cdot 94$	37.48 37.17	$38 \cdot 78$ $36 \cdot 17$	$37 \cdot 18$ $36 \cdot 25$	$38 \cdot 33$ $37 \cdot 41$	$36 \cdot 60$ $35 \cdot 72$	$38 \cdot 98$ $37 \cdot 16$
Ref. M. - Star	$35.76 \quad 37.69$	$35 \cdot 58$	35-12	$36 \cdot 64$	$36 \cdot 68$	$36 \cdot 82$	$37 \cdot 78$	$36 \cdot 52$	$36 \cdot 82$
reduced to Elongation	$34 \cdot 53 \quad 36 \cdot 56$	33.49	$34 \cdot 84$	$37 \cdot 15$	$35^{\circ} 22$	$36 \cdot 50$	38.09	35.47	36•86
	$35 \cdot 82 \quad 38 \cdot 64$	$35^{\circ} 02$	36•78	37*59	$36 \cdot 82$	$38 \cdot 02$	$37 \cdot 34$	38-18	$37 \cdot 78$
Means	$35^{\circ 19} 37{ }^{\circ} \mathrm{O}$	34*79	$35^{*} 44$	$37^{\circ} 05$	37* 10	$37^{\circ} 04$	37*73	$36 \cdot 43$	37-56
	- 11								
Means of both faces	$+11036 \cdot 10$								
Level Corrections	+ 0.97					+		$+$	
Corrected Means	$+11037.07$		34		77		34		54
Az. of Star fr. S., by W.	$\begin{array}{rrrr}178 & 38 \\ 179 & 5\end{array}$		93		67		42		16
Az. of Ref. M. "	$1794842 \cdot 25$						76		70



[^18]
## At XLVIII (Maněgandi)

Lat. N. $9^{\circ} 46^{\prime} 15^{\prime \prime} \cdot 13$; Long. E. $78^{\circ} 57^{\prime} 48^{\prime \prime} \cdot 02==_{5}^{\hbar} 1551^{\prime} \cdot 2$; Height above Mean Sea Level, 56 feet. February 1876; observed by Major B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Star observed
Mean Right Ascension $1876 \cdot 0$
Mean North Polar Distance $1876 \cdot 0$
Local Mean Time of Elongation, February 13
$a$ Ursæ Minoris (West).
$1^{\text {h }} \quad 13^{\mathrm{m}} \quad 20^{\circ}$
$1^{\circ} \quad 21^{\prime} \quad 7^{\prime \prime} \cdot 14$
Western $9^{\text {h }} \quad 39^{\text {m }}$


* The irregularity of the zero settinge was due to a mistake of the observer.

Abstract of Astronomical Azimuth observed at X LVIII (Manĕgandi) 1876.
By Western Elongation of a Ursæ Minoris.


- The irregularity of the zero settings was due to a mistake of the observer.


## At LVI (Ramnad)

 March 1875; observed by Mr. G. Belcham with Troughtou and Simms' 24 -inch Theodolite No. 1.

Star observed
Mean Right Ascension 1875.0
Mean North Polar Distance 1875.0
Local Mean Time of Elongation, March 18

$$
\begin{aligned}
& \text { a Ursæ Minoris (West). } \\
& \begin{array}{lll}
1^{\mathrm{h}} & 12^{\mathrm{m}} 59^{\mathrm{a}} \\
1^{\circ} & 21^{\prime} & 26^{\prime \prime} \cdot 18
\end{array}
\end{aligned}
$$

Western $7^{\text {b }}{ }^{28}{ }^{\text {m }}$

			face left				pact eight			
			Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed   Horizontal Angle : Diff. of Keadings Ref. Mark - Star		Reduction in Arc to Time of Kilongation	Reduced Observation Ref. Mark - Star at Elongation
Mar. 18	W.	$\begin{array}{rr} \circ & 1 \\ 43 & 20 \\ \& & \\ 223 & 20 \end{array}$			$\begin{array}{r} +\quad 43.65 \\ 032.66 \end{array}$		$\begin{array}{r} -1203953^{\circ} 11 \\ 3949^{\circ} 3^{\prime} \end{array}$	$\boldsymbol{m} 8$	1 "	- 1
			$\begin{array}{r} -1204030 \cdot 05 \\ 4022.42 \end{array}$			$\begin{array}{r} -1203946 \cdot 40 \\ 49.76 \end{array}$		$\begin{array}{ll} 15 & 15 \\ 12 & 56 \end{array}$	+ + 0 0	$-1203942 \cdot 18$ $41 \cdot 52$
			4022.42 3947.84	+24	[ 0.91		$3949 \cdot 38$			
			$3950 \cdot 16$	122	$\bigcirc 0.09$	$40 \cdot 93$ $50 \cdot 07$	$3946 \cdot 48$	$\begin{array}{rr}7 & 39 \\ 10\end{array}$	$\begin{array}{ll}0 & 2.75 \\ 0 & 5.08\end{array}$	$43 \cdot 73$
							$3949{ }^{\circ} 13$	1024	- 5.08	44.05
			$40 \quad 3.44$	199	- 17.23	$46 \cdot 21$	4027.58	3035	- $43 \cdot 89$	43.69
			$40 \quad 9.97$	2134	- 21.85	$48 \cdot 12$	$4033 \cdot 60$	3234	$\bigcirc 49.76$	$43 \cdot 84$
			4182.24	4014	115.86	46.38	4134.89	4833	$150 \cdot 32$	44.57
			418873	425	122.97	45'76	414115	5024	1 $58 \cdot 85$	$42 \cdot 30$
" 19	W.	$\begin{gathered} 12216 \\ \& \\ 30216 \end{gathered}$	-1204121.89	4510	$+135 \cdot 67$	$-1203946 \cdot 22$	-1204043.88	$36 \quad 7$	+11.24	-120 $3942 \cdot 64$
			4114.61	4323	128.29	$46 \cdot 32$	$4038 \cdot 20$	3425	- 55.62	$3942 \cdot 58$ $42 \cdot 56$
			$4024 \cdot 66$	2739	- $35 \cdot 92$	48•74	$3959 \cdot 85$	1934	- 17.99	41-86
			$4018 \cdot 63$	2557	- 31.64	$46 \cdot 99$	39 58.02	180	015.23	$42 \cdot 79$
			3953.59	1113	- 5.91	$47 \cdot 68$	39 44.97	356	$\bigcirc 0 \cdot 73$	44*24
			$3951 \cdot 53$	940	- 4.39	47'14	$3941 \cdot 47$	228	00.29	41•18
			$3949 \cdot 19$	333	- 0.59	48.60	$3952 \cdot 17$	1238	- 7.51	$44 \cdot 66$
			$3949{ }^{\circ}$	516	0 1.31	$47 \cdot 69$	$3951 \cdot 60$	1414	- 9.53	$42 \cdot 07$
n 20	W.	$\begin{array}{cc} 201 & 27 \\ \& & \\ 21 & 27 \end{array}$	-120 4144.24	5022	+158.91		-120 $4043 \cdot 76$			
			4128.59	4657	$143 \cdot 37$	-1203945.33 $45 \cdot 22$	$4033 \cdot 74$	$\begin{array}{lll}35 & 38 \\ 32 & 32\end{array}$	+059.63 049.72	-1203944.13 44.02
			40 11.86	2312	$\bigcirc 25.30$	$46 \cdot 56$	$3952 \cdot 60$	1211	- 6.98	$45 \cdot 62$
			$40 \quad 6 \cdot 90$	2051	- 20.44	$46 \cdot 46$	$3948 \cdot 14$	926	0 4.19	$43 \cdot 95$
			$3946 \cdot 36$	0 II	00.00	$46 \cdot 36$	3951.06	1130	06.22	$44 \cdot 84$
			$3946 \cdot 67$	34	- 0.44	46. 23	3951.86	1410	- 9.43	$42 \cdot 43$
			$4010 \cdot 78$	2415	$\bigcirc 27 \cdot 62$	$43 \cdot 16$	$4047 \cdot 29$	3619	1.85	45:44
			$4020 \cdot 24$	2640	- $33 \cdot 38$	$46 \cdot 86$	413134	3954	114.62	48.72
" 21	W.	$\begin{gathered} 28040 \\ \& \\ 100 \quad 40 \end{gathered}$	-120 $4210 \cdot 37$	5533	+ 224.55		-120 4113.84		+129.81	
			$4158 \cdot 39$	5251	$210 \cdot 90$	$\begin{array}{r} -1203945 \cdot 82 \\ 47 \cdot 49 \end{array}$	$41 \quad 2 \cdot 21$		118.01	$\begin{aligned} & 44 \cdot 03 \\ & 44 \cdot 20 \\ & 42 \cdot 20 \end{aligned}$
			$4022 \cdot 71$	2848	- $38 \cdot 98$ $0-31 \cdot 98$	$43 \cdot 73$		$\begin{aligned} & 4046 \\ & 1637 \end{aligned}$	-12.99	
			4019.00	$26 \quad 5$	- 31'98	47-02	$40 \quad 8 \cdot 84$	2322	- 25.64	$\begin{aligned} & 43 \cdot 20 \\ & 43 \cdot 92 \\ & 43 \cdot 14 \end{aligned}$
			$4032 \cdot 29$	$\begin{array}{lll}31 & 58\end{array}$	- 47.94	$44 \cdot 35$	4123.86	46 48 48	139.94	
			4040.04	3422	- $55^{\circ} 39$	$44 \cdot 65$	4132.94	4826	$149{ }^{\circ} 80$	


			fact lept				face might			
			Observed Horizontal Angle: Diff. of Readings Ref. Marz-Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation	Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star		Reduction in Arc to Time of Elongation	Reduced Observation Ref. Mark - Star at Elongation
Mar. 22	W.	$\begin{array}{cc} \circ & \prime \\ 359 & 52 \\ \& & \\ 179 & 52 \end{array}$	$\left.\begin{array}{r} -1204032 \cdot 18 \\ 40 \quad 25 \cdot 84 \\ 3951 \cdot 46 \\ 3946 \cdot 41 \\ 40 \\ 40 \\ 40 \\ 40 \cdot 88 \\ 41 \\ 4 \cdot 31 \\ 41 \\ 4 \end{array}\right)$	$\begin{array}{rr} \boldsymbol{m} & 8 \\ 3 \mathrm{I} & 44 \\ 28 & 49 \\ 9 & 21 \\ 6 & 31 \\ 22 & 16 \\ 24 & 39 \\ 41 & 19 \\ 43 & 44 \end{array}$	$\begin{array}{r} +047.29 \\ 039^{\circ} 00 \\ 044^{\circ} 11 \\ 0 \quad 1.99 \\ 023.27 \\ 028.52 \\ 119.97 \\ 129.57 \end{array}$	$\begin{array}{r} -1203944 \cdot 89 \\ 46 \cdot 84 \\ 47 \cdot 35 \\ 44 \cdot 42 \\ 46 \cdot 61 \\ 45 \cdot 79 \\ 44 \cdot 62 \\ 46 \cdot 28 \end{array}$	$\begin{array}{rr} -12040 & 3 \cdot 02 \\ 39 & 57 \cdot 48 \\ 39 & 50 \cdot 68 \\ 39 & 53 \cdot 36 \\ 40 & 29 \cdot 94 \\ 40 & 36 \cdot 89 \\ 41 & 47.27 \\ 41 & 56 \cdot 19 \end{array}$	$\begin{array}{rr} m & 8 \\ 20 & 34 \\ 18 & 24 \\ 12 & 3 \\ 14 & 38 \\ 31 & 34 \\ 33 & 41 \\ 51 & 40 \\ 53 & 37 \end{array}$	$\begin{array}{r} +019.87 \\ 015.91 \\ 0 \quad 6.82 \\ 010.05 \\ 046.73 \\ 053.20 \\ 244.85 \\ \hline 214.41 \end{array}$	$\begin{array}{r} -1203943 \cdot 15 \\ 41 \cdot 57 \\ 43 \cdot 86 \\ 43 \cdot 31 \\ 43 \cdot 21 \\ 43 \cdot 69 \\ 42 \cdot 42 \\ 41 \cdot 78 \end{array}$

Abstract of Astronomical Azimuth observed at LVI (Ramnad) 1875.
By Western Elongation of a Ursæ Minoris.



Fis. Na 56


Fis. No. 59


Fig. ${ }^{\text {No. }} 61$


Fis. $\mathrm{No}_{\mathrm{o}} 62$


Seale 1 Onch $=12$ Atibe a $\frac{1}{y 60320}$


Fig. No. 68
Fig. No. 65


Fig. No. 66


Fig. $\mathrm{N}_{\mathrm{o}} .69$



$\mathrm{F}_{\text {ig. }}$. ${ }_{\mathrm{o}} .70$


Fig. No. 67


Scale 1 Oruch $=12$ Apike at $\frac{1}{\text { y60320 }}$

PRITNOTPAI TRIANGUIATION,
OHYION BRANOE BHRIMS OT THE SOUTH-HAST COABT BHRIME.
$\mathrm{F}_{\mathrm{y}} \mathrm{Na}_{\mathrm{a}} 82$


Fig. No. 83


Fig. $\mathrm{Na}_{\mathrm{a}} 84$




$$
\text { Soak / Gruck }=12 \text { xpics at } \frac{1}{y 60320}
$$

## MADRAS LONGITUDINAL SERIES.

## MADRAS LONGITUDINAL SERIES.

## INTRODUCTION.

This Series, as first executed, originated from the westernmost side (Pullúr H.S.Anandalamalai H.S.) of the Kurumkota polygon of the Madras Meridional Series and extended to Mangalore on the West Coast. But in the final arrangement of the triangulation the Kurumkota polygon and the triangulation to the east connecting it with Madras, have been transferred to the longitudinal series, and the triangalation about Bangalore (Běngalúr) has been considered as appertaining to the Great Arc Series; so that the Madras Longitudinal Series now consists of two nearly equal portions separated by the Great Arc. In the following historical account it will however be convenient to describe the whole of the work as it was executed.

The portion of the triangulation which has been transferred from the meridional series,

Season 1864.65. Personnel.
Captain B. R. Branfill, Bengal Cavalry, 1st Aset. Mr. F. Ryall, Sub-Assistant, lst Class.
" J. W. Mitchell, " 2nd "
" J. R.L. O'Neill, " 3rd " was executed by Captain Branfill in 1864-65 while conducting the operations of that series. It was then a matter of considerable importance to connect the modern triangulation with the Madras Observatory, the primary origin of all longitudes in India. This observatory had been adopted by Colonel Lambton as his origin, and although Colonel Everest had selected, as more convenient, a second origin at Kaliánpur, its longitude was obtained from Madras through the triangulation then existing. As will be seen on reference to the Note at the end of this Introduction, that triangulation was inferior to the more modern; and by connecting Kaliánpur with the Madras Observatory by the modern triangulation, a more accurate determination of the difference of longitude of the two origins was to be obtained. It was not then in contemplation to determine longitudes by help of the Electric Telegraph, and it was therefore the more necessary that the triangulation should be connected with the Madras Observatory. There is no other observatory in India in which systematic observations for determining the longitude have been taken over a series of years; consequently the same necessity existed for the accurate connection of the Indian triangulation with the Madras Observatory, as for that of the British triangulation with the Greenwich Observatory, the origin of all English longitudes.

So soon therefore as the modern triangulation approached Madras, arrangements were made for the erection of a pillar at the Madras Observatory, of sufficient height to overcome the obstructions offered by the surrounding houses and gardens, from which to connect the observatory with the principal triangulation. This proceeding was readily agreed to by the Government Astronomer and sanctioned by the Madras Government ; and as no Officer of the Survey Department could be spared to superintend the work, it was undertaken by the Public Works Department; but through sundry misunderstandings and unforeseen delays it was not completed until the 6th of June.

It unfortunately happened that several trees intervened between the nearest stations of the triangulation and the Madras Observatory, and on attempting to clear a line through them such extravagant compensation was demanded-e.g., Rs. 300 for a single branch of a casuarina tree-that it was necessary to suspend the triangulation until the theodolite could be raised to a sufficient height on the observatory to overlook the intervening trees. "Here "again", writes Lieut.-Colonel Walker, the Superintendent of the Great Trigonometrical Survey, "the want of legal powers for our officers was productive of much embarrassment "and delay; and it is worthy of notice, that the operations of this Department are "carried on with far greater rapidity and economy in the wildest regions, where the "physical obstacles are greatest, than in the vicinity of the Presidency towns, where they "are least; in these towns, the head-quarters of the lawyers, a few cantankerous individuals "are always to be met with, whom it is more difficult to manage than to combat any physical "obstacle."

An observatory in which was an equatorial instrument occupied the roof of the Government Astronomer's house, the instrument stood on a granite slab fixed on cross walls 33 feet from the ground. It was removed and a hollow pillar of masonry was raised 30 feet in height above the slab to receive the stand of Captain Branfill's theodolite, which was thus mounted 63 feet above the ground level. A scaffolding was raised round the pillar for the observer and his assistants to stand on, and to carry the observatory tent: it had to be constructed of the lightest possible materials, and was therefore somewhat fragile and dangerous; fortunately the weather was favorable, and the observations were completed in two days without misadventure.

The Madras party arrived in Madras on the 29th of May and in the first week of June work was commenced at the observatory; the pillar station was connected with the Meridian Circle, and the difference of height between the pillar station and the Public Works Department Bench-mark below was determined.

Messrs. Ryall and O'Neill had continued at their work until the Chĕmbedu tower was finished and the ray thence to the Madras Observatory cleared of obstructions, but they were then both attacked with fever and went into hospital.

On the 9th of June the 24 -inch theodolite was hoisted in its case, on to the roof of the Astronomer's dwelling, and on the 10th by means of a second hoist, it was raised to the top of the pillar and scaffold. Final observations were concluded on the 12th of June, and with them was completed the triangulation along the coast, connecting Vizagapatam and Madras. The instrument was lowered to the roof the same evening, and next day to the ground
without accident. In spite of unusual annoyances and difficulties to which he had been exposed, and very bad health, Captain Branfill's out-turn of work during this field season was considerable. During the season 7 triangles were completed, extending a direct distance of 58 miles, besides 17 triangles extending a distance of 78 miles on the meridional series.

In 1865 Colonel Walker decided to continue the triangulation westwards to con-

## Season 1865-66

## Prrsonnel.

Captain B. R. Branfill, Bengal Cavalry, 1st Asst.
Mr. A. W. Donnelly, Civil Assistant, 4th Grade. "F. Ryall, Sub-Assistant, 1st Class.
 nect the Madras Observatory and the Bangalore Baseline. He assigned the work to Captain Branfill's party, which was recessing at Bangalore at the time. The party took the field on the 26th of December 1865, and commenced the triangulation proper. The work originated from the side Anandalamalai H.S.-Pullúr H.S., the western side of the Kurumkota polygon, the value of which had been brought down and fixed by the Madras Meridional and Coast Series in the previous season.

Colonel Lambton had executed a net-work of triangulation which covered the whole country round as far as Bangalore to the west; he had also joined Bangalore to Mangalore (Mangalúr) by a longitudinal series. Although this had been done at the beginning of the century, the information derived from his results, was very valuable, and greatly facilitated the selection of the stations for the Madras Longitudinal Series. Mr. Donnelly proceeded in advance of the party to examine and prove the provisional series, with orders to build the stations, as soon as fixed, with the least possible delay. The first polygon, Batinkŏnda, extended to the Páyanghát, or foot of the Eastern Gháts, skirting the Mysore (Maisúr) plateau, and dividing Mysore from the Carnatic (Karnatik). The country then became difficult, and rendered it necessary to adopt a somewhat small and unsymmetrical pentagon, that of Devarakŏnda, and in the first figure on the plateau, the Bandapalle hexagon, to use longer rays than desirable. After having visited and built 5 stations of the Bandapalle hexagon, Mr. Donnelly discovered that he had admitted an angle of about $27^{\circ}$, which necessitated some sort of a change in the figure. Without the use of short sides or tower stations, this difficulty could only be solved by the rejection of Kurudamale H.S., and the adoption of Rajugundlapalle H.S., 18 miles to the north, a change which was immediately carried out. Advantage was taken of the delay, ensuing on this change, to complete the secondary triangulation for determining the position of the P.ulicat (Paraverkádu) Light-house.

On resumption of the observations of the Bandapalle polygon, the haziness of the weather gave great trouble, particularly at the new station of Rajugundlapalle. On this account, although the observations at the latter station were very fairly accordant inter se, there were found to exist the large resulting triangular errors of $-4^{\prime \prime} \cdot 3$ and $+3^{\prime \prime} \cdot 4$ in the two triangles adjoịning the ray Rajugundlapalle and Bandapalle, which grazes, but not very closely, over the rocky ridge of the rejected hill Kurudamale. These triangles were therefore not accepted, and in the following season, the angles to and from Kurudamale, which were not liable to be affected by the troublesome phenomenon of lateral refraction, were observed.

In this season, 1865-66, almost the whole of the Series was completed as far as Bangalore by a chain of 23 principal triangles, forming 3 hexagons and a pentagon, covering an
area of about 2650 square miles, and extending a direct distance of 118 miles. All the members of the party suffered more or less from illness, resulting from exposure and malaria, and Captain Branfill was obliged to proceed to Europe on sick leave; his place in charge of the party was taken by Lieutenant W. M. Campbell, R.E.

It had originally been the intention of Colonel Walker, only to carry this Series as far as the meridian of Bangalore, to meet it there by a series of triangles from Mangalore which were to be executed by another party, and to employ Captain Branfill's party on its arrival at Bangalore on the revision of the Southern Section of the Great Arc. Owing however to some misunderstanding, Captain Branfill believed that his party were intended to work westward to the Coast; accordingly, at the close of the field season of 1865-66, he had one polygon prepared for observation to the west, but no arrangements made to the south for work on the Great Arc. On being informed of this, Colonel Walker sanctioned the completion of this polygon, before commencing operations to the south on the Great Arc. He directed that arrangements should be made for the re-measurement of the old base-line measured by Colonel Lambton in 1804 in the neighbourhood of Bangalore.

Messrs. Donnelly and Mitchell took the field in November, the former to make the required arrangements for the base-line and the latter to carry on preliminary operations to the south along the meridian of the Great Arc. Lieutenant Campbell himself was detained in Madras till January owing to some alterations which were required in the 24-inch theodolite. He commenced work on the 2nd of that month at Halasúrbĕtta H.S., and continued it without intermission till the 10th May, carrying the series under review to the side Hemagiri H.S.-Rangaswámibĕtta H.S. and also executing a portion of the Great Arc Series. The triangulation of the Series was thus only extended in 1866-67 to a point 40 miles west of Bangalore.

Lieutenant Campbell found the difficulties in the way of re-measuring Colonel Lambton's base so great that he was compelled to advise its abandonment, and he was accordingly directed to select another site : this he did, and at the same time made arrangements to connect Colonel Lambton's base by triangulation.

In 1867-68 little progress was made, because Lieutenant Campbell and his assistants

Season 1867-68.

## Personnel.

Lieut. W. M. Campbell, R.E., Surveyor, 3rd Grade. Mr. A. W. Donnelly, Civil Assistant, 4th Grade. ." J. W. Mitchell, Sub-Assistant, 2nd " "O. V. Norris, ", 4th
" O. V. Norris, were employed for the greater portion of the field season in the operations connected with the measurement of the Bangalore Base-line, which bave been described in the Introduction to the Great Arc Series, Section $8^{\circ}$ to $18^{\circ}$. As soon as these were completed, Lieutenant Campbell took up the triangulation at the point west of Bangalore, where it had stopped the year before, Mr. Mitchell having been sent to carry on the approximate work of the longitudinal series to the west while the party was engaged on the Bangalore Base-line. An approximate series had been executed some years pre-
viously by an assistant of the Bombay party, who selected stations of the Mangalore Meridional Series, down to the latitude of Mangalore, where he converted it into a longitudinal series, and carried his triangles eastwards as far as Bangalore. Unfortunately, however, it was now found that the series so selected did not admit of symmetrical connection with that already finally brought up from Madras, (as far as Hemagiri H.S.Rangaswámibĕtta H.S.) without further complicating the compound figure surrounding the Base-line, already so extensive as to involve great labor in reduction.

Mr. Mitchell, disregarding therefore the existing approximate series, succeeded in selecting two new polygons. The first of these gave a good deal of trouble, owing to the nature of the ground. The second was a large figure covering upwards of 2000 square miles of country. A third polygon was partially chosen, which was intended to close on the approximate triangulation of the Mangalore Meridional Series: the two flank stations of this polygon could not be definitely fixed, but it was seen that no difficulty would be experienced in finding appropriate points.

The measurement of the Bangalore Base-line was completed on the 12th of March, and on the 24th Lieutenant Campbell's party moved westwards to take up the principal triangulation. One hexagonal figure, covering an area of 925 miles, and extending the series 33 miles in length, was completed on the 3rd of May, when the party commenced its return march to Bangalore. Whilst making this march, Lieutenant Campbell had an opportunity for visiting one of the most interesting features of Mysore, viz., the gigantic Jain statue of "Shravan Bellagula," cut out of the living rock (gneiss) on the summit of a hill, some 800 feet above the surrounding country, from which it is visible for miles in every direction. It is the figure of a man, standing up clear of the summit of the rock from a little above the middle of his thighs, while from that point downwards the legs are shewn in strong relief, about half their thickness being sculptured on the face of the rock. Lieutenant Campbell writes:-"For native sculpture, the proportions are not very "bad, but all horizontal dimensions are exaggerated, and the legs are dwarfed in height, as "compared with the upper part of the body. The arms bang clear of the body from the "shoulder to the wrist. The stone is cut smooth and partially polished, and the color is so " white a grey, as to give the appearance of whitewash at a distance of 3 or 4 miles. With a "small theodolite, I took the following dimensions of the figure, as accurately as the situation " admitted:-

Height of upper part, entire form cut out " lower part, only half moulded						Inch
			...	...	39	0
			...	...	21	6
Entire height of figure			...	...	60	6
Width of shoulder" head	...	$\ldots$	$\ldots$	...	27	0
	$\ldots$	$\ldots$	$\ldots$	...	10	0
waist		...	...		10	4
between armpits	...	$\cdots$	...	...	14	2

"An inscription on the foot of the statue states that it was erected by Chamunda Raya, " whom tradition places about $60 \mathrm{~B} . \mathrm{C}$. According to the most reasonable hypothesis, the "statue must have been cut out of a rock which projected above the hill. The workman"ship is still as sharp as if the stone had been newly cut."

After the field season of 1867-68, the Madras Longitudinal Series remained in abeyance for three years, the party being first engaged in the measurement of the Cape Comorin Baseline and afterwards being employed for two field seasons on the southernmost section of the Great Arc Series. In 1871-72 it resumed work on the Longitudinal Series.

On November 10th 1871, the party left Bangalore and reached Nughallibětta H.S.

Season 1871-72. Presonnel.
Major B. R. Branfll, Dy. Supt., 2nd Grade.
Lt. J. R. McCullagh, R.E., Asst. Supt, 1st Grade. Mr. J. W. Mitchell, Asst. Surveyor, lst " $\begin{array}{llll}\text { " O. V. Norris, } & " & \text { 2nd } & " \\ " \text { C. D. Potter, } & " & \text { 3rd } & " \\ " \text { E. W. Lasseron, } & " & \text { 4th }\end{array}$ on the 17th and 18th, marching in two parties for the sake of observing a Barometic Levelling traverse, by means of corresponding simultaneous observations with two pairs of aneroids-the result of which, notwithstanding the unfavorable state of the weather, proved highly satisfactory, the closing error being only about 7 feet.
At Nughallibětta H.S. Major Branfill commenced operations by observing an azimuth to $\delta$ Ursæ Minoris at Western Elongation and 51 Cephei at Eastern Elongation. A serious delay was met with at Sátanhalli H.S., the central station of the first polygon, where, after some days of fruitless efforts to obtain a signal from Desáni H.S., the north flank station, the ray proved impracticable, being obstructed by a large portion of the top of an intervening hill. A new point on the Desáni group of hills was selected, but this failure of the approximate series cost no less than ten days of the best weather for observing. The principal observations were then carried on without further hindrance than that caused by the forests and mountainous country of the Malnád and Western Gháts, in which clouds and heavy mists frequently obscured the signals; moreover the distances traversed between each station were very great, occupying eight days on the average, and as many as twelve in two cases. About the end of January, whilst observations were in progress at Pushpagiri H.S., Mr. Potter discovered that the approximate series had again failed, the hill station of Kudurĕmukha proving invisible. This caused a delay of three weeks.

Leaving Lieutenant McCullagh to take the principal observations, Major Branfill in the middle of February set out to recast the approximate series, which had been selected by Mr. John McGill, who had been working southwards on the Mangalore Meridional Series. The figures provided were somewhat small and ill-conditioned, and the number of stations had to be reduced to ensure the completion of this triangulation in the following field season. $\cdot$ Major Branfill determined to remodel the Series in advance, by throwing back (eastward) the side of junction, and selecting a figure to the north-east of Kudurěmukha above the Gháts, that would, as it were "cut off the corner." Mangalore was fixed by two single triangles, which during the next season were converted into a quadrilateral figure by the observation of the diagonal ray.

Meanwhile and till the end of the season, Lieutenant McCullagh with the main party had been greatly impeded in his observations by the hazy weather setting in. At Ballamale, the south-western flank station, he was detained 15 days, at Ammĕdikal 18 days, and at Kudurěmukha 25 days, until the 10th of May when, as there was no hope of completing the observations before the beginning of the monsoon, he closed the season's observing and marched to Bangalore, where the party arrived on the 28th of May, having suffered much latterly from fever.

During this season the Madras Longitudinal Series was extended 110 miles to the west, and carried over the Western Gháts. The principal triangulation that was executed covered an area of 3240 square miles.

Major Branfill was occupied during a part of the field season in the attempt to set up a self-registering tide gauge at Mangalore. The river Nětrávati which runs northwards past the town of Mangalore, is separated from the open sea for several miles by a spit of sand, varying in width from 100 to 400 yards, and 10 or 12 feet above sea level in the highest parts. It appeared that this spit had been extending northwards for several years, driving the river mouth and bar continually before it. The older parts of the sand spit were covered with a growth of sea pink and many other plants, and were apparently very firm and not liable to shift. Some years before, a breach had been cut in the spit to allow the river to enter the sea direct and a little south of the town instead of flowing round the spit which extended a mile from the cut; but a very few tides sufficed to fill up the gap. From this and other local information there seemed good reason to suppose that the sand spit might be considered more than sufficiently permanent for a year's tidal observations. Major Branfill therefore had a masonry well sunk in the highest part of the spit, where it was 12 feet above sea level and 30 yards away from high water mark on the beach, about a mile south of the river mouth and nearly opposite the town of Mangalore. The sand was very firm at a small depth below the surface but very "quick" at the permanent water level below, which appeared, however, to be considerably higher than mean sea level. The well was sunk until there was always a depth of 6 feet or more of water in it and 10 feet of masonry above high water mark.

Communication was next established with the open sea by means of wrought iron gas piping ; but owing to the persistent high level of the water in the well, a watertight cistern had to be introduced which should only admit or deliver the sea water by means of the pipe. This was effected with much difficulty; but bad weather set in almost immediately and the water shoaled and covered the sea end of the pipe with about a foot of sand.

Meanwhile the self-registering tide gauge had been set up. A severe gale now occurred which considerably altered the shore line, washing away much of the sand spit almost up to the observatory and well and shoaling the water for some distance out to sea. A continuance of bad weather rendered it necessary to dismantle the observatory, but not before damage and loss had occurred from the violence of the waves.

Major Branfill, after his experience, came to the conclusion that to set up a tidal observatory and maintain it in operation for a twelvemonth on the sandy shore of the open coast, is an affair of such difficulty and expense and at best so uncertain of success that it can hardly be recommended. Mangalore was accordingly abandoned as a tidal station.

In November and December 1869, Captain J. P. Basevi, R.E., who was then conducting Pendulum Observations determined the sea level at Mangalore by a month's observations of high and low water, and referred it by levelling to some permanent masonry buildings. Mr. Norris was directed to connect these with the Principal Station of Mangalore, and found its height thereby to be 186 feet above mean sea level : the trigonometrical value derived from Madras is 196 feet, and therefore a closing error of 10 feet has been generated in the heights of the Series.

Only a few angles now remained to be observed on the Madras Longitudinal Series; and the party was directed in 1872-73 to resume the Mangalore Meridional Series, to carry it south to its junction with the Madras Longitudinal Series and to complete the
Major B. R. Branfill, Deputy Supt., 2nd Grade.
Lt. J. R. MoCullagh, R E., Asst. Supt., 1st
Mr. J. W. Mitchell, Asst. Surveyor, 1st Grade.
" O. V. Norris, " 2nd "
$\begin{array}{lll}" & \text { C. D. Potter, } & " \\ " & \text { E. W. Lasseron, } & \text { " } \\ \text { 3rd }\end{array}$ latter. This involved a large amount of work; but by entering the field early and pushing on with rapidity, both Series were brought to a successful conclusion. Further Major Branfill took a complete set of circumpolar star observations for azimuth at Mangalore to a Ursæ Minoris at Western Elongation, a second 24 -inch theodolite having been sent round by steamer from Calcutta for the purpose, which was returned on conclusion of the observations.

On the completion of the South-East Coast Series in 1879-80 in the vicinity of Madras, Colonel Branfill added two pentagons to the Madras Longitudinal Series, in order to provide stations, as near as practicable to the Madras Observatory, at which astronomical observations for azimuth might be taken, partly for the verification of the azimuth and partly to throw light on the probable amount of the local attraction in the direction of the prime vertical on the coast line. Azimuths were observed at St. Thomas's Mount and at Injambákam Stations.

On the completion of the Simultaneous Reduction of the Southern Trigon it was found that the undermentioned errors had been actually dispersed over the two sections of the Madras Longitudinal Series:-

Section W. of the Great Arc Meridional Series.

In Latitude	$\ldots$	$\ldots$	$\ldots$	$+0 \cdot 080$
"Longitude	$\ldots$	$\ldots$	$\ldots$	$-0 \cdot 010$
"Azimuth	$\ldots$	$\ldots$	$\ldots$	$+0 \cdot 141$
" Side		Log feet $-0 \cdot 000,0014,7=0 \cdot 22$ of an inch per mile.		

Section E. of the Great Arc Meridional Series.

In Latitude	$\ldots$	$\ldots$	$\ldots$	$-0 \cdot 051$
", Longitude	$\ldots$	$\ldots$	$\ldots$	$-0 \cdot 019$
" Azimuth	$\ldots$	$\ldots$	$\ldots$	$+1 \cdot 341$
", Side		Log feet	$-0 \cdot 000,0006,4=0 \cdot 09$ of an inch per mile.	

Secondary Triangulation.
During seasons $1865-66$ and $1866-67$ scarcely any secondary work was executed beyond the fixing the positions of a few points from principal stations.

In April and May 1868 a first class Secondary Series, starting from the side AdhiběttaNáráyandurga and fixing the positions of points in and about Sěringapatam and Mysore, was executed by Mr. A. Christie, Sub-Assistant Surveyor 3rd grade, with a 12 -inch theodolite and luminous signals. Horizontal and vertical angles were taken at 10 stations fixing the positions of 30 stations and points and the heights of 13 of them.

In 1871-73, a considerable amount of secondary triangulation was thrown off from the principal sides, by which the positions of about 130 conspicuous points were determined. And between the years 1871-74, a first class Secondary Series of 13 triangles was carried southwards by Mr. Mitchell from the side Muchil H.S.-Pushpagiri H.S., along the coast for a distance of 140 miles to Kurnád h.s.-Anangamalai h.s. (near Pŏnáni) the northernmost side of Colonel Lambton's minor triangulation from Cape Comorin along the Malabar Coast. As however there was some doubt of the identity of Kurnád with that of Colonel Lambton, the tract was revisited early in 1880 by Colonel Branfill who effected a satisfactory junction by actually finding and connecting by triangulation the station marks at Pŏnmalai and Álatúr, both of which he believed to be identical with Colonel Lambton's stations.
s. a. BURRARD.

Note on the connection of the Madras Observatory with the Principal Triangulation.

The origin to which Colonel Lambton referred the Longitudes of all stations of the triangulation of Southern India was the centre of the Meridian Circle of the Madras Astronomical Observatory; and its longitude as determined by observations taken in 1815, was accepted as $80^{\circ} 17^{\prime} 21^{\prime \prime}$ East of Greenwich. But about the year 1840 Colonel Everest adopted a point in his observatory at Kalianpur in Central India as a second origin of Longitude, its value $77^{\circ} 41^{\prime} 44^{\prime \prime} \cdot 75$ East of Greenwich being obtained as follows:-


Much of the triangulation employed in the deduction of this value of longitude had been executed with inferior instruments, and was based on the primary chain-measured baselines of this Survey : all this has since been revised, and also computed in terms of the modern base-lines, measured with the Colby apparatus of compensation bars and microscopes. But prior to the completion of this revision, the final reduction of the principal triangulation was undertaken; and it was found necessary to commence with that of the North-West Quadrilateral for reasons which are stated in Sections 2 and 7 of Chapter I of Vol. II of the Account of the Operations \&c. This led to the retention of Colonel Everest's adopted origin of Kaliánpur as the origin of Longitudes.

The final reduction of all the principal triangulation between Kaliánpur and Madras has now been effected, and it is desirable to shew the steps that were taken to re-connect the Madras Observatory by modern triangulation and to ascertain its longitude relatively to Kaliánpur as adopted by Colonel Everest.

In the first place it is desirable to make certain as far as possible that there is no mistake about the position, as at present assumed, of Lambton's origin of longitude. The evidence

[^19]is unfortunately very meagre, but such as exists is here given. Major (now Colonel) B. R. Branfill-who effected the modern connection-writes to the Superintendent G. T. Survey under date 12th September 1871 :-"As I could obtain no documentary evidence on the " subject, I accepted Mr. Pogson's (the Government Astronomer's) assurance that the centre " of the Meridian Circle was the point to connect, as the origin of the Astronomical Longitude; " and it was in all probability the same point that had previously been used for the same "purpose, and therefore most likely the point referred to by Colonel Lambton."

In 1873 Captain (now Major General) W. M. Campbell, R.E., being at Madras, was requested by the Superintendent G. T. Survey to make further enquiries, and he replied as follows :-"The present Meridional Circle is probably on the same meridian as the old one, "which was the origin of Lambton's longitudes, and cannot be more than 6 or 7 inches to "one side or the other. It is erected in the same building and the old meridional " aperture is used, but widened from 12 to 24 inches. The only doubt is whether this " widening is all to one side or on both equally, on which point there is no documentary " evidence forthcoming; but it is reasonable to suppose, and moreover the walls shew some "evidence, that the latter was the course adopted. In any case the error can only amount "to about 6 inches." This evidence, for want of better, has been accepted as decisive.

In order to re-establish the connection between the Meridian Circle and the modern triangulation, the station named Madras Dome Observatory Station, or Xxxvir, was first established on the roof of the Government Astronomer's dwelling house, which is within the same enclosure as the observatory containing the Meridian Circle, and was connected with the Principal Triangulation of the Madras Longitudinal Series.

On the 2nd June 1865, with the assistance of Mr. Pogson, Government Astronomer, who set the Meridian Circle to the nadir point by intersecting the reflection of the wires in mercury, Major Branfill established a point plumb over the centre of the eye-piece of the instrument duly collimated, and transferred it to the shutter of the meridian aperture in the roof when shut, the shutter being rigid and not likely to warp or alter its position at rest. The operation when complete was repeated and the position of the mark cut into the surface of the shutter was found satisfactorily correct.

From this point a base-line was measured in the observatory compound in a direction S. by E. closing on a very large register peg. Two 2-foot Gunter's scales were first laid in the line (at $86^{\circ}$ F.) and then the rest was measured with three 10 -foot teak-wood bars, using plummet and hair line to lay the bars exactly. Eight sets of bars were laid making a distance of $8 \times 3 \times 10+4$ feet from the centre of the Meridian Circle.

The teak-wood bars were compared with a standard 10 -foot bar and their mean length found to be 10.0018 feet. Hence the length of the base was
$244+\cdot 0018 \times 24+\cdot 0011$ (the correction to brass scales at $86^{\circ}$ to reduce to $62^{\circ}$ Fah.) $=244 \cdot 0443$ feet.

Angular observations were then taken at the three stations, Madras Dome Observatory with Troughton and Simms' 24-inch Theodolite No. 1, the Register Peg with a 14-inch
theodolite, and the Meridian Circle Nadir Point with a 7-inch. The observations with the 7-inch were afterwards rejected and a supplemental angle used.

The angular measurements and their particulars are as follows :-
At the Dome Observatory Station (xxxvir), the angle between the Meridian Circle Nadir Point and the Register Peg Station, was $47^{\circ} 12^{\prime} 22^{\prime \prime} \cdot 0$, being the mean of two measures, one on face left and one on face right. At the Register Peg Station the angle between the Dome Observatory Station (xxxvii) and the Meridian Circle Nadir Point, was $55^{\circ} 50^{\prime} 16^{\prime \prime} \cdot 7$, being the mean of six measures, three on face left and three on face right. These angles together with the measured base furnished the data for the following calculation :-

Station.	Oberred Angles.	Angles for Computation.	Dibiance.		
			Log. foet.	Feet.	Milon.
	, "	- , "			
Meridian Circle Nadir Point		7657 21.3	2-5105286	$323 \cdot 99$	-061
Register Peg S.	555016.7	$55 \quad 5016 \cdot 7$	2-4396252	275•19	-052
MadrasDomeObsy. (xxxvir)	471222.0	$471222 \cdot 0$	$2 \cdot 3874610$	244.04	-046

The two following angles were also measured at the Dome Observatory Station, (1) between Malaipedu (xxxvi) and the Meridian Circle Nadir Point, $168^{\circ} 45^{\prime} \mathbf{2 6} 6^{\prime \prime} 9$; and (2) between Chěmbedu (xxxv) and the Meridian Circle Nadir Point, $121^{\circ} 47^{\prime} 45^{\prime \prime} \cdot 5$, each of these two angles being the mean of two measures, one on face left and one on face right, made with Troughton and Simms' 24 -inch Theodolite No. 1. By the application of these two angles to the azimuths of Malaipedu and of Chĕmbedu respectively at the Dome Observatory Station, the values $247^{\circ} 29^{\prime} 49^{\prime \prime} \cdot 3$ and $247^{\circ} 29^{\prime} 48^{\prime \prime} \cdot 6$, of the azimuth of the Meridian Circle Nadir Point were obtained, the mean of which $247^{\circ} 29^{\prime} 49^{\prime \prime} \cdot 0$, was employed in calculating the latitude and longitude of the Meridian Circle Nadir Point as given below :-

Madras Meridian Circle.
Latitude North ... ... ... ... $13^{\circ} 4^{\prime}$ 3"'11.

Longitude East of Greenwich ... ... ... 801721 • 51.

June, $188 \%$.
w. н. c.

## LAMBTON'S ORIGIN OF LONGITUDE.

Note.-In course of a recent examination of the records of Lambton's triangulation it has been discovered that the point hitherto assumed as the origin of Lambton's Longitude, viz., the centre of the present Meridian Circle of the Madras Observatory, cannot be correct. It appears from the triangulation connecting it with the southern station of his Base-line at Madras, which still exists, that the origin of Longitude must have been 13 feet west and 6 feet south of the centre of the Meridian Circle.

October, 1890.
w. H. C.

## MADRAS LONGITUDINAL SERIES.

## PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.



2-a.

MADRAS LONGITUDINAL SERIES.

## PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.



# MADRAS LONGITUDINAL SERIES. 

## DESCRIPTION OF PRINCIPAL STATIONS.

The Principal Stations comprised in the eastern and western sections of this Series as well as the four stations of the Great Arc Meridional Series which are common also to this Series, with certain exceptions noted below, are situated on hills or rising ground. Each consists of a solid, circular, isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter and varying from 1 to 10 feet in height. In the centre and upper surface of the pillar a mark (circle and dot) engraved on stone is embedded in the normal of one or more similar marks inserted within the pillar, the lowermost in several instances being cut on the rock in situ. Around the pillar, and level with its surface, a solid platform of stones or of earth and stones, 16 feet square, has been built for the accommodation of the observatory tent. The exceptions are the stations numbered II (Mangalore), XXXV (Chěmbedu) and XXXVII (Madras Dome Observatory). The first of these has a perforated pillar which was surrounded by a temporary scaffolding for the accommodation of the observatory tent; the second consists of a lofty perforated pillar of masonry, surrounded by a tower of sun-dried bricks for the observatory tent to rest on, both the central pillar and tower having an aperture at the base for access to the ground level mark; the third is situated on the roof of the Government Astronomer's dwelling house in the Madras Observatory compound and is described in detail hereafter.

All the stations except XXXV and XXXVII have their upper marks protected by small pillars of masonry in the form of a frustum of a pyramid, 28 inches square at base, 20 inches at top and $3 \frac{1}{2}$ feet in height. These protecting pillars carry sufficiently accurate marks on their upper surfaces for Topographical and Revenue Survey purposes as shewn at page 74 of Volume II of the Account of the Operations \&c. At station XLIV (St. 'Thomas's Mount) the theodolite was set up on a well-braced wooden trestle, 24 feet in height, the observatory tent being accommodated on a timber scaffolding erected around the trestle. This station has therefore been called a trestle station in keeping with the procedure followed in the description of the stations of the SouthEast Coast Series of the Southern Trigon.

The following descriptions have been compiled from those given by the Officers who executed the Series, supplemented in a few instances, as regards adjacent villages, from the Madras Revenue Survey Maps (scale linch = 1 mile) of the country traversed, and corrected, so far as the local sub-divisions in which the several stations are situated, from the Annual Returns furnished by the district Officers to whose charge the stations are committed.

The orthography is in accordance with the official lists published under the orders of the Government of India with this difference that the long $\boldsymbol{\varepsilon}$ is shewn without an accent, in conformity with the rules for spelling names in Northern India, and the short $e$ as $\breve{e}$, and $o$ is treated in the same manner. Final vowels and those in well-known terminals are unaccented. When the popular spelling of a name has been accepted by Government, its correct transliteration is given in parenthesis where the name occurs for the first time.
I. Mijár Hill Station, lat. $13^{\circ} 3^{\prime}$, long. $74^{\circ} 59^{\prime}$-observed at in 1872 -is situated on one of a group of low hills, rising to a height of about 500 feet above the surrounding country and locally known by the name of Nishániguda. The road to Mulki leaving the main road from Mangalore (Mangalúr) to Mudabidari, about 4 miles short of the latter place, passes close to the foot of the hill. The ascent is from the village of Pútagi, the station being easily reached in 30 minutes from the point where the path leaves the road. The station is about 4 miles W.N.W. of Mijar and $4 \frac{1}{2}$ miles W. by S. of Mudabidari. It is probably built on the site of "Meejar H.S." of Colonel Lambton's triangulation. The station is in the lands of the village of Mijár, taluk Mangalore, district South Canara (Kannada).

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other $1 \cdot 40$ feet below it. The azimuths and estimated distances of the circumjacent places are :-'Tarapari (cross of the Roman Catholic Chapel) $104^{\circ} 46^{\prime}$, miles $3 \frac{1}{2}$; Pútagi $200^{\circ}$, mile 1; Járanthaya (temple) $17^{\circ} 5^{\prime}$, miles 2; and Mudabidari (temple) $254^{\circ} 3^{\prime}$, miles 4.
II. Mangalore or Kodeyál Bandar Station, lat. $12^{\circ} 52^{\prime}$, long. $74^{\circ} 53^{\prime}$ —observed at in 1872 and 1873 -is situated on the high ground or hill of laterite overlooking the sea and a portion of the town, 4.5 feet N.E. by E. of the Light-house centre and 200 feet W. of the Idgah supposed to be the building fixed by Colonel Lambton's triangulation. The ground here is about the highest in the place, being 175 feet above the sea, and is nearly a mile inland from the river or backwater. The station is in the lands of Kodeyalbail village, taluk Mangalore, district South Canara.


#### Abstract

The station consists of a hollow pillar 6 feet square at base and 11.3 feet high, built of laterite stone set in mortar, which contains three mark-stones, the lowest about the ground level engraved on a piece of granite set in the foundation, the second in the chamber of the pillar 0.56 of a foot above the first, and the third on the surface of the pillar 11.29 feet above the first. When visited in 1873 for making Circumpolar Star Observations for azimuth, the station was found in good preservation and no alteration appears to have been made from the absence of any remarks in the original records. The pillar for the Zenith Sector employed in the Latitude Observations in 1872 is 6 yards east, and the site occupied by the Transit Telescope for the Electro-Longitude Observations in 1873 is 63 feet south of the station mark. The azimuths and distances of the circumjacent places are:-Kadri (pagoda in the suburbs of the town) $216^{\circ} 42^{\prime}$, miles $1 \frac{1}{2}$; Kadri (cross of the Roman Catholic Chapel) $123^{\circ} 39^{\prime}$, yards 300 ; Basil Mission Church (centre of the belfry) $297^{\circ} 56^{\prime}$, yards 500 ; Idgah ( N . minaret) $270^{\circ} 6^{\prime}$, yards 66 ; Idgah ( S . minaret) $281^{\circ} 52^{\prime}$, yards 66 ; and Light-house (N.E. corner of Light-house buildings) $55^{\circ} 39^{\prime}$, feet 22. Note:-The last three distances were obtained by actual measurements.


III. Kudurěmukha Hill Station, lat. $13^{\circ} 8^{\prime}$, long. $75^{\circ} 18^{\prime}$-observed at in 1872 and 1873 -is situated on the highest point of the lofty group of peaks, which stands out prominently from the Western Ghats; the peak on which the principal station is fixed is called "Funk Point" by the district officers and the residents of Mangalore, the former of whom have built a bungalow about a mile E.N.E., some 20 minutes' walk from the station. Another peak $\frac{3}{4}$ of a mile to the E. by S. of the present station, called "Mukh Head" was originally adopted as a station and built upon but was abandoned as being unsuitable for connecting the Mangalore Meridional and the Madras Longitudinal Series. The peak called Pándukal by the Natives and "Midge Point" by the Europeans, is a mile W. by N. and has been fixed as a secondary station and marked by a circle and dot engraved on the rock. These three peaks are on the ridge or watershed of the mountain which is the boundary between South Canara and Mysore (Maisúr). The station is most easily reached from the town of Bellat Angádi by a cart road $7 \frac{1}{2}$ miles to Nágúr at the E.S.E. foot of the mountain, whence the ascent, about 5,600 feet, is made by a well traced bridle path of $12 \frac{1}{2}$ miles to the bungalow above mentioned. The station is in the lands of the village of Samse, taluk Vastára, district South Canara.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other $1 \cdot 21$ feet below it. When again visited in 1873, it is presumed from the absence of any remarks in the original records that the station was found in good order and no alteration in its construction was made. The directions and distances of the circumjacent villages are :-Allat Angádi S.S.W., miles 61 $\frac{1}{2}$; Bangavádi E.S.E., miles $7 \frac{1}{4}$; Jamalabad S. by E., miles $7 \frac{1}{2}$; and Bangár E. by N., miles 2 $\frac{3}{4}$.
IV. Ballamale Hill Station, lat. $12^{\circ} 49^{\prime}$, long. $75^{\circ} 8^{\prime}$-observed at in 1872 -is situated on one (though not the highest) of a group of hills, $6 \frac{1}{2}$ miles S.S.E. of the large villages of Bantval and Páni Mangalúr on the high road from Mangalore to Mercara (Měrkára) and on the right bank of the Nětrávati river. It is approached from the village of Vírakumba on the road from Páni Mangalúr to Kásaragod (known as the Cannanore (Kannúr) road) at a distance of about 5 miles from the former place and 3 miles from where this road leaves the main road from Mangalore to Mercara. The ascent, some 640 feet, from the village of Vírakumba is a short but steep climb of about 20 minutes. There are numerous hamlets scattered round the base of the hill, at short distances, belonging to the villages of Vírakumba, Kálinja and Arĕbĕtta. The station
is probably close to the site once occupied by "Bullamully H. S." of Colonel Lambton's triangulation, and is in the lands of the village of Vírakumba, taluk Kásaragod, district South Canara.


#### Abstract

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 1.98 feet below it. The azimuths and estimated distances of the circumjacent places are:-Kálinja $25^{\circ}$, miles $1 \frac{1}{4}$; Arěbětta $168^{\circ}$, miles $1 \frac{1}{4}$; Ananthari $253^{\circ}$, miles 13 ; and Bantval (travellers' bungalow) $151^{\circ} 49^{\prime}$, miles $6 \frac{3}{3}$.


V. Ammědikal Hill Station, lat. $12^{\circ} 59^{\prime}$, long. $75^{\circ} 33^{\prime}$-observed at in 1872 -is situated on the highest boulder of the hill so called which forms a prominent and conspicuous feature of this portion of the Western Ghats, rising as it does from the low country and commanding a wide and extensive view of the sea on the west to far over the Mysore plateau on the east. The ascent to the station from the village of Miar is a stiff climb of about 5 hours, the last 1,500 feet being not only very difficult but in places very dangerous. The station is in the lands of the village of Miár, taluk Uppinangadi, district South Canara.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other $1 \cdot 17$ feet above it on a stone imbedded in the upper surface of the pillar. The azimuths and estimated distances of the circumjacent villages are:-Pulajii 124 ${ }^{\circ}$, miles 3 ; Neria $111^{\circ}$, miles $3 \frac{1}{4}$; Púdubet $81^{\circ}$, miles $4 \frac{1}{2}$; Mulla $59^{\circ}$, miles $2 \frac{1}{2}$; Shishala $6^{\circ}$, miles $3 \frac{3}{4}$; Nálmalai $156^{\circ}$, miles $2 \frac{1}{2}$; and Miár $75^{\circ}$, miles $3 \frac{1}{2}$.
VI. Ánúr or Rangaswámigiri Hill Station, lat. $13^{\circ} 19^{\prime}$, long. $75^{\circ} 42^{\prime}$-observed at in 1872 and 1873is situated on the southernmost peak of the Madlakal group of hills, 2 or 3 miles W.N.W. of Ánúr on the road from Múdagěre to Yědĕhalli, 8 miles $W$. of the town of Chikmagalúr, and $4 \frac{3}{4}$ miles N.W. of Vastára. A cart road from Chikmagalúr and Vastára runs to Ánúr, whence the ascent to the station of about 3,000 feet is made by a foot and bridle path through the Basgodu coffee estate. The station is in the lands of the village of Hanjiravalli, taluk Chikmagalúr, district Kadúr.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other $2 \cdot 23$ feet above it on a stone imbedded in the upper surface of the pillar. When re-visited in 1873, the station was found in a good state of preservation and no alteration in its construction appears to have been made. The azimuths and estimated distances of the circumjacent places are :-Chikmagalúr (travellers' bungalow) $269^{\circ} 22^{\prime}$, miles $8 \frac{1}{4}$; Āúr (temple 120 yards E . of the road) $285^{\circ} 27^{\prime}$, miles 24 ; Baigúr (centre of the temple) $103^{\circ} 44^{\prime}$, miles $1 \frac{1}{2}$; Mávinguri $23^{\circ}$, mile $\frac{3}{4}$; and Koligunhalli $303^{\circ}$, mile $\frac{3}{4}$.
VII. Muchil Hill Station, lat. $12^{\circ} 37^{\prime}$, long. $75^{\circ} 22^{\prime}$-observed at in 1872 -is situated on the eastern and higher point of the hill locally called Muchilpannai or Muchilgudda, about a mile to the N. of the village of Kanakmajil on the high road from Mangalore to Mercara. The hill is situated at the trijunction of the village lands of Kanakmajil, Súlia and Kúrumarika. The ascent of about 900 feet is made from a point on the high road near Kanakmajil (the nearest village to the station) by a circuitous though moderately easy path leading through jungle. The station is in the lands of the village of Kanakmajil, taluk Kásaragod, district South Canara.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other $1 \cdot 30$ feet below it. The directions and distances of the circumjacent villages are:-Súlia S.E., miles 6; Balari N.E., miles $4 \frac{1}{2}$; Uddúr S.W., miles 6桨; and Isvara Mangalam W., miles 4 . ${ }^{\frac{3}{4}}$.
VIII. Kittávar Hill Station, lat. $13^{\circ} 4^{\prime}$, long. $75^{\circ} 50^{\prime}$-observed at in 1872 -is on the eastern half of the roof of a small temple dedicated to Vírabhadra Devar, on the summit of the hill locally known as Kittávaradagatta or Sálavaradagatta, rising to a height of about 270 feet. The station is $1 \frac{1}{3}$ miles N. by W. of the Hobli village Arěhalli, 8 miles S.W. by S. of the town of Belúr, and $4 \frac{1}{3}$ miles W. of the road from Sakalespur to Belúr. It is in the lands of the village of Anugatta, taluk Belúr, district Hassan.

The station consists of a solid, circular pillar of masonry $3 \frac{1}{3}$ feet in diameter, built on the roof of the front or eastern room of the temple, and contains two mark-stones, one fixed on the roof and the other 2.71 feet above it, flush with the upper surface of the pillar : a mark is also engraved on the stone floor of the eastern room 11.04 feet below and in the normal of the upper mark in the surface of the pillar. The approximate azimuths and distances of the adjacent places are:-Sirgúr $110^{\circ}$, miles 3; Dðd Shialvara $123^{\circ}$, mile 1; Kittávar $265^{\circ}$, mile $\frac{1}{2}$; Kankuppe $211^{\circ}$, miles $1 \frac{1}{2}$; and Basvana shrine $170^{\circ}$, yards 54 .
IX. Pushpagiri or Phúpgiri Hill Station, lat. $12^{\circ} 40^{\prime}$, long. $75^{\circ} 44^{\prime}$-observed at in 1872 -is situated on the top of the conspicuous mountain on the northernmost frontier of Coorg (Kurg), overlooking the Bisale Glát, and about $5 \frac{1}{2}$ miles E. of Subrahmani, after which large village it is also known. The station is 15 yards S. of the southern corner of the rude temple enclosure surrounding the rough, loose stone shrine dedicated to Sánt-Malesvara, and 40 yards S.W. by S. of the beacon pile on which once a year (on a Saturday in

January) a light is burnt. This is probably the point "Soobramanee" of Colonel Lambton's triangulation. The station is approached from Vangúr temple on the road from Ködlipet and Sakalespur to the Bisale pass in about 4 hours' walk, or in a 5 hours' walk from Somavarpet in Coorg to Bidhalli and Hiridigadde at the N.E. by E. foot of the mountain, whence the ascent can be made in 3 hours without much difficulty by an old and improved elephant track through a dense and extensive forest along the N.E. foot of the mountain. The station is in the lands of the village of Kumbarhalli, taluk Nanjarajpatna, district Coorg.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 1.83 feet below it. The azimuths and estimated distances of the circumjacent villages are:-Kumbarhalli $261^{\circ}$, miles 5 ; Bidhalli $259^{\circ}$, miles 3 ; aud Hegaramani $259^{\circ}$, miles $1 \frac{1}{2}$.
X. Sátanhalli Hill Station, lat. $12^{\circ} 51^{\prime}$, long. $76^{\circ} 15^{\prime}$ —observed at in 1871 -is situated on the highest of the group of hills about $4 \frac{1}{2}$ miles N.W. of Narsipur, 2 miles $N$. of the Hemávati river, a little below the Sriráma Devarabětta anicut (recently restored), and $1 \frac{3}{4}$ miles N.W. by W. of the village of Bětta Sátanhalli. The hill rises about 700 to 800 feet above the surrounding country and is ascended from the village of Bětta Sátanhalli. The station is in the lands of the village of Sátanhalli, taluk Hŏle Narsipur, district Hassan.

The station consists of a platform of stones and earth about 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other $2 \cdot 13$ feet below it. The azimuths and estimated distances of the circumjacent places are:-Mávinkere (temple near the bank of the Hemávati river) $77^{\circ} 27^{\prime}$, miles $2 \frac{1}{2}$; Narsipur (Channel Superintendent's bungalow) $338^{\circ} 12^{\prime}$, miles $4 \frac{1}{2}$; Halěkota (temple) $92^{\circ} 42^{\prime}$, miles $2 \frac{1}{2}$; Shigaranhalli $221^{\circ}$, miles $1 \frac{1}{2}$; Hangarhalli $98^{\circ}$, miles 3 ; and Srirama Devarabětta anicut (pillar on the E. bank of the channel, N. side) $81^{\circ} 1^{\prime}$, miles $2 \frac{1}{2}$.
XI. Desáni or Dŏddachinginabĕtta Hill Station, lat. $13^{\circ} 17^{\prime}$, long. $76^{\circ} 12^{\prime}$-observed at in 1871 -is situated on the highest boulder of the northernmost peak of the Desani group of hills, $12 \frac{1}{2}$ feet $S$. of the precipice, about a mile N.W. by N. and 800 feet above the village of Desáni, 2 miles N.E. of Undiganhál, and $7 \frac{1}{2}$ miles W.S.W. of Arsikěre at the junction of four roads. The higher (but not the highest) point of the groupthe site of Colonel Lambton's station of "Daesauneegooda"-was occupied at first but was abandoned in consequence of Sátanhalli station being invisible from it. It is in the lands of the village of Desáni, taluk Arsikerre, district Hassan.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in sita and the other $2 \cdot 13$ feet above it on a stone imbedded in the upper surface of the pillar. The azimuths and distances of the adjacent places are :-Harnhalli (S.E. corner of the high bastion of the fort) $29 t^{\circ} 3^{\prime}$, miles $5 \frac{1}{\frac{1}{2}}$; Matád Hðshalli $196^{\circ}$, miles $1 \frac{1}{4}$; Shinganhalli $171^{\circ}$, miles $1 \frac{3}{4}$; Kurbarhalli $140^{\circ}$, miles $1 \frac{1}{4}$; Handrahalli $94^{\circ}$, miles $1 \frac{1}{3}$; and Javagal (on the high road from Belúr to Banávara) $104^{\circ}$, miles $6 \underset{4}{ }$.
XII. Adhúrbĕtta Hill Station, lat. $12^{\circ} 29^{\prime}$, long. $76^{\circ} 19^{\prime}$-observed at in 1871 -is situated on a stony ridge or hill about 200 feet high, 2 miles $\mathbf{S}$. of the Hŏsúr ferry on the Cauvery (Káveri) river, $\frac{1}{8}$ mile N . of the road from Yědatöre to Běttadpur and 8 miles $W$. of the former. The station is in the lands of the village of Halliúr Bedarhalli, taluk Yĕdatŏre, district Mysore.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry 3 3y feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 2.58 feet below it. The azimuths and distances of the circumjacent places are:-Kŏppa (old Kasba) $62^{\circ}$, mile 1; Dðddakopal $98^{\circ}$, miles $1 \cdot 12$; Halliúr $121^{\circ}$, mile 0.9; Sálákopal $134^{\circ}$, miles 6.1 ; Hðsúr $156^{\circ}$, miles $1 \frac{1}{2}$; Melúr (tall white temple) $195^{\circ} 49^{\prime}$, miles $7^{\prime}$; and the anicut over the Cauvery river (the origin of the Mirlain channel) $207^{\circ} 46^{\prime}$, miles 1.75 .
XIII. Nughallibětta Hill Station, lat. $13^{\circ} 2^{\prime}$, long. $76^{\circ} 31^{\prime}$-observed at in 1868 and 1871 -is situated on a small hill of bare rock, rising about 130 to 140 feet above its base and crowned by a temple dedicated to Jogi Náth, and about $\frac{1}{8}$ a mile W. of a road from Nughalli village going northward. The station mark is 38 feet $\mathbf{S}$. of the south Vimana of the temple. It is in the lands of the village of Nughalli, taluk Channaraypatna, district Hassan.

[^20]XIV. Náráyandurga Hill Station, lat. $12^{\circ} 43^{\prime}$, long. $76^{\circ} 38^{\prime}$-observed at in 1868 and 1871 -is situated
on the well-known hill of this name, which rises about 700 feet above the general level of the ground and is the highest in the neighbourhood; its summit is fortified and occupied by a temple and several old buildings. The station is 42 feet $E$. of the temple and 12 feet $W$. of the large stone shaft in front of the same temple. The ascent to the station, much of which is over steep, bare rock, is not very easy and can only be made from the south-western side, from the small village of Rayasamudra nearly $\frac{8}{4}$ of a mile and at the foot of the hill. It is in the lands of the village of Sindhugatta, taluk Attikuppa, district Hassan.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 1.0 foot above it on a stone imbedded in the upper surface of the pillar. When re-visited in 1871, the station was found in good order and no change in its construction appears to have been made. The azimuths and distances of the circumjacent places are :-Attikuppa (ridge of the roof of the travellers' bungalow) $59^{\circ} 20^{\prime}$, miles $7 \cdot 61$; Attikuppa (P.W.D. bungalow) $60^{\circ} 47^{\prime}$, miles $7 \cdot 6$; Attikuppa (spire of the temple) $64^{\circ}$ $25^{\prime}$, miles 7 ; Sindhugatta (fort in the village) $64^{\circ} 19^{\prime}$, miles 2.80 ; and Kikkeri (fort) $107^{\circ} 47^{\prime}$, miles 11.5 .
XV. Háltibětta Hill Station, lat. $12^{\circ} 53^{\prime}$, long. $76^{\circ} 49^{\prime}$-observed at in 1868 -is situated on a hill about 500 feet above the general level of the country; a somewhat higher point is about 55 yards to the $N$. and is occupied by a small temple called Malesvara. The easiest ascent is from the west, on which side the high road from Mysore to Túmkúr runs within about $\frac{8}{4}$ of a mile of the foot of the hill. There are two small villages, Boranhalli and Chitnahalli, close to the foot of the hill on the western side, but the station takes its name from the village of Halti to the east. It is in the lands of the village of Kanchinahalli, taluk Nagamangala, district Hassan.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $\mathbf{3 t}^{\frac{1}{2}}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other $2 \cdot 5$ feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Nágamangala $\mathbf{S}$. by W., miles 44 ; Chitnahalli N.W. by N., miles $1 \frac{3}{4}$; Krishnapura N.N.E., miles 2 ; Mailarpatna E. by N., miles 2ta ; and Belúr (on the high road) N.N.W., miles $7 \frac{1}{2}$.
XVI. Chaudanhalli Station, lat. $13^{\circ} 12^{\prime}$, long. $76^{\circ} 43^{\prime}$-observed at in 1868 -is situated on an open piece of rising ground about 2 miles N. by E. of the large village of Turuvekěre at the junction of three roads, and $\frac{2}{3}$ mile E. of the road from Chiknáyakanhalli to Turuvekëre. It is in the lands of the village of Chaudanhalli, taluk Tiptúr, district Túmkúr.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one on a large stone imbedded in a mass of masonry 2 feet deep and $6 \frac{1}{2}$ feet square level with the general surface of the ground and the other 1 foot above it in the upper surface of the circular pillar. The directions and distances of the adjacent villages are :-Bevinhalli E.S.E., mile 1; Kalanjehalli E. by N., mile $\frac{3}{4}$; Chaudanhalli (on the high road) W. by S., mile $\frac{3}{3}$; Muniyúr S.S.E., miles $1 \frac{3}{3}$; and Dơddinhalli N.E., mile 1.
XVII. Adhibětta Hill Station, lat. $12^{\circ} 38^{\prime}$, long. $76^{\circ} 49^{\prime}$-observed at in 1868 -is situated on one of a short range of sharp-peaked hills, running nearly north and south and rising from 300 to 500 feet above the general level of the country. The one occupied by the station is the highest but one of the group and lies about $1 \frac{1}{2}$ miles north-west of the high road from Séringapatam (Srirangapatna) to Kunigal, and $9 \frac{1}{2}$ miles N.E. by N . of Chattar on the high road from Sěringapatam to Nágamangala. The station is on the southernmost peak of the hill, on the boundary line of the villages of Hatnaběttahalli and Běthalli, the highest summit is to the north, distant $1 \frac{1}{2}$ miles. The station is in taluk Mandya, district Mysore.

[^21]XLIII. (Of the Great Arc Meridional Series, Section $8^{\circ}$ to $18^{\circ}$ ). Rangaswámibëtta Hill Station, lat. $13^{\circ} 1^{\prime}$, long. $77^{\circ} 1^{\prime}$-observed at in 1867 and 1868 -is situated on the summit of the highest of a group of four or five small semi-detached rounded hills, about 4 miles nearly due west of the large village of Kunigal on the high road from Sĕringapatam to Dŏdballapur. The station has been named from a well known temple which stands on another hill of the same group about $\frac{3}{4}$ of a mile to the north. It is in the lands of the village of Gunágarh, taluk Kunigal, district Bangalore (Bëngalúr).

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 1.90 feet below it. When re-visited in 1868, it is presumed from the absence of any remarks in the original records that the station was found in good order and that no alteration in its construction was made. The directions and distances of the circumjacent villages are :-Nagsuudra W. by N., miles 3à ; Chotanhalli S.S.E., miles 2; Dásanpur N., miles 2; aud Ëllapur W.N.W., miles 5.
XLIV. (Of the Great Arc Meridional Series, Section $8^{\circ}$ to $18^{\circ}$ ). Hemagiri Hill Station, lat. $12^{\circ} 49^{\prime}$, long. $77^{\circ} 5^{\prime}$-observed at in 1867 and 1868 -is situated on the summit of a rocky hill rising about 500 feet above the plain, about a mile S.E. of the large village of Huliyúrdurga on the high road from Secringapatam to Bangalore, and $5 \frac{3}{4}$ and $9 \frac{3}{4}$ miles respectively N.E. by N. of the large villages of Hĕbbal and Kŏppa. It is in the lands of the village of Huliyúrdurga, taluk Kunigal, district Bangalore.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{8}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other $2 \cdot 88$ feet below it. When re-visited in 1868, it is presumed from the absence of any remarks in the original records that the station was found in good order and no alteration in its construction was made. The directions and distances of the circumjacent villages are:-Korvatti W.S.W., miles $4 \frac{1}{4}$; Nirsale S. by E., miles 3; Hanchipur W. by N., miles 4 $\frac{1}{2}$; and Dalhalli E.S.E., miles 4.
XLVIII. (Of the Great Arc Meridional Series, Section $8^{\circ}$ to $18^{\circ}$ ). Kolar (Kolár) Hill Station, lat. $13^{\circ} 9^{\prime}$, long. $78^{\circ} 8^{\prime}$-observed at in 1866 and 1867-is situated on the highest of a group of hills (but not on its highest rock which was inaccessible), about $2 \frac{1}{2}$ miles W. of the town of Kolar, and $\frac{3}{4}$ mile N.E. of the village of Páparáganahalli on the top of the small plateau formed by these hills. It is in the lands of the village of Páparáganahalli, taluk and district Kolar.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 2.8 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Vari N.E., miles $1 \frac{1}{2}$; Chandapilli S. by E., miles 2; and Chattarkodihalli S.S.E., miles 4.
XLIX. (Of the Great Arc Meridional Series, Section $8^{\circ}$ to $18^{\circ}$ ). Bhúpatamma Hill Station, lat. $13^{\circ}$ $0^{\prime}$, long. $78^{\circ} 8^{\prime}$-observed at in 1866 -is situated on the summit of the rocky hill of this name, also called Tyakal, $\frac{1}{4}$ mile N. of the Railway line and between the Railway stations of Malur and Kolar Road, $1_{4}^{\frac{1}{4}}$ miles S. of Belári village, and 10 miles S. by W. of the town of Kolar. It is in the lands of the village of Somásundra, taluk Malúr, district Kolar.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\text { f feet in diameter, which }}$ contains two marks, one engraved on the rock in sith and the other 0.7 of a foot above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Vulaběla E.S.E., miles 4; Vanampilli E.N.E., miles 4; Sulogunte N.E. by N., miles 4 ; and Mangekolo S.S.E., miles $2 \frac{1}{2}$.
XVIII. Bandapalle or Úkuntabanda Hill Station, lat. $13^{\circ} 5^{\prime}$, long. $78^{\circ} 23^{\prime}$-observed at in 1866 and 1867 -also known as Boregutta, is $83 \frac{1}{2}$ feet N. of the small unfrequented temple on a bare rocky hillock about 5 miles N. by E. of Betmangala on the high road from Vellore (Ráya-ěllúr) to Kolar, and $5 \frac{1}{4}$ miles W. by N. of Tailúr. It is in the lands of the village of Bandapalle, taluk Mulbagal, district Kolar.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{3}}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other 1.3 feet below it. When again visited in 1867, it is presumed from the absence of any remarks in the original records that the station was found in good order and no alteration in its construction was made. The directions and distances of the circumjacent villages are :-Auni N.W. by N., miles $2 \frac{1}{2}$; Kalikuppam W.S.W., miles $2 \frac{3}{4}$; Chĕnnapur N.E. by E., miles $1 \frac{3}{4}$; and Nágasundra S.W., mile 1.
XIX. Kurudamale or Kúdumale Hill Station, lat. $13^{\circ} 12^{\prime}$, long. $78^{\circ} 25^{\prime}$-observed at in 1867 -is situated on the top (not the highest point) of one of the rocky, isolated hills, so common in the neighbourhood; the hill rises to a height of about 750 feet above the plain and takes its name from a village a few liundred yards to the north to which it belongs, and $3 \frac{1}{4}$ miles N. by W. of the town of Mulbagal on the high road, and $5 \frac{1}{2}$ miles E. of Vutnúr. This station is probably near the site occupied by the secondary station or point of "Kootamalli" of Colonel Lambton's triangulation, but was not identified. It is in the taluk of Mulbagal, district Kolar.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved ou the rock in sitú and the other 1.83 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Kuplamargo (on the high road) E.S.E., miles 5; Lingapur S.S.E., mile 1; Singasandra E.N.E., miles $2 \frac{3}{4}$; and Arěhalli N.W. by N., miles $1 \frac{1}{2}$.
XX. Yĕrrakŏnda Hill Station, lat. $12^{\circ} 52^{\prime}$, long. $78^{\circ} 19^{\prime}$-observed at in 1866 -is situated $27 \frac{1}{2}$ feet N. by E. from the centre of a small temple on a hill about $2 \frac{1}{2}$ miles N.E. of the Railway line, and $9 \frac{1}{2}$ miles S.E. of the Kolar Road Railway station. The station is nearly on the site of "Yerra Condah" a station of Colonel Lambton's triangulation, but of which no trace was found. It is in the lands of the village of Byátarayanahalli, taluk Betmangala, district Kolar.

The station cousists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which
contains two marks, one engraved on the rock in situ and the other 2 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Byátarayanahalli N.N.E., mile $\frac{1}{2}$; Madamangala N. by E., miles 2; Nadampilli W. by S., miles 44 ; and Redvarpalli E. by S., miles 3.
XXI. Káraveri or Kárědi Hill Station, lat. $13^{\circ} 7^{\prime}$, long. $78^{\circ} 34^{\prime}$-observed at in February and March 1866-also called Káravada, is situated $48 \cdot 2$ feet N.N.E. from the stone shaft in front of a temple on a low hill, about 5 miles E.N.E. of Malarmpilli, and 9 miles N. by E. of Vĕnkatagirikota on the high road from Vellore to Kolar. It is in the lands of the village of Káraváda, taluk Palmaner, district North Arcot (Ārkád).

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 1.67 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Rámapuram E.N.E., mile 1 ; Gedúr E.S.E., miles $1 \frac{1}{2}$; Shemagapalli S. by W., miles $1 \frac{1}{4}$; and Tailúr S.W. by W., miles 8.
XXII. Krishnamakŏnda Hill Station, lat. $12^{\circ} 57^{\prime}$, long. $78^{\circ} 33^{\prime}$-observed at in 1866 -is situated on a hill so called near the head of the Naikaneri pass, about 4 miles S.E. by S. of Věnkatagirikota on the high road from Vellore to Kolar and some 2 miles S.W. of the same road. The station is $35 \frac{1}{2}$ feet N. by W. from the centre of a temple, and is in the lands of the village of Bairěddipalle, taluk Palmaner, district North Arcot.


#### Abstract

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter, which contains two marks, one engraved on the rock in sith and the other $1 \cdot 65$ feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Peddavogu N.E. by E., miles $1 \frac{3}{4}$; Krishnapuram


 S.W., miles 8; Patimáyanpalli W., miles $1 \frac{1}{2}$; and Bělakunta S.E., mile l.XXIII. Devarakŏnda Hill Station, lat. $13^{\circ} 5^{\prime}$, long. $78^{\circ} 43^{\prime}$-observed at in 1866 -is situated on the summit of a hill, about a mile $N$. of the village of Nĕllipatla, 10 miles S.W. by S. of the sanitarium of Palmaner on the high road from Chittoor (Chittúr) to Bangalore. It is in the lands of the village of Něllipatla, taluk Palmaner, district North Arcot.

The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $\mathbf{8 1}$ feet in diameter, which contains three marks, one engraved on the rock in situ and two others on stones built within the pillar at $2 \cdot 10$ and $4 \cdot 20$ feet respectively above it, the uppermost being in the surface of the pillar. The directions and distances of the circumjacent villages are :-Ye九rlabanda E., mile 1; Kurrupalle N. by E., miles $1 \frac{1}{2}$; Nagarěddipalle W., miles 4; Mallagatapalle S.E. by S., miles $2 \frac{3}{4}$; and Zolarpalle N.W. by W., miles 4.
XXIV. Patikŏnda Hill Station, lat. $13^{\circ} 10^{\prime}$, long. $78^{\circ} 41^{\prime}$-observed at in 1866 -is situated on the highest point of a hill about a mile S.S.E. of the village of this name, 7 miles W.S.W. of the sanitarium of Palmaner. The station is on the site of Colonel Lambton's Survey station of "Putticondah", and is in the lands of the village of Patikǒnda, taluk Palmaner, district North Arcot.


#### Abstract

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 1.63 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are:-Vugani W., miles 2 ${ }^{\boldsymbol{T}}$; Átakarlapalle E. by N., miles $1 \frac{1}{2}$; Gundlapalle E.S.E., miles $1 \frac{1}{2}$; Ballipalle S. by W., miles $1 \frac{1}{2}$; and Chiliganpalle S.W. by W., miles 2.


XXV. Mugali Hill Station, lat. $13^{\circ} 10^{\prime}$, long. $78^{\circ} 52^{\prime}$-observed at in 1866 -is situated on the bare summit of the well-known hill of this name about $5 \frac{1}{4}$ miles W.S.W. of Vernkatagiri, a mile S. of the Mugali pass, and $5 \frac{3}{4}$ miles E.S.E. of the town of Palmaner. It is in the lands of the village of Mugalarapalle, taluk Chittoor, district North Arcot.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two mark-stones, one in the upper surface of the pillar and the other $1 \cdot 98$ feet below it. The directions and distances of the circumjacent villages are :-Takamanda E.S.E., miles $1 \frac{1}{2}$; Kŏndarapilli N.E. by E., miles $2 \frac{1}{2}$; Mugali N. by E., miles $1 \frac{1}{2}$; Masalmaru W. by S., miles 4; and Kalupalle S.W. by W., miles $5 \frac{1}{4}$.
XXVI. Satghur (Sátghadi) Hill Station, lat. $12^{\circ} 57^{\prime}$, long. $78^{\circ} 47^{\prime}$-observed at in 1866 -is situated on the centre of a turret, the highest point of the old fortress, $2 \frac{1}{4}$ miles N.E. of Kamavaripalle, $1 \frac{1}{4}$ miles $\mathbf{E}$. by N. of Satghur at the foot of the hill, and $1 \frac{1}{3}$ miles N.E. by N. of the milestone No. 38 on the high road from Gudiyátam to Kamavaripalle. It is in the lands of the village of Pěranambat, taluk Gudiyátam, district North Arcot.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry, which contains two markstones, one in the soil of the old turret and the other 2 feet above it in the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Chintakanama E.S.E., miles $1 \frac{1}{4}$; Chèrlapalle S.E., miles $1 \frac{1}{\frac{1}{2}}$; Lálápet S.W., miles $1 \frac{1}{\frac{1}{2}}$; and Gundlapalle N., miles $2 \mathbf{l}$.
XXVII. Batinkŏnda Hill Station, lat. $13^{\circ} 1^{\prime}$, long. $79^{\circ} 9^{\prime}$-observed at in 1866 -is situated on one of a group of hills on the high road from Vellore to Chittoor, about 2 miles S.E. of Chittapárai, $1 \frac{1}{2}$ miles W.N.W. of the 3rd milestone from Vellore Railway Station, $3 \frac{1}{2}$ miles N.E. of Árambákam, and $2 \frac{3}{4}$ miles N.N.E. of Karisamangalam. It is in the lands of the village of Vandratangal, taluk Gudiyátam, district North Arcot.


#### Abstract

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 2.48 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the adjacent villages are :-Kirustanpet S.E. by E., miles $1 \frac{1}{2}$; Sorakapálaiyam S.S.E., miles 2; Motúru S.W., miles $2 \frac{3}{4}$; and TǑndamtulasi W.S.W., miles 2.


XXVIII. Muruktŏre Hill Station, also known as Jhandabodu, lat. $13^{\circ} 16^{\prime}$, long. $79^{\circ} 8^{\prime}$-observed at in 1866-is situated on a hill about a mile or so west of the high road from Chittoor to Cuddapah (Kadapa), and 3 miles N.N.W. of the town of Chittoor. It is in the lands of the village of Voiltota, taluk Chittoor, district North Arcot.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{1}{2}}$ feet in diameter, which contains two marks, one on a rock or large boulder in situ and the other 2 feet above it on a stone imbedded in the upper surface of the pillar. The station occupies the site of a pile of stones which is believed to have marked the position of "Moorookthora" a secondary station of Colonel Lambton's triangulation. The directions and distances of the circumjacent villages are :Patnam W.N.W., miles $1 \frac{1}{2}$; Voiltota N.N.E., miles 2 ; Paduri E.S.E., miles 2 $\frac{1}{2}$; Shalurapalle S.S.W., miles $2 \frac{3}{4}$; and Muturapalle W., miles 14.
XXIX. Kailásgarh Hill Station, lat. $12^{\circ} 50^{\prime}$, long. $79^{\circ} 7^{\prime}$-observed at in 1866 -is situated on a hill $6 \frac{3}{4}$ miles S.W. by S. of the fort of Vellore, and $4 \frac{1}{2}$ miles W.N.W. of Kiniyambádi on the high road from Pullúr to Vellore. The station is in the lands of the village of Athúr, taluk Veliore, district North Arcot.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{3}{3}}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 1.56 feet above it on a stone imbedded in the upper surface of the pillar. The centre of an old platform believed to be that of Colonel Lambton's station of "Kylasghur" is 21 feet E. of the present station. The directions and distances of the adjacent villages are :-Káttuputtúr E.N.E., miles $1 \frac{1}{2}$; Sattupálaiyam S.E. by E., miles 3 ; Solavaram S.E., miles $2 \frac{1}{\frac{1}{2}}$; Usúr N.N.W., miles 2; and Sekanúr N., miles $2 \frac{1}{2}$.
XXX. Pullúr Hill Station, lat. $13^{\circ} 14^{\prime}$, long. $79^{\circ} 24^{\prime}-$ observed at in 1865 and 1866 -is situated on a hill known in the neighbourhood as Jhandakona, $5 \frac{3}{4}$ miles W.S.W. of Attimancheripet on the high road from Shŏlinghur (Shŏlangarh) to Kŏlagunta, and nearly a mile N.E. of Alidonabanda, a point on the same mass of hills. The station is in the lands of the village of Pullúr, zamíndári Kárvětnagar, district North Arcot.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry which contains two marks, one engraved on a stone in the upper surface of the pillar and the other $1 \frac{1}{2}$ feet below it which was found engraved on the rock in sitú. This station is identical with that of "Pilloor" of Colonel Lambton's triangulation, the mark of which was found cut on the rock in situ under a shapeless pile of stones. When again visited in 1866, the station was found in good order and no alteration in its construction was made. The approximate directions and distances of the circumjacent villages are :-Pullúr N.W. by W., miles $1 \frac{1}{2}$; Bðmmarájapuram S.E., miles $3 \frac{1}{\frac{1}{2}}$; Rámalingapuram S. by E., miles $2 \frac{1}{2}$; Lingasamudram S.W. by W., miles 34 ; and Balla Vardappanayudi Khandrika W., miles $1 \frac{8}{4}$.
XXXI. Anandalamalai Hill Station, lat $12^{\circ} 56^{\prime}$, long. $79^{\circ} 26^{\prime}$-observed at in 1865 and 1866 -is situated on a small rocky ridge close to the hamlet of Gobllapálaiyam, $1 \frac{8}{4}$ miles E. by N. of the taluk town of Wálajápet, $3 \frac{1}{2}$ miles S.E. of the Arcot station of the Madras Railway S.W. line, and $4 \frac{3}{4}$ miles W.N.W. of the town of Káveripák. It is in the lands of the village of Anandalamalai, taluk Wálajápet, district North Arcot.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on a stone in the upper surface of the pillar and the other $1 \frac{1}{2}$ feet below it which was found engraved on the rock in situ. This station is identical with that of "Hanandamalli" of Colonel Lambton's triangulation, the mark of which was found engraved on the rock in situ and was adopted as the lower mark of the present station. When again visited in 1866, the station was found in good order and no alteration in its construction is stated to have been made. The approximate directions and distances of the adjacent villages are:-Shrotriam Musiri E. by N., miles $1 \frac{1}{2}$; Těnkadapantángal S. by W., miles $1 \frac{1}{4}$; Mantángal W. by N., miles $3 \frac{3}{4}$; and Vagavali E.S.E., miles 2.
XXXII. Kurumkota Station, lat. $13^{\circ} 3^{\prime}$, long. $79^{\circ} 47^{\prime}$-observed at in 1865 -is situated on an extensive swell of stony ground and occupies the site of an old cattle pen, the place being said to be named after a tribe of Kurumbars (herdsmen) who had a place (kot) close by of which the remains exist about a mile to E. The station is $5 \frac{1}{2}$ miles S.E. by E. of the Arkonam Junction station, and $3 \frac{1}{3}$ miles $\mathbf{S}$. by W. of the station of Chinnammápet of the Madras-Beypore (Bepúr) Railway. The station is in the lands of the village of Nagarikuppam, taluk Wálajápet, district North Arcot.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry 4 feet high and $3 \boldsymbol{f}$ feet
in diameter, which contains three marks, the lowest engraved on the rock in situ and two others on stones built within the pillar at 2 and 4 feet respectively above it. The directions and distances of the circumjacent villages are:-Nagarikuppam W.N.W., mile $\frac{3}{4}$; Uriyúr E., miles $1 \frac{3}{4}$; Anautapuram S., miles $1 \frac{3}{4}$; Takulam S.S.W., miles 2 ; Attúr W., miles $3 \frac{1}{\frac{1}{2}}$; and Pudúr E.N.E., miles $1 \frac{1}{4}$.
XXXIII. Nagari Hill Station, lat. $13^{\circ} 23^{\prime}$, long. $79^{\circ} 38^{\prime}$-observed at in 1865 -is situated on the summit of a very remarkable peak which rises abruptly at the western and south-western extremity of the mass of hills and $3 \frac{1}{4}$ miles $S$. by $E$. of the large village of Náráyanavaram on the high road from Tiruvallúr to Putúr. The peak is precipitous on the N.W. and S. sides and is composed of gigantic boulders which seem piled in the most insecure manner as if the least shock would hurl the whole down. The station is not now on the lighest boulder though it may have been occupied as such 60 years ago. It is in the lands of the village of Náráyanavaram, taluk Kárvětnagar, district North Arcot.


#### Abstract

' The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on a stone in the upper surface of the pillar and the other 1.5 feet below on the rock in situ. The lower mark was found engraved on the rock and was probably a station of Colonel Lambton's triangulation. The approximate directions and distances of the adjacent places are:-Putúr station of the Madras Railway N.W. by N., miles 4 $\frac{3}{4}$; Paramesvaramangalam N.W., miles 2 ; Gavanesapuram (on the high road near the fifth milestone) W.N.W., miles $\frac{1}{2}$; Bojarajapálem N.N.E., miles 2; Mangáda S.S.E., miles 34 ; and Rámasamudram W., miles $2 \frac{1}{2}$.


XXXIV. Mávandúr or Mámandúr Hill Station, lat. $12^{\circ} 45^{\prime}$, long. $79^{\circ} 42^{\prime}$,-observed at in 1865 and 1880 -is situated on the summit and towards the N. extremity of the southern portion of the rocky rige, about 150 feet high, at the southern end of the artificial bund of the Dúsi Mámandúr or Chenna Ságaram tank, and about 7 miles S.S.W. of Conjeeveram (Kanchívaram). It is in the lands of the village of Narsamangalam, taluk and district North Arcot.

This station was built in 1865 presumably on or near the site of Colonel Lambton's station of "Doosh Maumdoor", but no station mark was found except a pile of stones round the base of an old staff fixed in a crevice of the rock and cut off flush with the surface. A mark was first made on the stump of the staff, and over this was built a solid, circular pillar of masoury $3 \frac{1}{8}$ feet in diameter carrying a mark engraved on stone imbedded in its upper surface 1.5 feet above the lower mark. The pillar was surrounded by the usual annular wall and platform. When the station was visited in 1880, the circular pillar and its upper mark were found apparently just as left in 1865, and no alteration in the construction of the station was made. The directions and distances of the following villages are :-Mámandúr N.E. by E., miles $1 \frac{1}{2}$; Dúsi N.N.E., miles 3 ; and Narsamangalam S.E., mile $\frac{1}{2}$.
XXXV. Chěmbedu Tower Station, lat. $13^{\circ} 15^{\prime}$, long. $80^{\circ} 1^{\prime}$-observed at in 1865 -is situated on an extensive swell of ground, about 10 miles N.E. of the town of Tiruvallur and the same distance N.N.W. of Tinnanúr station of the Madras Railway. The station is about 50 feet N.E. of an old cairn of stones supposed to indicate the site of a secondary point of Colonel Lambton's triangulation but in which no mark was found. The station is in the lands of the village of Chěmbedu, taluk Tiruvallưr, district Chingleput (Chĕngalpat).

The station consists of a tower of sun-dried bricks enclosing a perforated pillar of masonry 70.3 feet high, which contains a mark-stone imbedded at the ground level. This tower was 54.9 feet high when the observations were taken from it; it was raised to its present height subsequently to fix the position of the Madras Dome Observatory station, number XXXVII of this Series. The approximate directions and distances of the adjacent villages are:-Chermbedu S.E., miles $1 \frac{1}{4}$; Malandúr N.W., miles $1 \frac{1}{2}$; Maiúr S.W., miles $2 \frac{1}{2}$; Ërikuppam N.E. by E., miles $2 \frac{1}{2}$; and Perriyapálaiyam N.E., miles $5 \frac{3}{4}$.
XXXVI. Malaipedu Hill Station, lat. $12^{\circ} 55^{\prime}$, long. $80^{\circ} 3^{\prime}$ —observed at in 1865 and 1880 -is situated on the N.W. end of the summit of the rocky hill of this name, also called Malaipatmalai, which rises to a height of about 370 feet above its base, $1 \frac{3}{4}$ miles N.W. of the road from Madras to Wálajabad and nearly midway between Vandalúr and Sríperrumbudúr. The remains of the platform of Colonel Lambton's station "Malapode" occupy the highest point of the hill, distant 105 yards from the present station, but no mark was found. The station is in the lands of the village of Malaipedu, taluk Conjeeveram, district Chingleput.

The station, as built in 1865 , consisted of a platform of stones and earth about 16 feet square, enclosing a solid, circular and isolated pillar of masonry 10 feet high and $3 \frac{1}{8}$ feet in diameter. The pillar contained six marks, the lowest being engraved on the rock in situ and five others on stones at 2, 4, 6, 8 and 10 feet respectively above it. When again visited in 1880, it was found in good order and the upper mark apparently intact, and no alteration in the construction was made. The azimuths and distances of the circumjacent places are :-Malaipedu $155^{\circ}$, mile $\frac{3}{4}$; Chetpat $231^{\circ}$, mile 1; Sirumátúr $351^{\circ}$, mile 1 ; Manimangalam (temple W. of village) $268^{\circ} 40^{\prime}$, miles 2 ; Mágánam (temple) $89^{\circ} 34^{\prime}$, mile 1 ; site of "Malapode" station of Colonel Lambton's triangulation $309^{\circ} 45^{\prime}$, yards 105 .
XXXVII. Madras Dome Observatory Station, lat. $13^{\circ} 4^{\prime}$, long. $80^{\circ} 17^{\prime}$-observed at in 1865 -is in the centre of the new (larger) Equatorial Dome Observatory on the roof of the Government Astronomer's dwelling-
house within the enclosure or compound in which are also the observatories containing the Meridian and Mural Circles.

The old dome having been removed, a hollow pier or pillar of masonry 3 feet in diameter, surmounted by a slab of granite pierced in the centre and $3 \frac{1}{\delta}$ feet in diameter, was raised over the slab of stone fixed on the cross walls of the Government Astronomer's dwelling-house. The total height above the stone being 30.77 feet. A scaffolding was provided for the observatory tent. The height of the stone on the cross walls above ground level is $33 \frac{1}{2}$ feet. When the observations were complete the pier was removed.

Note.-For the determination of the position of the Meridian Circle—Colonel Lambton's origin of Longitude—with reference to the Principal Triangulation, see the note at the end of the Introduction to this Series.
XXXVIII. Tirumani Hill Station, lat. $12^{\circ} 39^{\prime}$, long. $80^{\circ} 1^{\prime}$-observed at in 1880 -is situated on the highest rock of the group of rocky hills rising rather abruptly to a height of 600 feet above its base, between the high road and the South Indian Railway line, $2 \frac{1}{2}$ miles S . of the town of Chingleput and a mile $\mathbf{E}$. of the Pálár river. The lowest mark of the station is 4 feet 11 inches $N$. of a Revenue Survey mark cut on the same rock. It is in the lands of the village of Tirumani, taluk and district Chingleput.

The station consists of a platform of rubble stones, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{8}$ feet in diameter, which contaius three marks, one engraved on a stone in the upper surface of the pillar and two others $1 \cdot 5$ and 30 feet respectively below it, the lowest being engraved on the rock in situ. The azimuths and distances of the circumjacent places are :-Tirumani $261^{\circ}$, mile $\frac{1}{2}$; OLalúr $58^{\circ}$, miles $1 \frac{1}{2}$; Chingleput $178^{\circ}$, miles $2 \frac{1}{2}$; Gundúr (principal spire of the temple in the village) $174^{\circ} 23^{\prime}$, miles $2 \frac{1}{2}$; and Revenue Survey mark $190^{\circ} 7^{\prime}$, feet 122.
XXXIX. Avirimodu Hill Station, lat. $12^{\circ} 27^{\prime}$, long. $79^{\circ} 57$-observed at in 1880 -is situated on the western and highest point of the rocky hill which rises about 340 feet above its base, 4 miles S.S.E. of Madurántakam, and $1 \frac{1}{8}$ miles $\mathbf{E}$. of the Chúnámpet road. The station is in the lands of the village of Avirimodu, taluk Madurántakam, district Chingleput.


#### Abstract

The station consists of a platform of stones 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{s}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other $1 \cdot 6$ feet above it on a stone imbedded in the upper surface of the pillar. The azimuths and distances of the following places are :-Avirimodu $45^{\circ}$, mile $\frac{1}{2}$; Endattúr $292^{\circ}$, miles $1 \frac{1}{2}$; Chitrávádi $164^{\circ}$, mile $\frac{1}{2}$; Karunguli (a small temple on a hill 2 miles N. of Madurantakam) $166^{\circ} 22^{\prime}$, miles $5 \cdot 75$; and Tiruvapádi (a rock temple) $85^{\circ} 39^{\prime}$.


XL. Manamai Kunnatúr Hill Station, lat. $12^{\circ} 34^{\prime}$, long. $80^{\circ} 12^{\prime}$ —observed at in 1880 -is situated on a large rock rising 75 feet above its base and forming the E.S.E. summit of the group of rocks, about $1 \frac{1}{4}$ miles from the sea coast, 3 miles N. of Sadurangapatnam, and 233 yards W. of the East Coast Canal. The station is not on the highest rock of the group but lies 340 yards S.E. by E. of it, and about 450 yards E. by N. of the rural shrine called Kanniyammankoil. It is in the lands of the village of Manamai, taluk and district Chingleput.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{f}$ feet in diameter, which contains three marks, one engraved on a stone in the upper surface of the pillar and two others 1.5 and 3.0 feet respectively below it, the lowest being engraved on the rock in situ. The directions, azimuths and distances of the circumjacent places are:-Manamai N.W., miles 144 ; Kunnatúr $49^{\circ}$, mile $\frac{1}{2}$; Kílpákam $206^{\circ}$, mile $\frac{1}{4}$; Kílkalani $149^{\circ}$, mile $0 \cdot 4$; and the East Coast Canal milestone (marked 32 under the letters E.C.C.) $260^{\circ} 2^{\prime}$, yards 275.
XLI. Pudupák Hill Station, lat. $12^{\circ} 48^{\prime}$, long. $80^{\circ} 14^{\prime}$-observed at in 1880 -is situated on the summit of a rocky hillock which rises about 100 feet above its base, about 4 miles W.N.W. (inland) from Kovallam, and 2 miles N.W. of Suttankuppam on the high road from Tiruporúr to Madras. It is in the lands of the village of Pudupák, taluk and district Chingleput.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{\frac{3}{3}}$ feet in diameter, which contains three marks, one engraved on a stone in the upper surface of the pillar and two others 1.5 and 3.0 feet respectively below it, the lowest being engraved on the rock in situ. The azimuths and distances of the circumjacent places are :-Pudupák $278^{\circ}$, mile $\frac{3}{4}$; Vělichai $47^{\circ}$, miles $1 \frac{1}{4}$; Kŏlattúr $92^{\circ}$, miles 2; Taiyúr (spire of the temple) $354^{\circ} 41^{\prime}$, miles 2 2 ; Kátámpuli $234^{\circ}$, miles $1 \frac{1}{4}$; N.W. corner of Mandapam (Pĕrumál temple) $1^{\circ} 55^{\prime}$, feet 119 ; and Sŏnalúr $147^{\circ}$, miles $1 \frac{3}{4}$.
XLII. Nanmangalam Hill Station, lat. $12^{\circ} 56^{\prime}$, long. $80^{\circ} 13^{\prime}$-observed at in 1880 -is situated on the N.E. summit or peak of a group of stony hills which rises about 170 feet above its base, $5 \frac{1}{2}$ miles $\mathbb{S}$. of St. Thomas's Mount, and between the villages of Rajakilapákam and Jaladampet, the cross road from the latter place which runs west to meet the great southern road from Madras, passes close to the $\mathbf{S}$. foot of this group of hills. It is in the lands of the village of Nanmangalam, taluk Saidápet, district Chingleput.

The station consists of a platform of stones and earth 16 feet square, enclosing a solid, circular and isolated pillar of
masonry $3 \frac{1}{\frac{1}{f}}$ feet in diameter, which contains three mark-stones, one in the upper surface of the pillar and two others 1.5 and 3.0 feet respectively below it, the lowest being engraved on a large stone imbedded in the rocky surface of the hill, in the centre of the foundation. The directions or azimuths and distances of the circumjacent places are :-Nanmangalam $178^{\circ}$, mile $\frac{3}{4}$; Modupákam $286^{\circ}$, mile 1; Gavuripákam S.W. by S., mile $\frac{3}{4}$; Rajakílapákam W.S.W., miles $1 \frac{1}{4}$; and Jaladampet (bungalow) $280^{\circ} 38^{\prime}$, miles $1 \frac{1}{3}$.
XLIII. Mángád Hill Station, lat. $13^{\circ} 0^{\prime}$, long. $80^{\circ} 8^{\prime}$-observed at in 1880 -is situated on the rocky hillock which rises about 100 feet above the adjacent low ground, nearly midway between Mángád and Kunnatúr, a mile E. of the great Chambrambákam tank or lake, $2 \frac{1}{2}$ miles S . by W. of Púndamalai, and $6 \frac{1}{8}$ miles W . of St. Thomas's Mount. The station is on the highest part of the rocks which culminate at the $S$. end of the ridge, and occupies approximately the site of Colonel Lambton's survey station of "Mungot" of which only the remains of the platform were found. It is in the lands of the village of Mángad, taluk Saidápet, district Chingleput.

The station consists of a platform of stones enclosing a solid, circular and isolated pillar of masonry, which contains two marks, one in the upper surface of the pillar and the other 1 foot below it. This point was fixed in season $1864-6 \overline{5}$ as a secondary station and was denoted by a masonry pillar containing two marks. When again visited in 1880, the pillar and the upper mark were found destroyed, but the lower mark was forthcoming and adopted. The directions, azimuths and distances of the adjacent villages are:-Mángád $201^{\circ}$, miles $1 \frac{1}{\frac{1}{2}}$; Kŏlamanipákam (Pĕrumál Koil temple) $182^{\circ} 5^{\prime}$, mile 1 ; Mángád (boundary stone at the S. foot of the hill) $13^{\circ} 53^{\prime}$, yards 140 ; Kovúr E. by N., miles $1 \frac{1}{2}$; Kunnatúr S., miles $1 \frac{1}{2}$; and Sikkalayapuram N., mile $\frac{3}{4}$.
XLIV. St. Thomas's Mount Trestle Station, lat. $13^{\circ} 0^{\prime}$, long. $80^{\circ} 14^{\prime}$-observed at in 1880 -is situated in the N.W. corner of the terrace of the Portuguese (Roman Catholic) Chapel of St. Thomas which stands on the well-known mount so called, distant 8 miles S.W. of Fort St. George (Madras), and 1.3 and 0.8 miles respectively W. by S. and N.W. of the Railway stations of Guindy (Kandi) and St. Thomas's Mount. The station is 50 yards $\mathbf{W}$. of the signal flag-staff and 19 yards N.W. of the N.W. corner of the chapel, and is identical with the secondary station fixed in season 1864-65, the lower mark of which was found and adopted. Colonel Lambton's station of 1802 was at the S.W. angle of the hill near the chapel. The station is in taluk Saidápet, district Chingleput.

When visited in 1880 the platform of the station of $1864-65$ was found to have been removed but the lower mark was intact, a large slab of stone $3 \frac{1}{3}$ feet in diameter was now laid down flush with the ground level; on the upper surface of this stone in addition to the usual circle and dot-in the normal of the mark below-indicating the point of observation, a broad arrow and the letters G.T.S. 1880 are also engraved.
XLV. Injambákam Hill Station, lat. $12^{\circ} 55^{\prime}$, long. $80^{\circ} 18^{\prime}$-observed at in 1880 -is situated on a hillock of drift sand between the East Coast Canal and the sea shore, 0.6 of a mile E. of the former and 0.3 mile W. of the latter, and near the 7th milestone of the Adyar (Madras) terminus. The hillock is included in the Perriyamanal (large sand waste) used as a casuarina plantation. The station is in the lands of the village of Injambákam, taluk Saidápet, district Chingleput.

The station consists of a platform of turf and sand enclosing a solid, circular and isolated pillar of masonry 6 feet high built upon piles of timber, and contains three mark-stones, the lowest set in the foundation which is 4 feet square and a foot thick, the second is a foot above in the centre of the next block $3 \frac{1}{2}$ feet square and 1 foot thick, and the 3rd or upper is on the surface of the circular block $3 \frac{1}{8}$ feet in diameter and 4 feet above the second mark, or 5 feet above the lowest. The azimuths and distances of the circumjacent villages are :-Injambákam $165^{\circ}$, mile $\frac{1}{3}$; Karaipákam $101^{\circ}$, mile 1; Sŏlanginallúr $54^{\circ}$, miles $1 \frac{3}{4}$; Pallipat $42^{\circ}$, mile $\frac{1}{4}$; boundary stone No. $55,74^{\circ} 7^{\prime}$, feet 410 ; and boundary stone No. $56,127^{\circ} 46^{\prime}$, feet 512.

## W. H. COLE, <br> In charge of Computing Office.

## MADRAS LONGITUDINAL SERIES.

## PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

## At I (Mijár)

April 1872 ; observed by Lieutenant J. R. Mc Cullagh, R.E., with 'I'roughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on III (Kudurěmukha)										$\begin{aligned} M & =\text { Mean of Groups } \\ & =\text { Relative Weight } \\ C & =\text { Concluded Angle } \end{aligned}$
III (Kudurèmukha) and	$\begin{aligned} & l 30 \cdot 10 \\ & l 30 \cdot 18 \\ & l 30 \cdot 72 \end{aligned}$	$\begin{aligned} & l \begin{array}{l} 3 \mathrm{I} \cdot 18 \\ l \\ l \\ l \\ l \\ l \\ 30 \cdot 01 \end{array} \end{aligned}$	$\begin{gathered} " \\ h 28 \cdot 22 \\ h 29 \cdot 25 \\ h 29 \cdot 64 \end{gathered}$	$\begin{gathered} " \\ h 31 \cdot 31 \\ h 29 \cdot 58 \\ h 30 \cdot 16 \end{gathered}$	$\begin{array}{ccc} n \\ l & 30 \cdot 38 & h \\ l & 29.58 & h \\ l & 29.70 & l \end{array}$	$\begin{gathered} " \\ h 30 \cdot 62 \\ h 28 \cdot 92 \\ l 30 \cdot 94 \end{gathered}$	$\begin{array}{cc}  & " \\ l & 29 \cdot 85 \\ l & 30 \cdot 23 \\ l & 30 \cdot 26 \end{array}$	$\begin{array}{cc}  & \prime \prime \\ l & 28 \cdot 99 \\ l & 30 \cdot 33 \\ l & 29 \cdot 31 \end{array}$	$\begin{aligned} & l 30^{\circ} 42 \\ & l 31.42 \\ & l 29^{\circ} 98 \end{aligned}$	$\begin{aligned} & l 29 \cdot 86 \\ & l 30 \cdot 10 \\ & l 31 \cdot 80 \end{aligned}$	$\begin{aligned} M & =30^{\prime \prime} \cdot 15 \\ w & =23 \cdot 80 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =71^{\circ} 33^{\prime} 30^{\prime \prime} \cdot 15 \end{aligned}$
	30.33	30*80	$29^{\circ} 04$	30*35	$29 \cdot 89$	$30 \cdot 16$	$30^{\prime} 11$	29.54	$30 \cdot 64$	30'59	
IV (Ballamale)   and   II (Mangalore)	$l$ 7.08   $l$ 6.86   $l$ 7	$\begin{array}{ll}l & 6.08 \\ l & 6.85 \\ l & 5.91\end{array}$	$\begin{array}{ll}l & 5.04 \\ l & 5.33 \\ l & 5.32\end{array}$	$\begin{array}{ll}l & 6 \cdot 64 \\ l & 783 \\ l \\ 7 & 7 \\ \\ & \end{array}$	$h$ $5 \cdot 80$   $h$ 5   $h$ 85   7 7	$\begin{array}{lll}h & 6 \cdot 52 \\ h & 7 \cdot 84 \\ h & 7 \cdot 47\end{array}$	$h 6 \cdot 03$   $h 6.73$   $h$	$h 6 \cdot 14$ $h 60.92$ $h 6566$	$\begin{array}{ll} l & 5 \cdot 76 \\ l & 6 \cdot 02 \\ l & 6 \cdot 67 \end{array}$	$\begin{array}{lll} l & 5 \cdot 87 \\ l & 5 \cdot 20 \\ l & 5 \cdot 74 \end{array}$	$\begin{aligned} & M=6^{\prime \prime} \cdot 43 \\ & w=17 \cdot 90 \\ & \frac{1}{w}=0 \cdot 06 \\ & C^{\cdot}=57^{\circ} 0^{\prime} 6^{\prime \prime} \cdot 43 \end{aligned}$
	7•17	$6 \cdot 28$	$5 \cdot 23$	7-29	$6 \cdot 39$	7•28	$6 \cdot 67$	$6 \cdot 24$	$6 \cdot 15$	5.60	

## At II (Mangalore)

March 1873; observed by Major B. R. Branfill with Barrow's 24-inch Theodolite No. 1.

Angle between	$C^{\prime}$ Circle readings, telescope being set on I (Mijár)            $359^{\circ} 58^{\prime}$ $179^{\circ} 54^{\prime}$ $79^{\circ} 11^{\prime}$ $259^{\circ} 12^{\prime}$ $158^{\circ} 25^{\prime}$ $338^{\circ} 25^{\prime}$ $237^{\circ} 36^{\prime}$ $57^{\circ} 36^{\prime}$ $316^{\circ} 48^{\prime}$ $136^{\circ} 49^{\prime}$										$M=$ Mean of Groups   wo Relative Weight   C = Concluded Angle
```I (Mijár) and III (Kudurəmukha)```	      h $7 \cdot 78$ h 6.61 d 8.26 h 4.90 d 7.50 d 5.39 d 8.40 d 6.37 d 5 .81										$\begin{aligned} M & =8^{\prime \prime} \cdot 22 \\ w & =3 \cdot 95 \\ \frac{1}{w} & =0 \cdot 25 \\ C & =32^{\circ} 7^{\prime} 8^{\prime \prime} \cdot 16 \end{aligned}$
	$6 \cdot 82$	9•53	$6 \cdot 42$	$8 \cdot 29$	$7 \cdot 47$	9^{17}	$9 \cdot 42$	10'10	8-19	6.81	
```III (Kudurěmukha) and IV (Ballamale)```	      d 27.75   h 24 (02 h 28 8. 34   $h 25.06$										$\begin{aligned} M & =23^{\prime \prime} \cdot 62 \\ w & =4 \cdot 92 \\ \frac{1}{w} & =0 \cdot 20 \\ C & =46^{\circ} 30^{\prime} 23^{\prime \prime} \cdot 66 \end{aligned}$
	$24 * 4$	2317	$25 \cdot 35$	23.48	23.69	$23 \cdot 75$	$22 \cdot 35$	$21 \cdot 67$	23.67	24.68	
April 1872 and February 1873 ; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.											
Angle between											
$\begin{gathered} \text { VI (Ānúr) } \\ \text { and } \\ \nabla \text { (Ammědikal) } \end{gathered}$	    										$\begin{aligned} M & =44^{\prime \prime} \cdot 24 \\ w & =18 \cdot 27 \\ \frac{\mathbf{I}}{w} & =0 \cdot 05 \\ C & =57^{\circ} 13^{\prime} 44^{\prime \prime} \cdot 24 \end{aligned}$
	44•26	44*39	$45 \cdot 66$	$45^{\circ} \mathrm{Or}$	44*33	$43^{\circ} 59$	43*79	44*02.	$43 \cdot 82$	$43 \cdot 52$	
$\begin{aligned} & \text { V (Ammèdikal) } \\ & \text { and } \\ & \text { IV (Ballamale) } \end{aligned}$	      $\begin{array}{rll} l 55.94 & l & 53 \cdot 82 \\ l & 53 \cdot 99 \\ & l & 54.26 \end{array}$										$\begin{aligned} & M=56^{\prime \prime} \cdot 96 \\ & w=5 \cdot 65 \\ & \frac{1}{w}=0 \cdot 18 \\ & C=86^{\circ} 39^{\prime} 56^{\prime \prime} \cdot 95 \end{aligned}$
	58•03	56.40	54*4	$56 \cdot 77$	55•30	58•15	58.29	$57 \cdot 19$	57•77	57*34	

Nots -The values below the lines are taken from obeervations by Lieutenant J. R. McCullagh, B.E., in April 1872, with Troughton and Simms' 24-inch Theodolite No. 1

At III (Kudurĕmukha)-(Continued).			
Angle between	Circle readings, telescope being set on VI (Ãnúr)   $\begin{array}{llllllllll}254^{\circ} 57^{\prime} & 74^{\circ} 57^{\prime} & 334^{\circ} 9 & 154^{\circ} 9^{\prime} & 53^{\circ} 21^{\prime} & 233^{\circ} 21^{\prime} & 132^{\circ} 94^{\prime} & 312^{\circ} 34^{\prime} & 211^{\circ} 44^{\prime} & 31^{\circ} 44^{\prime}\end{array}$	$M K=$ Mean of Gropps $v=$ Relative Weight  	
$\begin{gathered} \text { IV (Ballamale) } \\ \text { and } \\ \text { II (Mangalore) } \end{gathered}$	$h_{51} \cdot 67 h_{51} \cdot 90 \quad d 52 \cdot 63 \quad d 50 \cdot 55 h_{49} \cdot 20 h_{50} \cdot 44 h_{50} \cdot 11 h_{52} \cdot 02 h_{50} \cdot 85 h_{52} \cdot 69$  	$\begin{aligned} & M=51^{\prime \prime} \cdot 42 \\ & w=8 \cdot 50 \\ & \underline{I}=0 \cdot 12 \end{aligned}$	
	$\begin{array}{lllllllllll}51.38 & 51.28 & 53.25 & 51.11 & 49.95 & 51.70 & 50.17 & 52.25 & 50.81 & 52.33\end{array}$	$C=29^{\circ} 29^{\prime} 51^{\prime \prime \prime} \cdot 42$	
$\begin{aligned} & \text { II (Mangalore) } \\ & \text { and } \\ & \text { I (Mijár) } \end{aligned}$	$h_{17} \cdot 96 h_{16} \cdot 80 h_{15} \cdot 82 h_{18} \cdot 51 d_{19} \cdot 18 \quad d_{16} \cdot 13 h_{19} \cdot 75 h_{18} \cdot 65 h_{18} \cdot 40 h 16 \cdot 41$  	$\begin{aligned} M & =17^{\prime \prime} \cdot 81 \\ w & =9 \cdot 80 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =19^{\circ} 19^{\prime} 17^{\prime \prime} \cdot 81 \end{aligned}$	
	$\begin{array}{lllllllllll}18.16 & 17.45 & 16.13 & 18 \cdot 11 & 19.20 & 16.94 & 19.00 & 18.43 & 17.82 & 16.82\end{array}$		
February and March 1872; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.			
Angle betwe	Circle readings, telescope being set on II (Mangalore)   $\begin{array}{llllllllll}205^{\circ} 5^{\prime} & 25^{\circ} 5^{\prime} & 284^{\circ} 16^{\prime} & 104^{\circ} 17^{\prime} & 3^{\circ} 29^{\prime} & 183^{\circ} 29^{\prime} & 82^{\circ} 40^{\prime} & 262^{\circ} 40^{\prime} & 161^{\circ} 53^{\prime} & 341^{\circ} 53^{\prime}\end{array}$		
$\begin{aligned} & \text { II (Mangalore) } \\ & \quad \text { and } \\ & \text { I (Mijár) } \end{aligned}$	      $h 24.52$	$\begin{aligned} & M=23^{\prime \prime} \cdot 6 \mathbf{I} \\ & w=14 \cdot 97 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=44^{\circ} 22^{\prime} 23^{\prime \prime} \cdot 61 \end{aligned}$	
	$\begin{array}{llllllllll}23.53 & 23.50 & 24.05 & 25.00 & 22.27 & 23.69 & 22.79 & 23.37 & 23.96 & 23.91\end{array}$		
$\begin{gathered} \text { I (Mijár) } \\ \text { and } \\ \text { III (Kudurěmukha) } \end{gathered}$	    	$\begin{aligned} & M=22^{\prime \prime \cdot} \cdot 46 \\ & w=9 \cdot 90 \\ & \frac{\mathbf{I}}{w}=0 \cdot 10 \\ & C=59^{\circ} 37^{\prime} 22^{\prime \prime \prime} \cdot 46 \end{aligned}$	
	$\begin{array}{llllllllll}21.44 & 23.01 & 21.52 & 20.72 & 23.86 & 23.28 & 22.72 & 22.84 & 22.47 & 22.77\end{array}$		
III (Kudurěmukha) and V (Ammĕdikal)	      ${ }^{53} 73$	$\begin{aligned} & M=52^{\prime \prime \prime} \cdot 19 \\ & w=24 \cdot 05 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=39^{\circ} 25^{\prime} 52^{\prime \prime} \cdot 19 \end{aligned}$	




## At VII (Muchil)—(Continued).

At VII (Muchil)-(Continued).											
Angle between	Circle readings, telescope being set on IV (Ballamale)										$M=$ Mean of Groups   ${ }^{w}=$ Relative Weight   $\boldsymbol{C}=$ Concluded Angle
V (Ammědikal) and   IX (Pushpagiri)	    										$\begin{aligned} M & =13^{\prime \prime} \cdot 60 \\ w & =27 \cdot 80 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =55^{\circ} 48^{\prime} 13^{\prime \prime} \cdot 60 \end{aligned}$
	14*2	13.24	$13 \cdot 18$	14.04	14.35	13.83	$13 \cdot 32$	13.54	$12 \cdot 69$	13.55	
January 1872;	erved	Major	B. $\boldsymbol{R}$.	At VI Branfil	III (K   ill with	ittávar)   Trough	hton an		$m s^{\prime}$ 24-	inch $T$	heodolite No. 1.
Angle between											
$\begin{gathered} \text { XI (Desáni) } \\ \text { and } \\ \text { X (Sátanhalli) } \end{gathered}$											$\begin{aligned} & M=50^{\prime \prime} \cdot 01 \\ & w=34 \cdot 98 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=59^{\circ} 35^{\prime} 50^{\prime \prime} \cdot 00 \end{aligned}$
	$50 \cdot 1$	$49 \cdot 87$	49.86	$50 \cdot 47$	$49 \cdot 76$	50•73	$49 \cdot 71$	49*90	$49^{\circ} 41$	50.26	
$\begin{gathered} X \text { (Sátanhalli) } \\ \text { and } \end{gathered}$											$\begin{aligned} M & =33^{\prime \prime} \cdot 09 \\ w & =15 \cdot 22 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =76^{\circ} 3^{8^{\prime}} 33^{\prime \prime} \cdot 10 \end{aligned}$
	$32 \cdot 6$	$33 \cdot 33$	34*44	32•94	31•86	32.71	$33 \cdot 60$	33•39	$33 \cdot 16$	$32 \cdot 84$	
IX (Pushpagiri)   and   V (Ammědikal)											$\begin{aligned} & M \doteq 36^{\prime \prime} \cdot 00 \\ & w=18 \cdot 94 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=57^{\circ} 34^{\prime} 36^{\prime \prime} \cdot 00 \end{aligned}$
	$36 \cdot 1$	$35 \cdot 26$	35*97	$36 \cdot 42$	$36 \cdot 76$	35-51	35•55	$35^{\prime} 47$	37•17	$35 \cdot 76$	
$\begin{gathered} \text { V (Ammědikal) } \\ \text { and } \\ \text { VI (Ánúr) } \end{gathered}$	       										$\begin{aligned} M & =8^{\prime \prime} \cdot 39 \\ w & =8 \cdot 64 \\ \frac{1}{w} & =0 \cdot 12 \\ C & =78^{\circ} 7^{\prime} 8^{\prime \prime} \cdot 3^{8} \end{aligned}$
	9•7	9.11	7-16	$7{ }^{52}$	9•29	9.14	$7 \cdot 26$	$7 \cdot 87$	7-54	$9 \cdot 34$	


January 1872; obs	January 1872 ; observed by Major B. R. Branfil with Troughton and Simms' 24-inch Theodolite No. 1.	heodolite No. 1.	
Angle between	Circle readings, telescope being set on VII (Muchil)   $\begin{array}{llllllllll} & 204^{\circ} \sigma^{\prime} & 24^{\circ} 1^{\prime} & 283^{\circ} 13^{\prime} & 103^{\circ} 14^{\prime} & 2^{\circ} 26^{\prime} & 182^{\circ} 26^{\prime} & 81^{\circ} 36^{\prime} & 261^{\circ} 36^{\prime} & 160^{\circ} 48^{\prime} \\ 340^{\circ} 49^{\prime}\end{array}$	$\begin{aligned} & M=\text { Mean of Groups } \\ & \mathbf{w}=\text { Relative } \\ & C=\text { Woncliguded } A n g l e \end{aligned}$	
$\begin{aligned} & \text { VII (Muchil) } \\ & \text { and } \\ & \text { V (Ammédikal) } \end{aligned}$		$\begin{aligned} & M=5^{\prime \prime \prime} \cdot 15 \\ & w=47 \cdot 60 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=68^{\circ} \cdot 26^{\prime} 5^{\prime \prime \prime} \cdot 15 \end{aligned}$	
	$\begin{array}{lllllllllll}56 \cdot 26 & 56 \cdot 60 & 56 \cdot 17 & 56 \cdot 14 & 56 \cdot 03 & 56 \cdot 36 & 56 \cdot 48 & 55 \cdot 85 & 55 \cdot 81 & 55 \cdot 80\end{array}$		
$\begin{gathered} \text { V (Ammèdikal) } \\ \text { and } \\ \text { VIII (Kittávar) } \end{gathered}$	    	$\begin{aligned} & M=48^{\prime \prime} \cdot 21 \\ & w=22 \cdot 87 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=43^{\circ} 13^{\prime} 48^{\prime \prime} \cdot 22 \end{aligned}$	
	$48 \cdot 12$ $48 \cdot 10$ $48 \cdot 43$ $48 \cdot 92$ $47 \cdot 97$ $48 \cdot 69$ $47 \cdot 20$ $47 \cdot 77$ $47 \cdot 84$ 49   10		
$\begin{aligned} & \text { VIII (Kittávar) } \\ & \quad \text { and } \\ & \text { X (Sátanhalli) } \end{aligned}$	 	$\begin{aligned} & M=55^{\prime \prime} \cdot 06 \\ & w=18 \cdot 95 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=55^{\circ} 39^{\prime} 55^{\prime \prime} \cdot 06 \end{aligned}$	
	$\begin{array}{llllllllllll}55.20 & 55.27 & 54.91 & 54.71 & 54.30 & 55.08 & 56.43 & 55.04 & 55.33 & 54.29\end{array}$		
$\begin{gathered} \text { X (Sátanhalli) } \\ \text { and } \\ \text { XII (Adhúrbêtta) } \end{gathered}$	 	$\begin{aligned} & M=35^{\prime \prime} \cdot 53 \\ & w=25 \cdot 26 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=36^{\circ} 3^{\prime} 8^{\prime} 35^{\prime \prime} \cdot 53 \end{aligned}$	
	$\begin{array}{lllllllllll}35.91 & 35.06 & 35 \cdot 01 & 36.06 & 36 \cdot 41 & 34 \cdot 73 & 34 \cdot 93 & 35 \cdot 73 & 35 \cdot 65 & 35 \cdot 85\end{array}$		
At $X$ (Sátanhalli)   *December 1871; observed by Major B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1. $\dagger$ December 1871 ; observed by Lieutenant J. R. McCullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.			
Angle between	Circle readings, telescope being set on XIII (Nughallibětta)   $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 79^{\circ} 12^{\prime} \quad 259^{\circ} 13^{\prime} \quad 158^{\circ} 24^{\prime} \quad 338^{\circ} 25^{\prime} \quad 237^{\circ} 37^{\prime} \quad 57^{\circ} 37^{\prime} \quad 316^{\circ} 48^{\prime} \quad 136^{\circ} 48^{\prime}$	$\begin{aligned} & M=\text { Mean of Groups } \\ & w=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$	
$\begin{aligned} & \text { XIII (Nughallibětta) } \\ & \text { and } \\ & \text { XIV (Náráyandurga) } \end{aligned}$	    	$\begin{aligned} & M=25^{\prime \prime} \cdot 16 \\ & w=28 \cdot 94 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=55^{\circ} 29^{\prime} 25^{\prime \prime} \cdot 15 \end{aligned}$	
	$\begin{array}{llllllllll}25.40 & 24.46 & 24.89 & 24.91 & 25.18 & 26 \cdot 11 & 25.01 & 24.59 & 25.80 & 25.20\end{array}$		


At X (Sátanhalli)-(Continued).											
Angle between	Circle readings, telescope being set on XIII (Nughallibetta)										$M=$ Mean of Groups   $w=$ Relative Weight   $C=$ Concluded Angle
XIV (Náráyandurga) and XII (Adhúrbĕtta)											$\begin{aligned} & M=3^{\prime \prime} \cdot 63 \\ & w=11 \cdot 55 \\ & \frac{1}{w}=0 \cdot 09 \\ & C=60^{\circ} 33^{\prime} 33^{\prime \prime} \cdot 62 \end{aligned}$
	36•08	38.35	35:83	35*97	36•69	37-60	$36 \cdot 69$	$37^{12}$	$35 \cdot 62$	$36 \cdot 36$	
XII (Adhúrbětta) and IX (Pushpagiri)	    										$\begin{aligned} M & =16^{\prime \prime} \cdot 75 \\ w & =18 \cdot 90 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =80^{\circ} \quad 4^{\prime} 16^{\prime \prime} \cdot 75 \end{aligned}$
	$16 \cdot 55$	15.57	1798	$17 \cdot 24$	16.97	16.04	16•75	16.78	$16 \cdot 48$	1712	
IX (Pushpagiri)   and VIII (Kittávar)	    										$\begin{aligned} & M=3^{8^{\prime \prime} \cdot 57} \\ & w=23 \cdot 80 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=47^{\circ} 41^{\prime} 38^{\prime \prime} \cdot 57 \end{aligned}$
	38.11	$38 \cdot 69$	38.38	$38 \cdot 26$	38•99	$37 \cdot 56$	39•59	38•79	39.09	$3^{8 \cdot 23}$	
$\begin{gathered} + \\ \text { VIII (Kittávar) } \\ \text { and } \\ \text { XI (Desáni) } \end{gathered}$	      h $30 \cdot 8.7$										$\begin{aligned} M & =30^{\prime \prime} \cdot 39 \\ w & =22 \cdot 54 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =53^{\circ} 23^{\prime} 30^{\prime \prime} \cdot 40 \end{aligned}$
	31.29	$30 \cdot 26$	30-27	30•73	30*49	30•94	30*09	30'19	$29 \cdot 77$	29.90	
$\begin{gathered} + \\ \text { XI (Desáni) } \\ \text { and } \\ \text { XIII (Nughallibětta) } \end{gathered}$	       										$\begin{aligned} & M=32^{\prime \prime} \cdot 92 \\ & w=16 \cdot 46 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=6 \cdot 2^{\circ} 48^{\prime} 32^{\prime \prime} \cdot 94 \end{aligned}$
	32.99	32.99	32-83	33.34	32.67	33.52	31770	$32 \cdot 61$	$32^{7} 7^{2}$	$33 \cdot 83$	
December 1871; observed by Major B. R. Branfill' with Troughton and Simms' 24-inch Theodolite No. 1.	At XI (Desáni)   erved by Major B. R. Branfill 'vith Troughton and Simms' 24-inch Theodolite No. 1.										
Angle between	Circle readings, telescope bcing set on XIII (Nughallibětta)   $110^{\circ} 21^{\prime} \quad 290^{\circ} 22^{\prime} \quad 189^{\circ} 34^{\prime} \quad 9^{\circ} 34^{\prime} \quad 268^{\circ} 46^{\prime} \quad 88^{\circ} 46^{\prime} \quad 347^{\circ} 58^{\prime} \quad 167^{\circ} 59^{\prime} \quad 67^{\circ} 10^{\prime} \quad 247^{\circ} 10^{\prime}$										$M=$ Mean of Groups   $\omega=$ Relative Weight   $C=$ Concluded Angle
XIII (Nughallibětta)   and   X (Sátanhalli)	$\begin{aligned} & h 26 \cdot 52 \\ & h 27 \cdot 11 \\ & h 28 \cdot 39 \end{aligned}$	$\begin{array}{ll} h 26 \cdot 51 \\ h 27.31 \\ h 26 \cdot 79 \end{array}$	$\begin{aligned} & 27.94 \\ & 28.97 \\ & 28.50 \end{aligned}$	$$		$$	$\begin{aligned} & l 26.57 \\ & l \\ & l \\ & l \\ & l \end{aligned} 27.05$	$\begin{aligned} & l \\ & l \end{aligned} 27.37 .85$	$\begin{gathered} \prime \prime \\ l \\ l \\ l \\ l \\ 27 \cdot 43 \\ l \\ l \end{gathered} 27 \cdot 78$		$\begin{aligned} & M=27^{\prime \prime} \cdot 29 \\ & w=23 \cdot 41 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=43^{\circ} 20^{\prime} 27^{\prime \prime} \cdot 29 \end{aligned}$
	27 34	26•87	28•17	27.34	27•26	26.28	$26 \cdot 85$	27 10	27.41	$28 \cdot 28$	

## At XI (Desáni)-(Continued).

Angle between	Circle readings, telescope being set on XIII (Nughallibětta)										$M=$ Mean of Groupe   $w=$ Relative Weight   $C=$ Concluded Angle
	$110^{\circ} 21^{\prime}$	$290^{\circ} 22^{\prime}$	$189^{\circ} 34^{\prime}$	$9^{\circ} 34^{\prime}$	$268^{\circ} 46^{\prime}$	$88^{\circ} 46^{\prime}$	$3477^{\circ} 58^{\prime}$	$167^{\circ} 59^{\prime}$	$67^{\circ} 10^{\prime}$	$247^{\circ} 10^{\prime}$	
$\begin{gathered} \text { X (Sátanhalli) } \\ \text { and } \\ \text { VIII (Kittávar) } \end{gathered}$	"	"	"	"	"	",	"	"	"	"	$\begin{aligned} M & =44^{\prime \prime} \cdot 79 \\ w & =23 \cdot 86 \\ \frac{\mathbf{I}}{w} & =0 \cdot 04 \\ C & =67^{\circ} 0^{\prime} 44^{\prime \prime} \cdot 79 \end{aligned}$
	$h 44.25$ $h 43.93$	$h_{43}{ }_{4} \cdot 31$	$l{ }^{1} 44 \times 59$	$45 \cdot 17$ $45 \cdot 54$	$45 \cdot 68$	44.20	$l{ }^{44} 45$	46.21	$45^{\circ} \mathrm{O}$ $43^{\circ} 9$	$l$   $l$   $l$   44.35	
	$h 43.49$	$h 44 \cdot 63$	$l 44^{\circ} \mathrm{O}$	$45 \cdot 87$	$45 \cdot 58$	45-18	$44^{4} 4$	$45 \cdot 61$	$45^{\circ} \mathrm{O}$	$l$ $l$ $l$ $45 \cdot 17$ 45	
	$43 \cdot 89$	$43 \cdot 93$	44•53	45.53	$45 \cdot 33$	$44 \cdot 66$	$44 \cdot 77$	$45 \cdot 65$	$44 \cdot 69$	44.93	

At XII (Adhúrbětta)
*December 1871; observed by Major B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1. $\dagger$ December 1871; observed by Lieutenant J. R. Mc Cullagh, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on IX (Pushpagiri)										$M=$ Mean of Groups   ${ }^{w}=$ Relative Weight   $C=$ Concluded Angle
	$0^{\circ} 4^{\prime}$	$180^{\circ} 4^{\prime}$	$79^{\circ} 15^{\prime}$	$259^{\circ} 16^{\prime}$	$158^{\circ} 27^{\prime}$	$3388^{\circ} 27^{\prime}$	$237^{\circ} 40^{\prime}$	$57^{40} 40^{\prime}$	$316^{\circ} 52^{\prime}$	$136^{\circ} 53^{\prime}$	
$\begin{aligned} & \text { IX (Pushpagiri) } \\ & \text { and } \\ & \text { X (Sátanhalli) } \end{aligned}$	"	"				"	$\cdots$		"		$\begin{aligned} M & =14^{\prime \prime} \cdot 18 \\ w & =3^{6} \cdot 30 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =63^{\circ} 17^{\prime} 14^{\prime \prime} \cdot 18 \end{aligned}$
	$l 14.42$	13.63								$l 14.25$	
	$l$ 13   $l$ 13.70  	15.60 13.11	13.65 15.35	$h 14.15$ $l 13$	h 14.14 $h 15$ 1	$h 14.54$ $h 12.25$	h $12 \cdot 96$ $l$ 13	h13:63 $l$ 14.80	$l$ $l$ 14.60	$l 14.30$ $l$ 13	
	$l 14.09$	$l 13.11$	$l 15.35$	$l 13.44$	$h 15 \times 40$	$\begin{aligned} & h 12 \cdot 25 \\ & h 14.61 \end{aligned}$	113.33	114.80	$l 14.65$	$l 13.56$	
	14.07	14*11	14.66	14*15.	14.62	14.28	13.67	13.88	14*34	14.04	
$\begin{gathered} + \\ \text { X (Sátanhalli) } \\ \text { and } \\ \text { XIV (Náráyandurga) } \end{gathered}$											$\begin{aligned} & M=12^{\prime \prime} \cdot 26 \\ & w=16 \cdot 94 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=62^{\circ} 19^{\prime} 12^{\prime \prime} \cdot 27 \end{aligned}$
	12.00	13.33	II•OI	12.54	$12 \cdot 78$	. $12 \cdot 39$	$12 \cdot 03$	11777	$12 \cdot 86$	11.85	

## At XIII (Nughallibëtta)

$\ddagger$ April and May 1868; observed by Lieutenant W. M. Campbell, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.
§November and \|December 1871; observed by Major B. R. Branfill with Troughton and Simms' 24 -inch T'heodolite No. 1.

Angle between	Circle readings, telescope being set on XVI (Chaudauhalli)										$M=$ Mean of Groupe   ${ }^{20}$ = Relative Weight   $C=$ Concluded Anglo
	$0^{\circ} 0^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 12^{\prime}$	$259^{\circ} 12^{\prime}$	$158^{\circ} 24^{\prime}$	$338^{\circ} 24^{\prime}$	$237^{\circ} 36^{\prime}$	$57^{\circ} \mathbf{3 6}^{\prime}$	$316^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$	
$\begin{gathered} \ddagger \\ \text { XVI (Chaudanhalli) } \\ \text { and } \\ \text { XV (Háltibětta) } \end{gathered}$	      $l 28 \cdot 60 . \quad l 30 \cdot 72$   h 29.28 h $29 \cdot 60$ h 29.06 h 28 - 26 h 3 I - 38										$\begin{aligned} M & =29^{\prime \prime} \cdot 16 \\ w & =20 \cdot 00 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =67^{\circ} 56^{\prime} 29^{\prime \prime} \cdot 18 \end{aligned}$
	$29 \cdot 32$	28•93	$28 \cdot 83$	$29 * 45$	$29 \cdot 42$	29*06	$28 \cdot 24$	28.72	$30 \cdot 03$	29.61	


At XIII (Nughallibĕtta)-(Continued).												
Angle between	Circle readings, telescope being set on XVI (Chaudanhalli)										$M=$ Mean of Groups $v=$ Relative Weight   $\begin{aligned} & * \\ & C=\text { Rencluded Anglo }\end{aligned}$	
$\mathrm{XV}(\mathrm{Hâltibetta)} \stackrel{\ddagger}{\ddagger}$ and   XIV (Náráyandurga)	    										$\begin{aligned} & M=43^{\prime \prime} \cdot 5^{6} \\ & w=16 \cdot 42 \\ & \frac{1}{2 w}=0 \cdot 06 \\ & C=43^{\circ} 43^{\prime} 43^{\prime \prime} \cdot 57 \end{aligned}$	
	${ }_{42}{ }^{\circ} 71$	$44 \cdot 54$	42'79	$43 \cdot 36$	$43 \cdot 65$	43*96	$43 \cdot 84$	43•30	$44^{* 4}$	42.98		
$\begin{gathered} \text { XIV (Náráayandurga) } \\ \text { and } \\ \text { X (Sátanhalli) } \end{gathered}$	    										$\begin{aligned} & M=33^{\prime \prime} \cdot 53 \\ & w=13 \cdot 46 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=73^{\circ} 45^{\prime} 33^{\prime \prime} \cdot 53 \end{aligned}$	
	$33 \cdot 15$	$31^{190}$	$34 \cdot 36$	34-30	$33^{\circ} 4^{\prime}$	$32 \cdot 80$	$34 \cdot 11$	33.81	33.96	33.50		
$\begin{gathered} \\| \\ \mathrm{X} \text { (Sâtanhalli) } \\ \text { and } \\ \mathrm{XI} \text { (Desáni) } \end{gathered}$											$\begin{aligned} & M=3^{\prime \prime} \cdot 5^{6} \\ & w=30 \cdot 5^{6} \\ & \frac{1}{w}=0 \cdot 03 \\ & C=73^{\circ} 5^{\prime} 3^{\prime \prime} \cdot 55 \end{aligned}$	
	$\begin{array}{lllllllll}2.66 & 3.34 & 3.39 & 3.42 & 4.34 & 4.09 & 3.80 & 3.79 & 3.32\end{array}$											
At XIV (Náráyandurga)   *April 1868; observed by Lieutenant W. M. Campbell, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.   $\dagger$ December 1871; observed by Major B. R. Branfill with Troughton and Simms' $24-\mathrm{inch}$ Theodolite No. 1.												
Angle between	Circle readings, telescope being set on XII (Adhúrbebtta)   $\begin{array}{llllllllll}238^{\circ} 38^{\prime} & 68^{\circ} 98^{\prime} & 317^{\circ} & 50^{\prime} & 137^{\circ} 50^{\prime} & 37^{\circ} 2^{\prime} & 217^{\circ} 2^{\prime} & 166^{\circ} 13^{\prime} & 296^{\circ} 14^{\prime} & 195^{\circ} 26^{\prime}\end{array} \quad 15^{\circ} 27^{\prime}$										$\begin{aligned} & M=\text { Mean of Groups } \\ & w_{0}=\text { Rolative } \text { Woigh } \\ & C=\text { Concludod Anglo } \end{aligned}$	
	    										$\begin{aligned} & M=54^{\prime \prime} \cdot 14 \\ & w=16 \cdot 06 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=57^{\circ} 8^{\prime} 14^{\prime \prime} \cdot 14 \end{aligned}$	
	14.08	13.88	$14 \cdot 14$	14.26	$15 \times 55$	13.32	$13 \cdot 36$	13.55	15.04	14.17		
$\begin{gathered} \dagger \\ \mathrm{X} \text { (Sâtanhalli) } \\ \text { and } \\ \text { XIII (Nughallibêtta) } \end{gathered}$											$\begin{aligned} & M=4^{\prime \prime} \cdot 30 \\ & w=34 \cdot 75 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=50^{\circ} 45^{\prime} 4^{\prime \prime} \cdot 3 \circ \end{aligned}$	
	4.96	$4 \cdot 34$	$4 \cdot 69$	3.43	$3 \cdot 96$	4.15	4.06	4.51	4.22	$4 \cdot 63$		


At XIV (Náráyandurga)-(Continued).			
Angle between	Circle readings, telescope being set on XII (Adluárbertta)	$M=\begin{gathered}\text { Mean of Groupe }\end{gathered}$ $w_{0}=$ Relative Weight   $\stackrel{w}{C}=$ Concluded Anglo	
$\begin{gathered} \text { XIII (Nughallibetta) } \\ \text { and } \\ \text { XV (Hálibebtta) } \end{gathered}$	    	$\begin{aligned} & M=10^{\prime \prime} \cdot 3^{6} \\ & w=14 \cdot 4^{2} \\ & \frac{1}{w}=0 \cdot 07 \\ & C=65^{\circ} 49^{\prime} 10^{\prime \prime} \cdot 37 \end{aligned}$	
	$\begin{array}{llllllllll}10.69 & 11.81 & 9.87 & 9.71 & 10.29 & 9.99 & 10.01 & 10.38 & 9.48 & 11.40\end{array}$		
$\begin{gathered} \text { XV (Háltibytta) } \\ \text { and } \\ \text { XVII (Adhibetta) } \end{gathered}$		$\begin{aligned} & M=3^{\prime \prime \prime} \cdot 44 \\ & w=18 \cdot 5^{8} \\ & \frac{1}{w}=0 \cdot 05 \\ & C=64^{\circ} 55^{\prime} 33^{\prime \prime} \cdot 4+ \end{aligned}$	
	$\begin{array}{lllllllllll}36.38 & 35.69 & 36 \cdot 56 & 37.01 & 37 \cdot 02 & 36 \cdot 82 & 36 \cdot 29 & 36 \cdot 69 & 35 \cdot 19 & 36 \cdot 71\end{array}$		
At XV (Háltibĕtta)   April 1868; observed by Lieutenant W. M. Campbell, R.E., with Troughton and Simms' 24 -inch Theodolite No. 1.			
Angle between	Circle rendings, telescope being set on XVII (Adhibětta)	$\begin{aligned} & M=\text { Mean of Grupp } \\ & w=\text { Relan } \begin{array}{l} \text { Geive } \\ C=\text { Concluded Angle } \end{array} \end{aligned}$	
$\begin{gathered} \text { XVII (Adhibêtta) } \\ \text { and } \\ \text { XIV (Nâráyandurga) } \end{gathered}$	      l14.34l14.40h13.92 $l 13.84$	$\begin{aligned} & M=13^{\prime \prime} \cdot 55 \\ & w=12 \cdot 3 \mathrm{I} \\ & \frac{\mathbf{x}}{w}=0 \cdot 08 \\ & C=4^{\circ} 57^{\prime} 13^{\prime \prime} \cdot 5.5 \end{aligned}$	
	$\begin{array}{lllllllllll}13.38 & 14.21 & 13.10 & 14.16 & 12.03 & 13.79 & 12.75 & 14.03 & 13.41 & 14.66\end{array}$		
$\begin{gathered} \text { XIV (Náráyandurga) } \\ \text { and } \\ \text { XIII (Nughallibə̌tta) } \end{gathered}$		$\begin{aligned} & M=8^{\prime \prime} \cdot 02 \\ & w=13 \cdot 61 \\ & \frac{1}{w}=0.07 \\ & C=70^{\circ} 27^{\prime} 8^{\prime \prime} \cdot 04 \end{aligned}$	
	$\begin{array}{lllllllllll}8.62 & 8.09 & 8.93 & 7.77 & 8.39 & 7.59 & 7.01 & 7.64 & 8.86 . & 7.29\end{array}$		
XIII (Nughallibytta) and   XVI (Chaudanhalli)	      $h_{17} \cdot 86$	$\begin{aligned} M & =19^{\prime \prime} \cdot 3^{6} \\ w & =10 \cdot 06 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =4^{\circ} 44^{\prime} \cdot 9^{\prime \prime \prime} \cdot 37 \end{aligned}$	
	$\begin{array}{lllllllllll}18 \cdot 96 & 19.28 & 18 \cdot 76 & 19.05 & 20 \cdot 17 & 18 \cdot 17 \cdot 21.28 & 19.74 & 19.50 & 18.65\end{array}$		

At XV (Háltibĕtta)-(Continued).


At XVI (Chaudanhalli)
April 1868; observed by Lieutenant W. M. Campbell, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLIII (Rangaswámibětta)										$M=$ Mean of Groups   $v^{v}=$ Relative Weight   $C=$ Concluded Angle
	$0^{\circ} 0^{\prime}$	$180^{\circ} 0^{\prime}$	$79^{\circ} 12^{\prime}$	$259^{\circ} 12^{\prime}$	$158^{\circ} 24^{\prime}$	$338^{\circ} 24^{\prime}$	$237^{\circ} 36^{\prime}$	$57^{3} 36^{\prime}$	$816^{\circ} 48^{\prime}$	$136^{\circ} 48^{\prime}$	
```XLIII (Rangaswámibĕtta) and XV (Háltibêtta)```											$\begin{aligned} & M=47^{\prime \prime} \cdot 13 \\ & w=19 \cdot 12 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=43^{\circ} 25^{\prime} 47^{\prime \prime} \cdot 13 \end{aligned}$
	46•16	47•57	46•56	46•89	47•39	$47 * 48$	46•61	46•91	$47 \cdot 35$	48•34	
$\begin{gathered} \text { XV (Háltib厄̌tta) } \\ \text { and } \\ \text { XIII (Nughallibětta) } \end{gathered}$											$\begin{aligned} & M=13^{\prime \prime} \cdot 44 \\ & w=12 \cdot 76 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=65^{\circ} 19^{\prime} 13^{\prime \prime \prime} \cdot 45 \end{aligned}$
	13.66	14.07	13*99	13.08	14*31	13•79	13.61	13.32	12.27	12.27	

Nore.-Stations XLIII (Rangaswámibětta) and XLIV (Hemagiri) appertain to the Great Arc Meridional Series, Section 8° to 18°.

Norr.—Stations XLIII (Rangaswámibĕtta) and XLIV (Hemagiri) appertain to the Great Arc Meridional Series, Section 8° to 18°.

At XLIV (Hemagiri)
March 1868; observed by Lieutenant W. M. Campbell, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

At XLVIII (Kolar)
*March 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1. \dagger January 1867; observed by Lieutenant W. M. Campbell, R.E., with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	$27^{\circ} 55^{\prime}$	$\begin{gathered} \text { Circle } \\ 207^{\circ} 55^{\prime} \end{gathered}$	readin $107^{\circ} 7^{\prime}$	gs, teles $287^{\circ} 7^{\prime}$	ope bein $186^{\circ} 19^{\prime}$	g set on $6^{\circ} 19^{\prime}$	$\begin{aligned} & \text { XIX } \\ & 265^{\circ} 31^{\prime} \end{aligned}$	Kurudam $85^{\circ} 31^{\prime}$	ale) $344^{\circ} 43^{\prime}$	$164^{\circ} 43^{\prime}$	$M=$ Mean of Groups $w_{0}=$ Relative Weight C $=$ Concluded Angle
$\stackrel{\dagger}{\text { XIX }} \stackrel{\text { (Kurudamale) }}{ }$ and XVIII (Bandapalle)	$\begin{aligned} & h_{45 \cdot 12} \\ & h_{43} \cdot 74 \\ & h_{43} \cdot 62 \end{aligned}$		$\begin{aligned} & l 45 \cdot 12 \\ & l 44 \cdot 14 \\ & l 45 \cdot 60 \end{aligned}$	$\begin{aligned} & l 43.46 \\ & l 42.62 \\ & l 42.94 \end{aligned}$	$\begin{aligned} & h_{42} \cdot 70 \\ & h_{42} \cdot 96 \\ & h 43 \cdot 36 \end{aligned}$	$\begin{gathered} " \prime \\ h_{42} \cdot 02 \\ h_{42} \cdot 22 \\ h_{42} \cdot 30 \end{gathered}$	$\begin{aligned} & h 43 \cdot 74 \\ & h_{44} \cdot 70 \\ & h_{44} \cdot 28 \end{aligned}$	$\begin{aligned} & h 43 \cdot 20 \\ & h_{4} 43 \cdot 48 \\ & h_{42} \cdot 28 \end{aligned}$	$\begin{aligned} & h_{39} 39^{\circ} 94 \\ & h_{42} \cdot 9^{2} \\ & h_{43} 7^{\prime 2} \\ & h_{40} \cdot 66 \end{aligned}$	$\begin{gathered} " \\ h_{44} \cdot 34 \\ h_{41} \cdot 52 \\ h_{45} \cdot 24 \\ h_{42} \cdot 10 \end{gathered}$	$\begin{aligned} & M=42^{\prime \prime} \cdot 98 \\ & w=3 \cdot 98 \\ & \frac{\mathbf{I}}{w}=0 \cdot 25 \\ & C=27^{\circ} 54^{\prime} 42^{\prime \prime} \cdot 94 \end{aligned}$
	$44 \cdot 16$	$39 \cdot 84$	44*95	$43 \cdot 01$	$43 \cdot 34$	42•18	44*24	42•99	$41 \cdot 81$	$43 \cdot 30$	
XVIII (Bandapalle) and XLIX (Bhúpatamma)	Circle readings, telescope being set on XVIII (Bandapalle)										$\begin{aligned} & M=30^{\prime \prime} \cdot 64 \\ & w=27 \cdot 43 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=74^{\circ} 59^{\prime} 30^{\prime \prime} \cdot 64 \end{aligned}$
										"	
	$\begin{aligned} & l 30 \cdot 00 \\ & l 31 \cdot 72 \\ & l 30 \cdot 52 \end{aligned}$	l 3I•08 l $29 \cdot 70$ l 30 ' 20	$\begin{aligned} & 29 \cdot 74 \\ & 30 \cdot 28 \\ & 31 \cdot 06 \end{aligned}$	$\begin{aligned} & l 30 \cdot 50 \\ & l \\ & l \\ & l \\ & l \\ & 31 \cdot 80 \\ & 31 \end{aligned}$	$\begin{aligned} & l 29 \cdot 8 \mathrm{O} \\ & l \\ & l \\ & l \\ & l \\ & 3 \mathrm{I} \cdot 40 \\ & \hline 10 \end{aligned}$	$\begin{array}{ll} l & 31 \cdot 16 \\ l & 30 \cdot 44 \\ l & 30 \cdot 64 \end{array}$	$l 29.86$ l 30.08 l 30 . 20	$\begin{array}{ll} l & 31 \cdot 14 \\ l & 29 \cdot 78 \\ l & 29 \\ \hline \end{array}$	$\begin{aligned} & l 31 \cdot 60 \\ & l \\ & l \\ & l \\ & l 2 \cdot 16 \\ & 29 \cdot 96 \end{aligned}$		
	$30 \cdot 75$	$30 \cdot 33$	$30 \cdot 36$	31*33	$30 \cdot 85$	30*75	$30 \cdot 05$	$30 \cdot 16$	31-24	30. 54	

Note.-Stations XLIII (Rangaswámibĕtta), XLIV (Hemagiri), XLVIII (Kolar) and XLIX (Bhápatamma) appertain to the Great Arc Meridional Series, Section 8° to 18°.

At XLIX (Bhúpatamma)

March 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLVIII (Kolar)										$M=$ Mean of Groupe ${ }^{2}=$ Relative W eight $C=$ Concluded Angle
	$222^{\circ}{ }^{\prime}$	$42^{\circ} 0^{\prime}$	$301{ }^{\circ} 12^{\prime}$	$121^{\circ} 12^{\prime}$	20 ${ }^{\circ} 4^{\prime}$	$200^{\circ} 24^{\prime}$	$99{ }^{3} 6^{\prime}$	$279^{\circ} 35^{\prime}$	$178^{\circ} 48^{\prime}$	$358^{\circ} 47^{\prime}$	
```XLVIII (Kolar) and XVIII (Bandapalle)```	"	"	"	"	*	"	"	"	"	"	$\begin{aligned} M & =52^{\prime \prime} \cdot 96 \\ w & =15 \cdot 40 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =71^{\circ} 16^{\prime} 52^{\prime \prime} \cdot 96 \end{aligned}$
	52•16	52.14	53.79	$53 \cdot 20$	53'14	51*79	53*79	$53 \cdot 31$	$53^{\prime} 71$	52.60	
XVIII (Bandapalle)   and   $\mathbf{X X}$ (Yěrrakŏnda)	$l 25 \cdot 68 l 27 \cdot 16 l 25 \cdot 10 l 25 \cdot 04 l 25 \cdot 02 l 25 \cdot 78 l 26 \cdot 10 l 25 \cdot 12 l 25 \cdot 24 l 25 * 04$  										$\begin{aligned} M & =25^{\prime \prime} \cdot 78 \\ w & =26 \cdot 30 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =53^{\circ} 1^{\prime} 25^{\prime \prime} \cdot 78 \end{aligned}$
	$25 \cdot 47$	$26 \cdot 04$	25•93	$25 \cdot 35$	24.99	$26 \cdot 15$	26.61	$25 \cdot 36$	26•13	25.81	

## At XVIII (Bandapalle)

*March'1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1. $\dagger$ January 1867; observed by Lieutenant W. M. Campbell, R.E., with I'roughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLIX (Bhupatamma)										$M=$ Mean of Groups   vo Relative Weight   $\boldsymbol{C}=$ Concluded Angle
$\begin{aligned} & \text { XLIX (Bhúpatamma) } \\ & \text { and } \\ & \text { XLVIII (Kolar) } \end{aligned}$	$l 35 \cdot 56 l 36 \cdot 38 \quad l \quad 36 \cdot 20 l 37 \cdot 36 l 36 \cdot 08 l 36 \cdot 76 l 39 \cdot 28 l 36 \cdot 30 l 36 \cdot 88 \quad l \quad 36 \cdot 16$  										$\begin{aligned} M & =3^{\prime \prime \prime} \cdot 96 \\ w & =13 \cdot 90 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =33^{\circ} 43^{\prime} 36^{\prime \prime} \cdot 96 \end{aligned}$
	36.68	$37 \cdot 35$	$36 \cdot 83$	37-34	$35 \cdot 87$	37-03	38.55	36•55	37-21	$36 \cdot 20$	
$\begin{gathered} \stackrel{+}{+} \\ \text { XLVIII (Kolar) } \\ \text { and } \\ \text { XIX (Kurudamale) } \end{gathered}$	Circle readings, telescope being set on XLVIII (Kolar)										$\begin{aligned} & M=23^{\prime \prime} \cdot 69 \\ & w=6 \cdot 30 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=82^{\circ} 5^{\prime} 23^{\prime \prime} \cdot 69 \end{aligned}$
	$82^{\circ} 52^{\prime}$	$262^{\circ} 52^{\prime}$	$162^{\circ} 4^{\prime}$	$342^{\circ} 4^{\prime}$	$241^{\circ} 16^{\prime}$	$61^{\circ} 16^{\prime}$	$320^{\circ} 28^{\prime}$	$140^{\circ} 28^{\prime}$	$39^{\circ} 40^{\prime}$	$219^{\circ} 40^{\prime}$	
	$22 \cdot 57$	22.61	24•17	$25^{\circ} 21$	$23 \cdot 37$	$25^{\circ} 04$	$22 \cdot 27$	23.55	$25^{\circ} 41$	22.69	
```IIX (Kurudamale) and XXI (Káraveri)```	      $l 56 \cdot 44$ $l 55^{\prime} 90$										$\begin{aligned} M & =55^{\prime \prime} \cdot 47 \\ w & =1^{1} \cdot 82 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =66^{\circ} 57^{\prime} 55^{\prime \prime} \cdot 47 \end{aligned}$
	55*53	55:23	55'15	56.81	54•71	$55^{\circ} \mathrm{I}$	55*45	$55 \cdot 63$	55*2I	$55^{\prime} 72$	

Nore.—Stations XLVIII (Kolar) and XLIX (Bhúpatamma) appertain to the Great Arc Meridional Series, Section 8° to 18°.

Nore.—Stations XLVIII (Kolar) and XLIX (Bhúpatamma) appertain to the Great Arc Meridional Series, Section $\mathbf{8}^{\circ}$ to $\mathbf{1 8}^{\circ}$.

At XX (Yĕrrakðnda)

February 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XLIX (Bhúpatamma) $\begin{array}{llllllllll}125^{\circ} & 27^{\prime} & 305^{\circ} 27^{\prime} & 204^{\circ} 39^{\prime} & 24^{\circ} 39^{\prime} & 283^{\circ} 51^{\prime} & 103^{\circ} 51^{\prime} & 3^{\circ} 3^{\prime} & 183^{\circ} 3^{\prime} & 82^{\circ} 14^{\prime}\end{array} \quad 262^{\circ} 14^{\prime}$										$M=$ Mean of Groupe w = Relative Weight $C=$ Concluded Angle
```XLIX (Bhúpatamma) and XVIII (Bandapalle)```	    										$\begin{aligned} M & =21^{\prime \prime} \cdot 17 \\ w & =16 \cdot 40 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =73^{\circ} 8^{\prime} 21^{\prime \prime} \cdot 17 \end{aligned}$
	22.25	$22 \cdot 21$	$19^{\prime} 92$	$20 \cdot 49$	20•77	21•11	21:20	21.07	21.63	21.07	
```XVIII (Bandapalle) and XXII (Krishnamakŏnda)```	    										$\begin{aligned} & M=36^{\prime \prime} \cdot 00 \\ & w=22 \cdot 70 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=52^{\circ} 17^{\prime} 36^{\prime \prime} \cdot 00 \end{aligned}$
	35\%91	35•18	36•39	35779	$35 \cdot 66$	35*09	$36 \cdot 05$	36•37	$36 \cdot 63$	36•88	

At XXI (Káraveri)
February 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch I'heodolite No. 1.

Norr.-Station XLIX (Bhúpatamma) appertains to the Great Arc Meridional Series, Section 8° to 18°.

At XXI (Káraveri)-(Continued).

Angle between	Circle readings, telescope being set on XXIV (Patikŏnda)										$\boldsymbol{M}=$ Mean of Groups ${ }^{20}$ = Relative Weight C = Concluded Angle
XVIII (Bandapalle) and	$\begin{gathered} \prime \prime \\ l 20 \cdot 62 \\ l \\ l \\ l \\ l \\ 22 \cdot 12 \end{gathered}$	$$	$\begin{array}{cc} & " \\ l & 23.24 \\ l & 20 \cdot 10 \\ l & 20 \cdot 64 \\ l & 22 \cdot 06 \end{array}$	$$	$\begin{array}{cc} & n \\ l & 19 \cdot 34 \\ l & 21.36 \\ l & 20.38 \end{array}$	$\begin{array}{cc} & \prime \prime \\ l & 20 \cdot 70 \\ l & 20 \cdot 20 \\ l & 20 \cdot 60 \end{array}$	$\begin{array}{cc} & " \\ l & 22 \cdot 18 \\ l & 22 \cdot 96 \\ l & 22.50 \end{array}$	$\begin{aligned} & 20 \cdot 80 \\ & 20 \cdot 16 \\ & 20 \cdot 80 \end{aligned}$	$\begin{gathered} " \\ l 20 \cdot 24 \\ l \\ l \\ l \\ l o \cdot 42 \\ l \\ 20 \cdot 78 \end{gathered}$	$\begin{aligned} & 20 \cdot 90 \\ & 20 \cdot 88 \\ & 22 \cdot 28 \end{aligned}$	$\begin{aligned} & M=21^{\prime \prime \cdot} \cdot 00 \\ & w=13 \cdot 96 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=41^{\circ} 44^{\prime} 21^{\prime \prime} \cdot 00 \end{aligned}$
	${ }^{21} \cdot{ }^{32}$	19*93	21.51	21.41	20•39	$20 \cdot 50$	$22 \cdot 55$	$20 \cdot 59$	$20 \cdot 48$	21.35	

At XXII (Krishnamakŏnda)

February 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XX (Yerrakŏnda)										$M=$ Mean of Groups $w^{*}=$ Relative Weight C = Concluded Angle
$\begin{gathered} \text { XX (Yěrrakŏnda) } \\ \text { and } \\ \text { XVIII (Bandapalle) } \end{gathered}$	$\begin{array}{ll} l & 26 \cdot 04 \\ l & 25 \cdot 22 \\ l & 26.54 \end{array}$	$\begin{aligned} & 24.40 \\ & 25.82 \\ & 27.06 \end{aligned}$	$\begin{array}{ll} l & 26 \cdot 58 \\ l & 24 \cdot 92 \\ l & 27 \cdot 20 \end{array}$		$\begin{array}{lc} \\ l & 25.42 \\ l & 24.66 \\ l & 23.98\end{array}$		$$	$\begin{array}{cc} & \prime \prime \\ l & 29 \cdot 14 \\ l & 25.40 \\ l & 26 \cdot 00 \\ l & 25.40 \end{array}$	$\begin{array}{ll} l & 25: 26 \\ l & 25: 76 \\ l & 25 \cdot 98 \end{array}$	$$	$\begin{aligned} & M=25^{\prime \prime} \cdot 85 \\ & w=12 \cdot 08 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=56^{\circ} 47^{\prime} \cdot 25^{\prime \prime} \cdot 86 \end{aligned}$
	25.93	25:76	$26 \cdot 23$	27.21	$24 \cdot 69$	$25 * 83$	25'97	$26 \cdot 48$	$25 \cdot 67$	$24 * 69$	
$\begin{aligned} & \text { XVIII (Bandapalle) } \\ & \text { and } \\ & \text { XXI (Káraveri) } \end{aligned}$											$\begin{aligned} & M=45^{\prime \prime} \cdot 89 \\ & w=15 \cdot 98 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=56^{\circ} 57^{\prime} 45^{\prime \prime} \cdot 89 \end{aligned}$
	45.09	$45 \cdot 83$	44*79	$45^{\circ} 46$	$46 \cdot 42$	47×03	45*95	$45 \cdot 50$	$46 \cdot 25$	$46 \cdot 60$	
$\begin{gathered} \text { XXI (Káraveri) } \\ \text { and } \\ \text { XXIII (Devarakǒnda) } \end{gathered}$	$\begin{aligned} & l 33 \cdot 24 \\ & l 33 \cdot 56 \\ & l 33 \cdot 84 \end{aligned}$	$\begin{aligned} & 34 \cdot 26 \\ & 32 \cdot 60 \\ & 33 \cdot 56 \end{aligned}$	$\begin{array}{ll} l & 34 \cdot 50 \\ l & 34 \cdot 80 \\ l & 33 \cdot 06 \end{array}$	$\begin{aligned} & l 32 \cdot 94 \\ & l \\ & l \\ & l 3 \cdot 12 \\ & l \\ & l 3 \cdot 60 \end{aligned}$	$\begin{aligned} & l 33 \cdot 20 \\ & l \end{aligned} 3 \cdot 1 \cdot 12$	$\begin{aligned} & l \begin{array}{l} l 3 \cdot 02 \\ l \\ l \\ l \\ l \\ l \end{array} 3^{2 \cdot} \cdot 32 \\ & \hline 244 \end{aligned}$	$\begin{aligned} & l 33 \cdot 16 \\ & l 33 \cdot 22 \\ & l 33 \cdot 26 \end{aligned}$	$\begin{aligned} & l \begin{array}{l} l \\ l \\ l \\ l \end{array} 32.40 \\ & l \\ & 32 \cdot 62.62 \end{aligned}$	$\begin{aligned} & l 32 \cdot 02 \\ & l \\ & l \\ & l \\ & l \\ & 32 \cdot 70 \\ & 33 \cdot 38 \end{aligned}$	$\begin{array}{ll} l & 33 \cdot 18 \\ l & 32 \cdot 90 \\ l & 33 \cdot 28 \end{array}$	$\begin{aligned} M & =33^{\prime \prime} \cdot 20 \\ w & =33 \cdot 30 \\ \frac{\mathbf{I}}{w} & =0 \cdot 03 \\ C & =45^{\circ} 28^{\prime} 33^{\prime \prime} \cdot 20 \end{aligned}$
	33.55	33.47	34-12	$33 \cdot 22$	$33 \cdot 47$	32.59	33.21	32.53	32.70	33.12	
XXIII (Devarakŏnda) and XXVI (Satghur)	 										$\begin{aligned} M & =33^{\prime \prime} \cdot 08 \\ w & =27 \cdot 00 \\ \frac{\mathbf{I}}{w} & =0 \cdot 04 \\ C & =38^{\circ} 50^{\prime} 33^{\prime \prime} \cdot 08 \end{aligned}$
	33.54	$32 \cdot 44$	32.95	$33 \cdot 87$	32.95	$33 \cdot 61$	32.43	$32 \cdot 96$	32•71	$33 \cdot 31$	

At XXIV (Patikŏnda)-(Continued).

At XXV (Mugali)
February 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Angle between	Circle readings, telescope being set on XXVIII (Muruktŏre)										$M=$ Mean of Groups ${ }^{w}=$ Relative Weight C = Concluded Angle
```XXVIII (Muruktŏre) and XXVII (Batinkŏnda)```											$\begin{aligned} & M=60^{\prime \prime} \cdot 47 \\ & w=33 \cdot 67 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=47^{\circ} 55^{\prime} \quad 0^{\prime \prime} \cdot 47 \end{aligned}$
	$60 \cdot 0$	60.75	60.10	60•99	$60 \cdot 44$	59’77	60:80	60.17	60.76	60.91	
```XXVII (Batinkǒnda) and XXVI (Satghur)```	    										$\begin{aligned} & M=23^{\prime \prime} \cdot 30 \\ & w=16 \cdot 70 \\ & \frac{I}{w}=0 \cdot 06 \\ & C=84^{\circ} 19^{\prime} 23^{\prime \prime} \cdot 30 \end{aligned}$
	24.3	$22 \cdot 54$	23.90	$22 \cdot 66$	23.70	24.23	23.11	$22 \cdot 87$	$23 \cdot 13$	22.43	
$\begin{gathered} \text { XXVI (Satghur) } \\ \text { and } \\ \text { XXIII (Devarakŏnda) } \end{gathered}$	 										$\begin{aligned} M & =25^{\prime \prime} \cdot 7 \mathrm{I} \\ w & =25 \cdot 00 \\ \frac{\mathbf{I}}{w} & =0 \cdot 04 \\ C & =39^{\circ} 20^{\prime} 25^{\prime \prime} \cdot 71 \end{aligned}$
	24.6	$26 \cdot 47$	$25 \cdot 06$	$26 \cdot 25$	$26 \cdot 21$	$25 \cdot 6+$	$25 \cdot 62$	25.93	26-10	25.23	
XXIIl (Devarakǒnda) and XXIV (Patikǒnda)	 										$\begin{aligned} M & =60^{N} \cdot 79 \\ w & =34 \cdot 50 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =31^{\circ} 26^{\prime} \quad 0^{N} \cdot 79 \end{aligned}$
	61.5	60.49	61.77	60. 53	6! $\cdot 05$	$60 \cdot 67$	60-19	$60 \cdot 59$	$60 \cdot 45$	$60 \cdot 66$	

At XXVI (Satghur)

February 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Angle between \& \multicolumn{10}{|c|}{Circle readings, telescope being set on XXII (Krishnamakŏnda)} \& \begin{tabular}{l}
\(M=\) Mean of Groups \\
\(w_{0}=\) Relative \(W\) eight \\
\(C=\) Concluded Angle
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
XXII (Krishnamakǒnda) \\
and \\
XXIII (Devarakŏnda)
\end{tabular}} \& \begin{tabular}{llll}
\(l\) \& 24.64 \\
\(l\) \& 25 \& \\
\(l\) \\
\(l\) \& 25.00 \& \(l\) \\
\hline
\end{tabular} \& 24.64
26.66
25.52 \& \(\prime \prime\)
24.72
25.26
25
25 \& l \(\begin{gathered}\text { 26.76 } \\ l \\ l \\ 25 \cdot 62 \\ l \\ 26 \cdot 12\end{gathered}\) \& \& \(\prime \prime\)
\(h 25 \cdot 48 . l\)
\(h 24 \cdot 74 l\)
\(l\)
\(26 \cdot 50 . l\) \& "
\(26 \cdot 04\)
\(26 \cdot 14\)
\(25 \cdot 82 l\) \& \(\begin{array}{ccc}l \& 27 \cdot 26 \& l \\ l \& 25.04 \& l \\ l \& 25.06 \& l\end{array}\) \& \(\prime \prime\)
\(l 23 \cdot 82\)
\(l\)
\(24 \cdot 72\)
\(l\)
\(24 \cdot 12\) \& \(\begin{array}{ll} \\ l \& 26 \cdot 52 \\ l \& 25 \cdot 20 \\ l \& 26 \cdot 56\end{array}\) \& \multirow[t]{2}{*}{\[
\begin{aligned}
M \& =25^{\prime \prime} \cdot 5^{2} \\
w \& =21 \cdot 70 \\
\frac{1}{w} \& =0 \cdot 05 \\
C \& =60^{\circ} 41^{\prime} 25^{\prime \prime} \cdot 5^{2}
\end{aligned}
\]} \\
\hline \& 25.07 \& 25.61 \& 25.18 \& 26•17 \& 25.45 \& 25.57 \& \(26 \cdot 00\) \& 25:79 \& \(24 \cdot 22\) \& \(26 \cdot 09\) \& \\
\hline \multirow[t]{2}{*}{```
XXIII (Devarakǒnda)
and
XXV (Mugali)
```} \&  \& 7.88
7.88
77.62 \& \(l\)
\(l\)
\(l\)
\(l\)
\(l\)
\(l\)
7
7 \&  \& \(\begin{array}{ll}h \& 8 \cdot 40 \\ h \& 8 \cdot 88 \\ h \& 7 \cdot 44\end{array}\) \& \(h\)
9.70
9.08
h

9 \& $\begin{array}{ll}l & 7 \cdot 06 \\ l & 6 \cdot 96 \\ l & 9 \cdot 12\end{array}$ \& $l$
$l$ 6.146 \& $l$
$l$
$l$
$10 \cdot 42$
$l 11$

11 \& | $l$ |
| :---: |
| $l$ |
| $l$ |
| $l$ |
| $l$ | 9.048 \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& M=8^{\prime \prime} \cdot 6 \mathrm{I} \\
& w=9 \cdot 60 \\
& \frac{1}{w}=0 \cdot 10 \\
& C=5^{\circ} 8^{\prime} 8^{\prime \prime} \cdot 61
\end{aligned}
$$
\]} <br>

\hline \& $8 \cdot 06$ \& $8 \cdot 13$ \& $8 \cdot 67$ \& $8 \cdot 79$ \& $8 \cdot 24$ \& 9•26 \& 7 71 \& $7 \times 46$ \& 10•72 \& 9.01 \& <br>

\hline \multirow[t]{2}{*}{\[
$$
\begin{gathered}
\text { XXV (Mugali) } \\
\text { and } \\
\text { XXVII (Batinkŏnda) }
\end{gathered}
$$

\]} \& \multicolumn{10}{|l|}{|  |
| :--- |
|  |
|  |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
M & =23^{\prime \prime} \cdot 67 \\
w & =9 \cdot 80 \\
\frac{1}{w} & =0 \cdot 10 \\
C & =5^{\circ}{ }^{\circ} 10^{\prime} 23^{\prime \prime} \cdot 67
\end{aligned}
$$
\]} <br>

\hline \& 23.50 \& 25.10 \& 23.09 \& $22 \cdot 33$ \& 24.11 \& $24 \cdot 66$ \& $23 \cdot 71$ \& 24.66 \& $22 \cdot 65$ \& 22.91 \& <br>

\hline \multirow[t]{2}{*}{| XXVII (Batinkŏnda) |
| :--- |
| and |
| XXIX (Kailásgarh) |} \& \multicolumn{10}{|l|}{} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& M=56^{\prime \prime} \cdot 35 \\
& w=6 \cdot 76 \\
& \frac{1}{w}=0 \cdot 15 \\
& C=30^{\circ} 21^{\prime} 56^{\prime \prime} \cdot 35
\end{aligned}
$$
\]} <br>

\hline \& 5717 \& 55.08 \& 56.01 \& 57.51 \& 56.03 \& 54.08 \& 57*40 \& $56 \cdot 42$ \& $5 7 \longdiv { 2 4 }$ \& 56.54 \& <br>

\hline \multicolumn{12}{|l|}{| At XXVII (Batinkŏnda) |
| :--- |
| .January 1866 ; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch T'heodolite No. 1. |} <br>


\hline Angle between \& \multicolumn{10}{|c|}{Circle readings, telescope being set on XXV (Mugali)} \& | $M=$ Mean of Groups |
| :--- |
| $w=$ Relative Weight |
| $C=$ Concluded Angle | <br>

\hline \multirow[t]{2}{*}{$$
\begin{gathered}
\text { XXV (Mugali) } \\
\text { and } \\
\text { XXVIII (Muruktöre) }
\end{gathered}
$$} \& \multicolumn{10}{|l|}{} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
M & =2^{\prime \prime} \cdot 42 \\
w & =37 \cdot 00 \\
\frac{1}{w} & =0 \cdot 03 \\
C & =56^{\circ} 44^{\prime} \quad 2^{N} \cdot 42
\end{aligned}
$$
\]} <br>

\hline \& $2 \cdot 26$ \& 1•71 \& $2 \cdot 53$ \& 3.44 \& $2 \cdot 13$ \& $2 \cdot 73$ \& $2 \cdot 59$ \& $2 \cdot 26$ \& $2 \cdot 22$ \& $2 \cdot 37$ \& <br>

\hline \multirow[t]{2}{*}{| XXVIII (Muruktöre) |
| :--- |
| and |
| XXX (Pullar) |} \& \[

$$
\begin{array}{lll}
h & 8 \cdot 36 \\
h & 8 \cdot 36 \\
h & 7 \cdot 84
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& l 8.96 \\
& l \\
& l \\
& l \\
& l \\
& 9.04 \\
& 9.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& l 8.56 \\
& l 8.50 \\
& l 8.38
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
l & 8 \cdot 86 \\
l & 9.50 \\
l & 8.54
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
l & 6.86 \\
l & 8.02 . \\
h & 7.50
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
l & 8 \cdot 08 \\
l & 8 \cdot 58 \\
l & 8 \cdot 14
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
l & 8.58 \\
l & 7.58 \\
l & 7.58
\end{array}
$$

\] \& \[

$$
\begin{gathered}
h 8.94 \\
h \\
h 8.36 \\
l 8.64
\end{gathered}
$$

\] \& \[

$$
\begin{array}{ll}
l & 8 \cdot 54 \\
l & 9.44 \\
l & 9.72
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
l & 9.82 \\
l & 8 \cdot 04 \\
l & 9.34
\end{array}
$$

\] \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
M & =8^{\prime \prime} \cdot 53 \\
w & =25 \cdot 60 \\
\frac{\mathbf{I}}{w} & =0 \cdot 04 \\
C & =54^{\circ} 7^{\prime} 8^{\prime \prime} \cdot 53
\end{aligned}
$$
\]} <br>

\hline \& 8-19 \& 9•07 \& $8 \cdot 48$ \& $8 \cdot 97$ \& $7 \times 46$ \& $8 \cdot 27$ \& 7-91 \& $8 \cdot 65$ \& $9 \cdot 23$ \& 9.07 \& <br>
\hline
\end{tabular}



## At XXXIX (Kailásgarh)

January 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

| Angle between | Circle readings, telescope being set on XXVI (Satghur) |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> $v_{0}=$ Relative Weight <br> $C=$ Concluded Angle | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\begin{gathered} \text { XXVI (Satghur) } \\ \text { and } \\ \text { XXVII (Batinkŏnda) } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=27^{\prime \prime} \cdot 68 \\ & w=21 \cdot 86 \\ & \frac{I^{\prime}}{w}=0 \cdot 05 \\ & C=81^{\circ} 48^{\prime} 27^{\prime \prime} \cdot 68 \end{aligned}$ |
|  | $28 \cdot 28$ | 27•33 | $27 \cdot 86$ | 28.08 | $26 \cdot 55$ | 27-98 | 27•37 | 27-31 | 28.41 | $27 \cdot 67$ |  |
| XXVII (Batinkŏnda) <br> and <br> XXXI (Anandalamalai) |  <br>  <br>  $h_{49}{ }^{6} 0$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =49^{\prime \prime} \cdot 01 \\ w & =19^{\cdot 01} \\ \frac{1}{w} & =0 \cdot 05 \\ C & =61^{\circ} 39^{\prime} 49^{\prime \prime} \cdot 01 \end{aligned}$ |
|  | 49'12 | 49.25 | $48 \cdot 69$ | $48 \cdot 89$ | $49 \cdot 89$ | 49*70 | 48•36 | $49 \cdot 25$ | 47•74 | 49•19 |  |
| *April 1865 and $\dagger$ January 1866; observed by Captain B. R. Branfill with Troughton and Simms' $24-\mathrm{inch}$ Theodolite No. 1. |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | Circle readings, telescope being set on XXXIII (Nagari) <br> $113^{\circ} 42^{\prime} \quad 293^{\circ} 42^{\prime} \quad 192^{\circ} 55^{\prime} \quad 12^{\circ} 55^{\prime} \quad 272^{\circ} 7^{\prime} \quad 92^{\circ} 6^{\prime} \quad 851^{\circ} 18^{\prime} \quad 171^{\circ} 18^{\prime} \quad 70^{\circ} 30^{\prime} \quad 250^{\circ} 30^{\prime}$ |  |  |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groups <br> $w^{*}=$ Relative Weight <br> C $=$ Concluded Anglo |
| $\begin{aligned} & \text { XXXIII (Nagari) } \\ & \text { and } \\ & \text { XXXII (Kurumkota) } \end{aligned}$ |  <br>  <br>  h 60 . 06 |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=61^{\prime \prime} \cdot 19 \\ & w=9 \cdot 96 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=57^{\circ} 46^{\prime} \quad 1^{\prime \prime} \cdot 19 \end{aligned}$ |
|  | 60•99 | $60 \cdot 82$ | 62.77 | 61.25 | 61•14 | 61 35 | 60*38 | $60 \cdot 52$ | $62 \cdot 57$ | 60\%06 |  |
| XXXII (Kurumkota) <br> and <br> XXXI (Anandalamalai) |  <br>  <br>  h $47{ }^{\circ} 40$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =45^{\prime \prime} \cdot 68 \\ w & =10 \cdot 24 \\ \frac{1}{w} & =0 \cdot 10 \\ C & =55^{\circ} 55^{\prime} 45^{\prime \prime \prime} \cdot 68 \end{aligned}$ |
|  | 47*O1 | $46 \cdot 43$ | $44 \cdot 38$ | $44 \cdot 38$ | 46•47 | $45 \cdot 06$ | $45 \cdot 17$ | 46•09 | $45 \cdot 65$ | $46 \cdot 13$ |  |
| ```XXXI (Anandalamalai) and XXVII (Batinkǒnda)``` |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =60^{\prime \prime} \cdot 23 \\ w & =12 \cdot 70 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =56^{\circ} 18^{\prime} \quad 0^{\prime \prime} \cdot 23 \end{aligned}$ |
|  | 61.01 | 60.91 | $60 \cdot 17$ | $60 \cdot 87$ | $58 \cdot 74$ | 60'14 | $61 \cdot 13$ | $59 * 43$ | 60'59 | 59.28 |  |

## At XXX (Pullur)-(Continued).



## At XXXI (Anandalamalai)

*April 1865 and †January 1866; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

| Angle between | Circle readings, telescope being set on XXIX (Kailásgarh) |  |  |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{20}=$ Relative Woight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $114^{\circ} 33^{\prime}$ | 294 ${ }^{\circ} 33^{\prime}$ | $193^{\circ} 45^{\prime}$ | $13^{\circ} 45^{\prime}$ | $272^{\circ} 57^{\prime}$ | ${ }^{92}{ }^{\circ} 57^{\prime}$ | $852^{\circ} 9$ | $172^{\circ} 9$ | $71^{\circ} 26^{\prime}$ | $251{ }^{\circ} 26^{\prime}$ |  |
| $\begin{gathered} \stackrel{\dagger}{\text { XXIX (Kailásgarh) }} \\ \text { and } \\ \text { XXVII (Batinkð̌nda) } \end{gathered}$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=42^{\prime \prime} \cdot 50 \\ & w=15 \cdot 20 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=34^{\circ} 15^{\prime} 42^{\prime \prime} \cdot 50 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 42.83 | 42.51 | $42 \cdot 65$ | $42 \cdot 22$ | 42•26 | $42 \cdot 67$ | 41 35 | 42'99 | $41 \cdot 66$ | $43 \cdot 87$ |  |
| $\begin{gathered} \text { XXVII (Batinkŏnda) } \\ \text { and } \\ \text { XXX (Pullúr) } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =35^{\prime \prime} \cdot 74 \\ w & =16 \cdot 96 \\ \frac{1}{w} & =0 \cdot 06 \\ C & =63^{\circ} 57^{\prime} 35^{\prime \prime} \cdot 73 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 35*99 | $35 \cdot 84$ | $34 * 29$ | 35*59 | $36 \cdot 42$ | $35 * 93$ | $35 \cdot 59$ | 36.30 | 36•55 | 34*90 |  |
|  | Circle readings, telescope being set on $X X X$ (Pullúr) <br> $\begin{array}{llllllllll}133^{\circ} 14^{\prime} & 313^{\circ} 13^{\prime} & 212^{\circ} 25^{\prime} & 82^{\circ} 25^{\prime} & 291^{\circ} 38^{\prime} & 111^{\circ} 38^{\prime} & 10^{\circ} 50^{\prime} & 190^{\circ} 48^{\prime} & 90^{\circ} \mathbf{2}^{\prime} & 270^{\circ} \mathbf{2}^{\prime}\end{array}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =63^{\prime \prime} \cdot 27 \\ w & =6 \cdot 86 \\ \frac{1}{w} & =0 \cdot 15 \\ C & =79^{\circ} 58^{\prime} \quad 3^{\prime \prime} \cdot 26 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 60.35 | 64.59 | $63 \cdot 29$ | $63 \cdot 14$ | 63.51 | 63*95 | $63 \cdot 71$ | $62 \cdot 84$ | $63 \cdot 70$ | 63.63 |  |
| XXXII (Kurumkota) <br> and XXXIV (Mávandár) |  <br>  <br>  <br>  h $39^{\circ}{ }^{\circ}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =3^{\prime \prime} \cdot 80 \\ w & =14 \cdot 30 \\ \frac{I}{w} & =0 \cdot 07 \\ C & =53^{\circ} 14^{\prime} 38^{N} \cdot 81 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 39*71 | 39.60 | 38.59 | 38.31 | 38.09 | $38 \cdot 29$ | 38.06 | $38 \cdot 68$ | 38-95 | 39'70 |  |

## At XXXI (Anandalamalai)-(Continued).



Notr.-R. M. denotes Referring Mark.

| At XXXII (Kurumkota)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on XXXV1 (Malaipedu) |  |  |  |  |  |  |  |  |  | $M=$ Moan of Groupo R <br>  |
| XXXIII (Nagari) and XXXV (Chembedu) |  <br>  <br>  $\begin{array}{ll}l & 14.30 \\ l & 13.46\end{array}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =12^{\prime \prime} \cdot 76 \\ w & =19 \cdot 01 \\ \frac{1}{w} & =0 \cdot 05 \\ C & =70^{\circ} 27^{\prime} 12^{\prime \prime} \cdot 77 \end{aligned}$ |
|  | $12 \cdot 79$ | 13.09 | 13•13 | 12'97 | $12 \cdot 65$ | 13.27 | 12.43 | 13.55 | ${ }_{11} 8_{4}$ | 11.84 |  |
| $\begin{gathered} \text { XXXV (Chèmbedu) } \\ \text { and } \\ \text { XXXVI (Malaipedu) } \end{gathered}$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=17^{\prime \prime} \cdot 5 \mathbf{I} \\ & w=13 \cdot 83 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=69^{\circ} 22^{\prime} 17^{\prime \prime} \cdot 5^{\prime} \end{aligned}$ |
|  | $17 \cdot 14$ | ${ }^{17} 17$ | 17.80 | 17.50 | 18.07 | $17 \times 03$ | $17 \times 49$ | $16 \cdot 44$ | 17•39 | 19.07 |  |

## At XXXIII (Nagari)

March 1865; observed by Captain B. R. Branfill with Troughton and Sinms' 24-inch Theodolite No. 1.

| Angle between | Circle readings, telescope being set on XXXV (Chy̌mbedu) |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> $\stackrel{*}{C}=$ Relative Woight | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| XXXV (Chĕmbedu) and XXXII (Kurumkota) |  <br>  <br>  <br> $l 53.56$ <br> h 54 -68 |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=55^{\prime \prime} \cdot 02 \\ & w=6 \cdot 74 \\ & \frac{1}{w}=0 \cdot 15 \\ & C=4^{\circ} \quad 6^{\prime} 55^{\prime \prime} \cdot 01 \end{aligned}$ |
|  | $55 \cdot 67$ | 54.95 | 53.04 | 55*68 | 54*53 | 56•16 | 53.45 | 55*47 | 54*70 | 56.59 |  |
| XXXII (Kurumkota) <br> and XXX (Pullúr) |  <br>  <br>  $h_{10} 166$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =9^{\prime \prime} \cdot 80 \\ w & =12 \cdot 91 \\ \frac{1}{w} & =0 \cdot 08 \\ C & =82^{\circ} 5^{\prime} 9^{\prime \prime} \cdot 81 \end{aligned}$ |
|  | $10 \cdot 52$ | 10. 26 | $10 \cdot 17$ | 8•98 | $8 \cdot 67$ | 9:23 | 10. 29 | $9 \cdot 23$ | 9*90 | 10.72 |  |
| At XXXIV (Mávandúr) <br> *April 1865 and †January 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch I'heodolite No. 1. |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | Circle readings, telescope being set on XXXI (Anandalamalai) |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> C = Concluded Angle |
|  | $118^{\circ} 12^{\prime}$ | $209^{\circ} 11$ | ${ }^{\circ} 24^{\prime}$ | $17^{\circ} 24^{\prime}$ | $276^{\circ} 36^{\prime}$ | $96^{\circ}{ }^{36}$ | $355^{\circ} 48^{\prime}$ | $175^{\circ} 48^{\prime}$ | $5^{\circ} 0^{\prime}$ | $255^{\circ} 0^{\prime}$ |  |
| XXXI (Anandalamalai) <br> and XXXII (Kurumkota) | " | " | " | " | " | - | " | " | " | " | $\begin{aligned} M & =53^{\prime \prime} \cdot 02 \\ w & =28 \cdot 30 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =69^{\circ} 36^{\prime} 53^{\prime \prime} \cdot 01 \end{aligned}$ |
|  |  <br>  <br>  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 54.08 | $53 \cdot 3^{8}$ | 52.94 | 52•86 | $53 \cdot 26$ | 53.02 | 53.08 | 52.31 | 53.04 | 52.26 |  |


| At XXXIV (Mávandúr)-(Continued). |  |  | |
|---|---|---|---|
| Angle betweon | Circle readings, telescope being set on XXXI (Anandalamalai) <br>  | $\begin{aligned} & \boldsymbol{M}=\text { Moen of Grorpe } \\ & \text { wo Rolative Wright } \\ & C=\text { Conoludod Angle } \end{aligned}$ |
| $\stackrel{*}{*}$XXXII (Kurumkota)andXXXXI (Malaipedu) |  <br>  <br>  $l 954$ | $\begin{aligned} & M=10^{\prime \prime \cdot} \cdot 76 \\ & w=59 \cdot 17 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=48^{\circ} 34^{\prime} 10^{\prime \prime} \cdot 76 \end{aligned}$ |
|  | 10.35 10.83 10.90 10.21 10.54 10.88 10.54 11.22 10.73 <br> 11         |  |
| $\underset{\text { XXXVI }}{\text { (Malaipedu) }}$ and XXXVIII (Tirumani) |  <br>  <br>  | $\begin{aligned} & M=54^{\mu} \cdot 3^{\mathrm{I}} \\ & w=7 \cdot \infty \\ & \frac{\mathrm{I}}{w}=0 \cdot 14 \\ & C=43^{\circ} 13^{\prime} 54^{\prime \prime} \cdot 3 \mathrm{I} \end{aligned}$ |
|  | $\begin{array}{llllllllllll}53.44 & 55.63 & 53.55 & 56.06 & 52 \cdot 70 & 55 \cdot 3 \mathrm{I} & 54.54 & 54.58 & 53.21 & 54.0\end{array}$ |  |
| XXXVIII (Tirumani)andXXXIX (Avirimodu) |  <br>  | $\begin{aligned} & M=4^{\prime \prime \prime} \cdot 17 \\ & w=12 \cdot 50 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=33^{\circ} 3^{8^{\prime}} 48^{\prime \prime} \cdot 17 \end{aligned}$ |
|  | $\begin{array}{lllllllllll}49 \cdot 13 & 47 \cdot 87 & 49 \cdot 04 & 46 \cdot 80 & 47 \cdot 61 & 48 \cdot 15 & 48 \cdot 13 & 47 \cdot 23 & 49 \cdot 22 & 48 \cdot 51\end{array}$ |  |
| At XXXV (Chĕmbedu) <br> May 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1. |  |  |
|  |  |  |  |
| Angle between | Circle readings, telescope being set on XXXVII (Madras Dome Observatory) <br>  |  |
| XXXVII (Medran Dome Oby.) <br> and <br> XXXVI (Malaipedu) |  <br>  <br>  | $\begin{aligned} & M=55^{\prime \prime} \cdot 55 \\ & w=6 \cdot 21 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=48^{\circ} 30^{\prime} 55^{\prime \prime} \cdot 54 \end{aligned}$ |
|  |  |  |
| $\begin{aligned} & \text { XXXVI (Malaipedu) } \\ & \text { and } \\ & \text { XXXI (Kurumkota) } \end{aligned}$ |  <br>  | $\begin{aligned} & M=39^{\prime \prime} \cdot 97 \\ & w=17 \cdot 46 \\ & \frac{1}{w}=0.06 \\ & C=52^{\circ} 3^{\prime} 39^{\prime \prime} \cdot 96 \end{aligned}$ |
|  | $\begin{array}{llllllllll}39.25 & 39.69 & 40.47 & 39.49 & 40.04 & 40 \cdot 22 & 40 \cdot 66 & 40.90 & 40.11 & 38.84\end{array}$ |  |

## At XXXV (Chěmbedu)-(Continued).



## At XXXVI (Malaipedu)

*May 1865 and $\dagger$ February 1880; observed by Lieut.-Colonel B. R. Branfil with Troughton and Simms' 24-inch I'heodolite No. 1.

| Angle between | Circle readings, telescope being set on XLIII (Mángád) <br> $\begin{array}{llllllllll}0^{\circ} 1^{\prime} & 180^{\circ} 1^{\prime \prime} & 79^{\circ} 13^{\prime} & 259^{\circ} 13^{\prime} & 158^{\circ} 24^{\prime} & 338^{\circ} 24^{\prime} & 237^{\circ} & 37^{\prime} & 57^{\circ} & 37^{\prime} \\ 816^{\circ} & 49^{\prime} & 186^{\circ} 49^{\prime}\end{array}$ |  |  |  |  |  |  |  |  |  | |
|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  <br>  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=17^{\prime \prime \prime} \cdot 43 \\ & w=14 \cdot 30 \\ & \frac{1}{w}=0 \cdot 07 \\ & C=43^{\circ} 46^{\prime} 17^{\prime \prime} \cdot 43 \end{aligned}$ |
|  | $17.37 \quad 18.05$ | 16.09 | 17'99 | 16.05 | 17.71 | $17 \cdot 56$ | $18 \cdot 32$ | 18.03 | $17 \cdot 11$ |  |
| $\stackrel{\dagger}{+}$XLII (Nanmangalam)andXLI (Pudupák) |  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=11^{N \cdot 63} \\ & w=23.80 \\ & \frac{1}{w}=0.04 \\ & C=35^{\circ} 44^{\prime} 11^{\prime \prime} .63 \end{aligned}$ |
|  | 11.95 11.64 | 12.19 | $10 \cdot 60$ | 12*46 | $11 \times 46$ | 12•38 | 10. 27 | 11.37 | 11.97 |  |
| $\begin{gathered} \stackrel{\dagger}{\text { XLI }} \text { (Pudupák) } \\ \text { and } \\ \text { XXXVIII (Tirumani) } \end{gathered}$ |  <br>  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=57^{\prime \prime \cdot 13} \\ & w=23 \cdot 30 \\ & \frac{1}{w}=0 \cdot 04 \\ & C=65^{\circ} 39^{\prime} 57^{\prime \prime} \cdot 13 \end{aligned}$ |
|  | $\begin{array}{ll}57.28 & 56 \cdot 25\end{array}$ | $57 \cdot 67$ | $56 \cdot 63$ | 57`77 | 56.94 | 56•14 | $57 \cdot 85$ | 57:30 | $57 \cdot 42$ |  |
| $\left.\stackrel{\dagger}{\text { XXXVIII (Tirumani) }} \begin{array}{c}\text { and } \\ \text { XXXIV (Mávandúr) }\end{array}\right)$ |  <br>  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =20^{\prime \prime} \cdot 74 \\ w & =27 \cdot 80 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =56^{\circ} 19^{\prime} 20^{\prime \prime} \cdot 74 \end{aligned}$ |
|  | $\begin{array}{llllllllll}20.74 & 20.56 & 21.13 & 21.92 & 19.90 & 20.88 & 20.69 & 20.57 & 20.73 & 20.32\end{array}$ |  |  |  |  |  |  |  |  |  |
| At XXXVI (Malaipedu)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on XXXIV (Mávandúr) |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> $\infty$ = Relative Weight <br> $C=$ Concluded Angle |
| $\begin{aligned} & \text { XXXIV (Mávandúr) } \\ & \text { and } \\ & \text { XXXII (Kurumkota) } \end{aligned}$ |  $l 6 \mathrm{I} \cdot 36 l 60 \cdot 76 l 62 \cdot 06 l 60 \cdot 06 l 60 \cdot 74 l 60 \cdot 30 l 60 \cdot 80 l 60 \cdot 40 l 60 \cdot 16 l 60 \cdot 54$ <br>  l 59.48 <br> $l 60 \cdot 96$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=60^{\prime \prime \cdot} \cdot 74 \\ & w=18 \cdot 42 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=52^{\circ} 39^{\circ} 0^{\prime \prime \cdot} \cdot 75 \end{aligned}$ |
|  | 61.25 | $60 \cdot 52$ | 62.05 | $60 \cdot 61$ | $60 \cdot 41$ | 59•73 | 61•04 | 60•97 | $60 \cdot 42$ | 60.42 |  |
| XXXII (Kurumkota) <br> and |  | $l$ $5 \cdot 78$ <br> $l$ 5 <br> $l$ 14 <br> $l$ 5 | $l$ $l$ 6.14 | $l$ $l$ : 76 | $\begin{array}{ll}l & 4.84 \\ l & 6.34 \\ l & 5.60\end{array}$ |  | $\begin{array}{ll}l & 4.24 \\ l & 5.54 \\ l & 4.84\end{array}$ | $l$ $l$ 4.78 | $\begin{array}{ll}l & 4.74 \\ l & 5.70 \\ l & 6.22\end{array}$ | $l$ $l$ 4.90 | $\begin{aligned} & M=5^{\omega \cdot} \cdot 39 \\ & w=43 \cdot 50 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=5^{\circ} \quad \mathbf{1}^{\prime} \quad 5^{\omega \prime} \cdot 39 \end{aligned}$ |
| XXXV (Chěmbedu) | 5•20 | 5*45 | 5.22 | 5:63 | 5•59 | 5•75 | $4 \cdot 87$ | $4 \cdot 84$ | 5•39 | 5*93 |  |
| XXXV (Chěmbedu) <br> and <br> XXXVII (Madras Dome Obeervatory) |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =20^{\prime \prime} \cdot 38 \\ w & =29 \cdot 40 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =62^{\circ} \quad 2^{\prime} 20^{\prime \prime} \cdot 38 \end{aligned}$ |
|  | 20.41 | 20•34 | 20.46 | 20.42 | 19*79 | 20•43 | 21•29 | 21-03 | 19.83 | 19.77 |  |

At XXXVII (Madras Dome Observatory)
June 1865; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

| Angle between | Circle readings, telescope being set on XXXVI (Malaipedu) |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> $w_{0}$ = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```XXXVI (Malaipedu) and XXXV (Chæ̆mbedu)``` |  <br>  <br>  $l 45 \cdot 20$ <br> $h_{47} \cdot 18 \quad h 47 \cdot 76$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=47^{\prime \prime} \cdot 07 \\ & w=10 \cdot 11 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=69^{\circ} 26^{\prime} 47^{\prime \prime} \cdot 08 \end{aligned}$ |
|  | 48.01 | 46•90 | 47-18 | 47*45 | 47•24 | $45 \cdot 27$ | 45'95 | $47^{\circ} 61$ | 47* 44 | 47-62 |  |
| At XXXVIII (Tirumani) |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | Circle readings, telescope being set on XXXIX (Avirimodu) |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> $C=$ Concluded $\mathbf{A n g l o}^{\text {n }}$ |
| XXXIV (Mávandár) |  <br>  <br>  $l 35 \cdot 69$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =35^{\prime \prime} \cdot 80 \\ w & =13 \cdot 34 \\ \frac{1}{w} & =0 \cdot 07 \\ C & =87^{\circ} 39^{\circ} 35^{\prime \prime} \cdot 80 \end{aligned}$ |
|  | 35.06 | 36•74 | 35*70 | $36 \cdot 21$ | 34*92 | 36.38 | 36•19 | $36 \cdot 69$ | 35.88 | 34*20 |  |


| At XXXVIII (Tirumani)-(Continued). |  |  |  |  |  |  |  |  |  |  |  | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Angle between | Circle readings, telescope being set on XXXIX (Avirimodu) |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=\text { Meen of Groupe } \\ & { }^{0}=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| XXXIV (Mávandúr)andXXXVI (Malaipedu) |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=47^{\prime \prime} \cdot 60 \\ & w=47 \cdot 84 \\ & \frac{1}{w}=0 \cdot 02 \\ & C=80^{\circ} 26^{\prime} 47^{\prime \prime} \cdot 60 \end{aligned}$ |
|  | 48.02 | 47•92 | $46 \cdot 92$ | $47 \cdot 78$ | $47 \cdot 83$ | 47•16 | 47*12 | $47 \times 97$ | 47.50 | 47.78 |  |
| XXXVI (Malaipedu) and XLI (Pudupak) |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=41^{\prime \prime} \cdot 87 \\ & w=20 \cdot 00 \\ & \frac{1}{v}=0 \cdot 05 \\ & C=45^{\circ} 45^{\prime} 41^{\prime \prime} \cdot 8 \eta \end{aligned}$ |
|  | 42-12 | 40.77 | 42.55 | 41.20 | 4180 | 4168 | 41.63 | 42:20 | 41.59 | 43.11 |  |
| $\begin{gathered} \text { XLI (Pudupák) } \\ \text { and } \\ \text { XL (Manamai Kunnatúr) } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=2^{\prime \prime} \cdot 59 \\ & w=40 \cdot 00 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=60^{\circ} 25^{\prime} \quad 2^{\prime \prime} \cdot 59 \end{aligned}$ |
|  | $2 \cdot 97$ | $3 \cdot 10$ | 239 | $2 \cdot 69$ | $2 \cdot 13$ | $3 \cdot 90$ | $2 \cdot 35$ | 1.87 | $2 \cdot 26$ | $2 \cdot$ |  |
| XL (Manamai Kunnatúr) <br> and <br> XXXIX (Avirimodu) |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=52^{\prime \prime \prime} \cdot 34 \\ & w=13 \cdot 20 \\ & \frac{1}{w}=0 \cdot 08 \\ & C=85^{\circ} 42^{\prime} 52^{\prime \prime \prime} \cdot 34 \end{aligned}$ |
|  | 51.75 | 5138 | 52.34 | 52.46 | 53*41 | 51.11 | 52.50 | 51•77 | 53.57 | 53.07 |  |
| January 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1. |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | Circle readings, telescope being set on XXXIV (Mávandár) <br> $\begin{array}{llllllllll}103^{\circ} 65^{\prime} & 289^{\circ} 56^{\prime} & 189^{\circ} 7^{\prime} & 3^{\circ} 7^{\prime} & 262^{\circ} 19^{\prime} & 82^{\circ} 19^{\prime} & 841^{\circ} 31^{\prime} & 161^{\circ} 3 z^{\prime} & 60^{\circ} 43^{\prime} & 240^{\circ} 44^{\prime}\end{array}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=\text { Mean of Groupp } \\ & \text { wo }=\text { Relative Wreigh } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| XXXIV (Mávandár) and XXXVIII (Tirumani) |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=3^{8^{\prime \prime} \cdot 04} \\ & w=10 \cdot 20 \\ & \frac{1}{w}=0 \cdot 10 \\ & C=5^{\circ} \cdot 41^{\prime} 38^{\prime \prime} \cdot 04 \end{aligned}$ |
|  | 38.35 | $38 \cdot 16$ | $37 \cdot 34$ | $38 \cdot 11$ | 40.23 | $37 \cdot 78$ | $38 \cdot 52$ | $37 \cdot 24$ | 38.02 | $36 \cdot 69$ |  |
| ```XXXVIII (Tirumani) and XL (Manamai Kunnatár)``` |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=53^{\prime \prime \prime} \cdot 90 \\ & w=22 \cdot 20 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=45^{\circ} 12^{\prime} 53^{\prime \prime} \cdot 90 \end{aligned}$ |
|  | 53.82 | $53 \cdot 16$ | $54 \cdot 78$ | 53.28 | 53'77 | 53.26 | $54 \cdot 65$ | $54 * 09$ | $53^{*} 47$ | 54.76 |  |


| At XL (Manamai Kunnatúr) <br> January 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on XXXIX (Avirimodu) |  |  |  |  |  |  |  |  | $\begin{aligned} M & =\text { Mean of Groupe } \\ w_{0} & =\text { Relative Weight } \\ C & =\text { Conoluded Angle } \end{aligned}$ |
| XXXIX (Avirimodu)andXXXVIII (Tirumani) |  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=15^{\prime \prime} \cdot 3^{I} \\ & w=18 \cdot 50 \\ & \frac{1}{w}=0 \cdot 05 \\ & C=49^{\circ} 4^{\prime} 15^{\prime \prime} \cdot 3^{1} \end{aligned}$ |
|  | 16.31 $\quad 15 \cdot 16$ | 14*72 | 15.09 | 15.82 | 15.09 | ${ }^{4} \cdot 81$ | $16 \cdot 11$ | 14.25 | 15.6 |  |
| XXXVIII (Tirumani) and XLI (Pudupák) |  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=16^{\star} \cdot 37 \\ & w=33 \cdot 30 \\ & \frac{1}{w}=0 \cdot 03 \\ & C=73^{\circ} 12^{\prime} 16^{\prime \prime} \cdot 37 \end{aligned}$ |
|  | $\begin{array}{llllllllll}16.00 & 16.39 & 16.58 & 17.32 & 16.35 & 16.47 & 15.41 & 15.91 & 16.64 & 16.58\end{array}$ |  |  |  |  |  |  |  |  |  |
| At XLI (Pudupák) <br> January 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1. |  |  |  |  |  |  |  |  |  |  |
| Angle betwee |  |  |  |  |  |  |  |  |  | $M=\begin{aligned} & \text { Mean of Groupe } \\ & 0\end{aligned}=$ Relative Weight <br> $\stackrel{\circ}{C}=$ Kolative |
| XL (Manamai $\cdot$ Kunnatúr)andXXXVIII (Tirumani) |  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=42^{\prime \prime} \cdot 18 \\ & w=16 \cdot 40 \\ & \frac{1}{w}=0 \cdot 06 \\ & C=46^{\circ} 22^{\prime} 42^{\prime \prime} \cdot 18 \end{aligned}$ |
|  | $\begin{array}{llll}42 \cdot 17 & 43 \cdot 38\end{array}$ | $41 \cdot 34$ | 42.52 | $40 \cdot 68$ | $42 \cdot 59$ | $42 \cdot 62$ | $42 \cdot 44$ | $41 \cdot 83$ | $42 \cdot 2$ |  |
| XXXVIII (Tirumani)andXXXVI (Malaipedu) |  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=23^{\prime \prime} \cdot 02 \\ & w=47 \cdot 60 \\ & \frac{1}{w}=0 \cdot \cdot 02 \\ & C=68^{\circ} 34^{\prime} 23^{\prime \prime} \cdot 02 \end{aligned}$ |
|  | $23 \cdot 16 \quad 23.06$ | 22.68 | $22 \cdot 60$ | $23 \cdot 32$ | 23.07 | $22 \cdot 75$ | $22 \cdot 91$ | 23.86 | 22.78 |  |
| XXXVI (Malaipedu) and XLII (Nanmangalam) |  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=44^{\prime \prime} \cdot 10 \\ & w=43 \cdot 50 \\ & \frac{I}{w}=0 \cdot 02 \\ & C=51^{\circ} 30^{\prime} 44^{\prime \prime} \cdot 10 \end{aligned}$ |
|  | $43 \cdot 77 \quad 44 \cdot 66$ | $44 \cdot 55$ | $44 \cdot 29$ | 44.27 | $43 \cdot 50$ | $44 \cdot 48$ | 44-28 | $43 \cdot 85$ | $43 \cdot 3$ |  |
| XLII (Nanmangalam) and XLV (Injambákam) |  <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 44 \\ & w=23 \cdot 80 \\ & \frac{I}{w}=0 \cdot 04 \\ & C=3^{\circ} 20^{\prime} 21^{\prime \prime} \cdot 44 \end{aligned}$ |
|  | $22^{\circ} 03$ 20.51 | 21.68 | 2170 | $21 \cdot 16$ | 2135 | 21.14, | 21.55 | 20.88 |  |  |

## At XLII (Nanmangalam)

February 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.


At XLIII (Mángád)
February 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

| Angle between |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XLIV (St. Thomas's Mount) and <br> XLII (Nanmangalam) | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} M & =17^{\prime \prime} \cdot 56 \\ w & =22 \cdot 70 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =44^{\circ} 59^{\prime} 17^{\prime \prime} \cdot 5^{\prime} \end{aligned}$ |
|  | $h 18.65$ $h 18.86$ | h 17.55 $h 17.76$ | $h 17.65$ $h 16.81$ | 17.55 18.43 | $l \begin{aligned} & l \\ & l \\ & 1 \\ & 18 \cdot 36\end{aligned}$ | $l 17.83$ $l$ 17.45 | $\begin{array}{r}16 \cdot 31 \\ 17 \\ \hline 15\end{array}$ | $h 17.29$ $h 18.58$ | $15 \cdot 72$ 16.29 | $l$ <br> 1 <br> $l$ <br> 17.66 <br> 172 |  |
|  | h $17 \times 97$ | h 17.34 | h $17 \times 34$ | $18 \cdot 38$ | $l 16 \cdot 54$ | $l 18.31$ | 17•76 | h 17.40 | $16 \cdot 75$ | $118 \cdot 0$ |  |
|  | 18.49 | 17.55 | 17.27 | 18.12 | 17.31 | $17 \cdot 86$ | 17.20 | $17 \cdot 76$ | $16 \cdot 25$ | 17•79 |  |


| At XLIII (Mángád)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> $v_{0}=$ Relative Weight <br> $C=$ Concluded Angle |
| XLII (Nanmangalam) <br> and <br> XXXVI (Malaipedu) |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =54^{\prime \prime} \cdot 26 \\ w & =23 \cdot 80 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =85^{\circ} 20^{\prime} 54^{\prime \prime} \cdot 26 \end{aligned}$ |
|  | 54•19 | $54 \cdot 13$ | 54.60 | 54*16 | $54 * 55$ | 52.98 | 54*73 | $54 \cdot 78$ | 54*99 | $53 \cdot 52$ |  |
| At XLIV (St. Thomas's Mount) |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | Circle readings, telescope being set on XLV (Injambákam) |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> $w=$ Relative Weight <br> $C=$ Concluded Angle |
| $\begin{aligned} & \text { XLV (Injambákam) } \\ & \text { and } \\ & \text { XLII (Nanmangalam) } \end{aligned}$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =54^{N \cdot 15} \\ w & =25 \cdot 82 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =44^{\circ} 57^{\prime} 54^{\prime \prime} \cdot 15 \end{aligned}$ |
|  | 54*07 | 54.57 | 54.03 | 54*14 | 52•99 | $54 \cdot 46$ | $53 \cdot 86$ | $54 \cdot 37$ | 55.03 | 53.98 |  |
| $\begin{aligned} & \text { XLII (Nanmangalam) } \\ & \text { and } \\ & \text { XLIII (Mángád) } \end{aligned}$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =5^{\prime \prime \prime} \cdot 79 \\ w & =3^{8} \cdot 50 \\ \frac{1}{w} & =0 \cdot 03 \\ C & =79^{\circ} 11^{\prime} 58^{N} \cdot 79 \end{aligned}$ |
|  | 59*49 | 57*91 | 58.91 | 59*04 | $58 \cdot 63$ | 59*41 | 58•33 | 59.02 | $58 \cdot 65$ | 58.55 |  |

## At XLV (Injambákam)

February 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

| Angle between | Circle readings, telescope being set on XLI (Pudupák) |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=\text { Mean of Groups } \\ & 20=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $118^{\circ} 9^{\prime}$ | $298{ }^{\circ} 9^{\prime}$ | $197^{\circ} 21^{\prime}$ | $17^{\circ} 21^{\prime}$ | 276 ${ }^{\circ} 33^{\prime}$ | $9663^{\prime}$ | 855 ${ }^{\circ} 45^{\prime}$ | $175^{\circ} 45^{\prime}$ | $74^{\circ} 57^{\prime}$ | $254{ }^{\circ} 57^{\prime}$ |  |
| $\begin{gathered} \text { XLI (Pudupák) } \\ \text { and } \\ \text { XLII (Nanmangalam) } \end{gathered}$ | " | " | " | " | " | " |  |  | " | " | $\begin{aligned} & M=3^{\prime \prime \prime} \cdot 95 \\ & w=71 \cdot 40 \\ & \frac{1}{w}=0 \cdot 01 \\ & C=69^{\circ} 40^{\prime} 3^{\prime \prime} \cdot 95 \end{aligned}$ |
|  | h 4.46 | h 4.33 | ¢ $4 \cdot 36$ | $l 3.30$ | \% $4 \cdot 61$ | l 3.87 | h 3.04 | ${ }^{6} 4 \cdot 09$ | h 4.29 | $h 3.92$ |  |
|  | $\begin{array}{ll}h & 4.17 \\ h & 3.8\end{array}$ | $l{ }^{1} 4.32$ | $\begin{array}{ll}l & 3.37 \\ l \\ 3\end{array}$ | $\begin{array}{ll}l \\ l \\ l & 4.34\end{array}$ | $h 3.93$ $l$ | $\begin{array}{ll}l & 4.47 \\ l & 4.63\end{array}$ | $\begin{array}{ll}h & 3.54\end{array}$ | $l 3.41$ | $h 4.23$ | h 4.65 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | $4 \cdot 15$ | $4 \cdot 42$ | 3'78 | $3 \cdot 57$ | 4*10 | 3'99 | $3 \cdot 40$ | $3 \cdot 75$ | $4 \cdot 17$ | 4.20 |  |
| $\begin{aligned} & \text { XLII (Nanmangalam) } \\ & \text { and } \\ & \text { XLIV (St. Thomas's Mount) } \end{aligned}$ |  <br>  <br>  l17•84 |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =18^{\prime \prime} \cdot 5^{8} \\ w & =24 \cdot 40 \\ \frac{1}{w} & =0 \cdot 04 \\ C & =48^{\circ} 28^{\prime} 18^{\prime \prime} \cdot 58 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | 18.92 | 17*20 | $18 \cdot 93$ | $18 \cdot 65$ | $18 \cdot 87$ | $18 \cdot 40$ | 18•92 | 18•98 | $17 \times 79$ | 19.12 |  |

August, 1887.
W. H. COLE,

In charge of Computing Office.

In the calculations of the weights of the observed angles by the formula given in Section 4 of Chapter VII of Volume II and illustrated by an example in the foot note to page 342 of the same Volume, it is necessary to employ the squares of the apparent errors of observation and graduation. These data have been employed to ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m.s. of graduation and observation, of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instruments employed were as follows :-
Troughton and Simms' 24 -inch Theodolite No. 1 and Barrow's 24-inch Theodolite No. 1, each having 5 microscopes to read the azimuthal circle; observations were taken on 5 pairs of zeros (face right and face left) giving circle readings at $7^{\circ} 122^{\prime}$ apart.

The e.m.s. of observation of a single measure of an angle
$=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations }- \text { No. of angles } \times \text { No. of changes of zero. }}}$
$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times(\text { No. of changes of zero-1). }}}$

| Group | Observer and Instrument |  |  | Number of |  |  |  | e. m. s. of observation of a single measure | e. m. s. of graduation and observation of a single zero |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Measures on each <br> zero (average) | $\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \text { 最 } \end{aligned}$ |  | 累 |  |  |
| 1 | $\left\{\begin{array}{c} \text { Lieutenant J. R. Mc Cullagh, } \\ \text { Troughton and Simms' 24. } \\ \text { inch Theodolite No. 1. } \end{array}\right\}$ | Hills | $\cdots$ | 3•11 | 28 | 684 | 220 | $\left\{\frac{272.04}{684-220}\right\}^{\frac{1}{2}}= \pm 0^{\prime \prime} .766$ | $\left\{\frac{97 \cdot 57}{220-22}\right\}^{\frac{1}{3}}= \pm 0^{* *} 702$ |
| II | $\left\{\begin{array}{c} \text { Lieutenant-Colonel B.R. Bran- } \\ \text { fill, Troughton and Simms' } \\ \text { 24-inch Theodolite No. } 1 \end{array}\right\}$ | " | 712 | 3•10 | 118 | 3655 | 1180 | $\left\{\frac{1478 \cdot 65}{3655-1180}\right\}^{\frac{1}{2}}- \pm 0 \cdot 772$ | $\left\{\frac{487 \cdot 87}{1180-118}\right\}^{\frac{1}{2}}= \pm 0 \cdot 678$ |
| III | $\left\{\begin{array}{c} \text { Lieutenant W. M. Campbell, } \\ \text { Troughton and Simme' 24. } \\ \text { inch Theodolite No. 1. } \end{array}\right\}$ | " | 712 | $3 \cdot 40$ | 23 | 783 | 230 | $\left\{\frac{525.45}{783-230}\right\}^{\frac{1}{2}}= \pm 0.975$ | $\left\{\frac{123 \cdot 56}{230-28}\right\}^{\frac{1}{2}}= \pm 0 \cdot 778$ |
| IV | $\left\{\begin{array}{c} \text { Major B.R. Branfill and Lieut. } \\ \text { J.R. Mc Cullagh, Barrow's } \\ \text { 24.inch Theodolite No. 1. } \end{array}\right\}$ | Plains | 712 | 8•70 | 2 | 74 | 20 | $\left\{\frac{214 \cdot 38}{74-20}\right\}^{\frac{1}{3}}= \pm 1 \cdot 992$ | $\left\{\frac{25 \cdot 72}{20-2}\right\}^{\frac{1}{2}}= \pm 1 \cdot 105$ |
| $\begin{aligned} & \text { I,II } \\ & \text { and } \\ & \text { IIII } \end{aligned}$ |  | Hills | 712 | 8.14 | 163 | 5122 | 1630 | $\left\{\frac{2271 \cdot 14}{5122-1630}\right\}^{t}= \pm 0 \cdot 806$ | $\left\{\frac{709 \cdot 00}{1630-163}\right\}^{\frac{1}{2}}= \pm 0 \cdot 695$ |

August, 1887.
W. H. COLE, In charge of Computing Office.

## MADRAS LONGITUDINAL SERIES.

## PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 72.


- In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-eficient of the ptis term in the $q$ th line being always the same as the co-efficient of the qth term in the pth line.

Figure No. 73.


Figure No. 74.


Figure No. 75.


Frgure No. 76.


Figure No. 77.


Figure No. 78.


Figure No. 79.


Figure No. 80.


Figure No. 81.


August, 1887.
W. H. COLE, In charge of Computing Office.

## MADRAS LONGITUDINAL SERIES.

## PRINCIPAL 'TRIANGULATION. TRIANGLES.

| No. of Triangle |  | Number and Name of Station |  | Corrections to Obeerved Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sircuit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feet | Mile |
| 83 | - | $\begin{aligned} & \text { III (Kudurěmukha) } \\ & \text { UI (Annúr.) } \\ & \text { V (Ammëdikal) } \end{aligned}$ | 1.056 <br> 1.056 <br> 1.057 |  $\prime$ <br> + $\cdot 437$ <br> + 383 <br> + 199 | $\begin{array}{r} n \\ +\quad .024 \\ -\quad .001 \\ - \\ \hline \end{array}$ | " |  | $\begin{array}{lll} 57 & 13 & 43 \cdot 645 \\ 41 & 49 & 29 \cdot 706 \\ 80 & 56 & 46 \cdot 649 \\ \hline \end{array}$ | $\begin{aligned} & 5 \cdot 1161211,6 \\ & 5 \cdot 0154409,5 \\ & 5 \cdot 1859637,2 \end{aligned}$ | $\begin{aligned} & 130653 \cdot 53 \\ & 103619 \cdot 37 \\ & 153448 \cdot 88 \end{aligned}$ | $\begin{aligned} & 24^{\circ} 745 \\ & 19.625 \\ & 29^{\circ} 062 \end{aligned}$ |
|  |  |  | 3.169 |  |  |  | +1.019 | 180 |  |  |  |
| 84 |  | $\begin{aligned} & \text { VI (Ånúr) } \\ & \text { V (Ammědikal) } \\ & \text { VIII (Kittávar) } \end{aligned}$ | $\begin{array}{r} .830 \\ .830 \\ \cdot 830 \\ \hline \end{array}$ | $\left\lvert\, \begin{array}{r}-116 \\ - \\ - \\ - \\ \hline\end{array}\right.$ | +.039 <br> -.020 <br> -.019 |  | $\begin{array}{r}-\quad .077 \\ -.201 \\ -\quad .242 \\ \hline\end{array}$ | 52 29 $1 \cdot 113$ <br> 49 23 $51 \cdot 579$ <br> 78 7 $7 \cdot 308$ | $5 \cdot 0248979,9$ $5 \cdot 0059083,1$ $5 \cdot 1161211,6$ | 105900.49 $101369^{\circ} 75$ 130653.53 | $\begin{aligned} & 20^{\circ} 057 \\ & 19 \cdot 199 \\ & 24^{\prime} 745 \end{aligned}$ |
|  |  |  | $2 \cdot 490$ |  |  |  | - ${ }^{\text {- }} 52$ | 180 |  |  |  |
| 85 |  | V (Ammëdikal) <br> VIII (Kittávar) <br> IX (Pushpagiri) | $\begin{array}{r} 1 \cdot 073 \\ 1 \cdot 073 \\ 1 \cdot 072 \\ \hline \end{array}$ | $+\quad 109$ <br> $+\quad \cdot 097$ <br> $+\quad 110$ | + + +.025 $-\quad .050$ |  | - .084 <br> + .122 <br> + .060 | 79 11 $37^{\circ} 743$  <br> 57 34 35 049 <br> 43 13 47 208 | $5 \cdot 1814840,1$ $5 \cdot 1156519,8$ $5 \cdot 0248979,9$ | 151874.20 130512.46 105900.49 | $\begin{aligned} & 28 \cdot 764 \\ & 24.718 \\ & 20.057 \end{aligned}$ |
|  |  |  | 3.218 |  |  |  | + .098 | $180 \quad 0 \quad 0.000$ | $\begin{aligned} & 5 \cdot 1153656,1 \\ & 5 \cdot 1666104,6 \\ & 5 \cdot 156519,8 \end{aligned}$ | $\begin{aligned} & 130426 \cdot 43 \\ & 146760 \cdot 93 \\ & 130512 \cdot 46 \end{aligned}$ | $\begin{aligned} & 24^{\circ} 702 \\ & 27 \cdot 796 \\ & 24^{\cdot 718} \end{aligned}$ |
|  | 358 | V (Ammědikal) <br> IX (Pushpagiri) <br> VII (Muchil) | $\begin{array}{r} \mathrm{I} .250 \\ \mathrm{I} .25 \mathrm{I} \\ \mathrm{I} .25 \mathrm{I} \\ \hline \end{array}$ | $\|$$-\quad .081$ <br> + <br> + <br> + |  | - $\cdot 007$ <br> -.046 <br> $+\quad .053$ | $-\quad .088$ <br> $+\quad .005$ <br> $+\quad .175$ | $\begin{array}{lll}55 & 44 & 52\end{array}$ |  |  |  |
|  |  | V (Ammédikal) <br> VII (Muchil) <br> IV (Ballamale) | 3*752 |  |  |  | + 0.092 | $180 \quad 0 \quad 0.000$ |  |  |  |
|  | 859 |  | $\begin{aligned} & \mathrm{I} \cdot 234 \\ & \mathrm{I} \cdot 234 \\ & \mathrm{I} 234 \\ & \hline \end{aligned}$ | $\left\|\begin{array}{cc} + & .042 \\ + & .151 \\ + & .269 \end{array}\right\|$ |  | - $\quad .009$ <br> -.030 <br> $+\quad .039$ | $+\quad .033$ <br> $+\quad .121$ <br> $+\quad .308$ | $\begin{array}{rrr} 40 & 48 & 31 \cdot 089 \\ 77 & 33 & 21 \cdot 457 \\ 61 & 38 & 7 \cdot 454 \\ \hline \end{array}$ | $\begin{aligned} & 5 \cdot 0374248,8 \\ & 5^{2} 2118315,9 \\ & 5 \cdot 1666104,6 \end{aligned}$ | $\begin{aligned} & 108999^{\circ} 59 \\ & 162866 \cdot 44 \\ & 146760 \cdot 93 \end{aligned}$ | $\begin{aligned} & 20 \cdot 644 \\ & 30 \cdot 846 \\ & 27 \cdot 796 \end{aligned}$ |
|  |  |  | 3'702 |  |  |  | $+{ }^{+} 62$ | 18000000 |  |  |  |

Nors.-The values of the sides are given in the same lines with the opposite angles.


* These triangles form a pendent to the triangulation of the $\mathbf{S}$. Trigon with which they are connected by only one side. They have therefore no non-aircuit corrections, although for convenience they are numbered as non-circuit triangles.


NoTs.- Stations XLIII (Rangaowámibetta), XLIV (Hemagiri), XLVIII (Kolar) and XLIX (Bhápatamma) appertain to the Great Are Meridional Series, Section $8^{\circ}$ to $\mathbf{1 8}^{\circ}$.


| No.of Triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit | Noncironit |  |  | Figure | Cirouit | Non- circuit | Total |  | Log. feet | Feot | Miles |
| 183 | 409 | XXXIIXXXVI(Kurumkota)(Malaipedu) $\mathbf{X X X V}$ (Chëmbedu) | $\begin{aligned} & " 886 \\ & \cdot 885 \\ & \cdot 885 \\ & \hline 885 \\ & \hline \end{aligned}$ | - .062 - 080 -.062 |  | " | $\begin{array}{lr} \hline .052 \\ \hline-.098 \\ \hline & .054 \\ \hline \end{array}$ | $\circ$ 1 $\prime \prime$ <br> 69 22 $16 \cdot 572$ <br> 58 1 $4 \cdot 407$ <br> 52 36 $39 \cdot 021$ | 500960668,8 50533505,5 500249553,5 | $\begin{aligned} & 124757 \cdot 55 \\ & 113070 \cdot 82 \\ & 105914 \cdot 48 \end{aligned}$ | $\begin{aligned} & 23.628 \\ & 21.415 \\ & 20.060 \end{aligned}$ |
|  |  |  | $2 \cdot 656$ |  |  |  | . 204 | 180 |  |  |  |
| 182 |  | XXXII (Kurumkota) XXXV (Chěmbedu) XXXIII (Nagari) | $\begin{aligned} & 1.123 \\ & 1.123 \\ & 1.122 \\ & \hline \end{aligned}$ |  <br> $+\quad .084$ <br> .119 <br> $+\quad .263$ | -.005 <br> -020 <br> $+\quad .025$ |  | $\begin{array}{r}+\quad .079 \\ \hline \quad .139 \\ +\quad .288 \\ \hline\end{array}$ | 70 27 $11 \cdot 726$ <br> 61 25 $54 \cdot 098$ <br> 48 6 $54 \cdot 176$ | $\begin{aligned} & 5^{1.1557144,3} \\ & 5^{1.1251105,3} \\ & 5^{\circ} 0533505,5 \end{aligned}$ | $\begin{aligned} & 143124 \cdot 65 \\ & 133386 \cdot 08 \\ & 113070 \cdot 82 \end{aligned}$ | $\begin{aligned} & 27 \cdot 107 \\ & 25 \cdot 263 \\ & 21 \cdot 415 \end{aligned}$ |
|  |  | XXX (Pullúr) <br> XXXII (Kurumkota) <br> XXXIII (Nagari) | 3.368 |  |  |  | $\begin{array}{r}+\quad 228 \\ \hline\end{array}$ | 180 |  |  |  |
|  |  |  | $\begin{aligned} & 1 \cdot 061 \\ & 1.061 \\ & 1.061 \\ & \hline \end{aligned}$ |  |  | $\begin{array}{r}\text { \% } \\ -\quad 212 \\ \hline .268 \\ +\quad .480 \\ \hline\end{array}$ | $\begin{array}{r}\text { + } 346 \\ \hline .294 \\ +\quad 243 \\ \hline\end{array}$ | 57 45 59 783 <br> 40 8 51  <br> 82 225   <br> 82 5 $8 \cdot 992$  | $5 \cdot 1251105,3$ $5.0071074,7$ $5^{\circ} 1936442,1$ | $133386 \cdot 08$ $101671 \cdot 09$ $156186 \cdot 77$ | $25^{\circ} 263$ 19.256 29.581 |
|  |  |  | 3.183 |  |  |  | - 397 | 180 |  |  |  |
|  | 418* | XXXVI (Malaipedu) XXXV (Chĕmbedu) XXXVII (Madras Dome Obsy.) | $\begin{array}{r} \cdot 869 \\ \cdot 869 \\ \cdot 869 \\ \hline \end{array}$ | ( 041 |  |  | $\begin{array}{r}-.041 \\ \hline \quad .217 \\ -\quad 135 \\ \hline\end{array}$ | $\begin{array}{llll} 62 & 2 & 19.470 \\ 48 & 30 & 54.454 \\ 69 & 26 & 46 \cdot 076 \\ \hline \end{array}$ | $5 \cdot 0707230,4$ $4.9991896,8$ $5^{\circ} 0960668,8$ | $\begin{array}{r} 117685.51 \\ 99813.59 \\ 124757.55 \end{array}$ | $22 \cdot 289$ <br> $18 \cdot 904$ <br> $23 \cdot 628$ |
|  |  | XXXVI (Malaipedu) <br> XXXIV (Mávandúr) <br> XXXV1II (Tirumani) | 2.607 |  |  |  | - 393 | $180 \quad 0 \quad 0.000$ |  |  |  |
| 236 |  |  | $\begin{array}{r} \cdot 877 \\ .876 \\ \cdot 877 \\ \hline \end{array}$ | - 0.042 | $\begin{array}{\|c\|} \hline+ \\ \hline+046 \\ \hline+\quad .036 \\ \hline \end{array}$ |  | $\begin{array}{r}+\quad .004 \\ \hline .056 \\ +\quad .032 \\ \hline\end{array}$ | 56 19 19 867 <br> 43 13 53 378 <br> 80 26 46.755  | $\begin{aligned} & 5 \cdot 0679319,5 \\ & 4 \cdot 9833788, \\ & 5 \cdot 1416548,4 \end{aligned}$ | $\begin{array}{r} 116931 \cdot 63 \\ 96244.93 \\ 138565^{\circ} \cdot 41 \end{array}$ | $22 \cdot 146$ 18.228 26.243 |
|  |  |  | 2.630 |  |  |  | $\cdot 020$ | $180 \quad 0 \quad 0.000$ |  |  |  |
| 237 | 410 | XXXVIII (Tirumani) <br> XXXIV (Mávandúr) <br> XXXIX (Avirimodu) | $\begin{array}{r} 700 \\ \cdot 700 \\ \cdot 700 \\ \hline \end{array}$ | $+\quad .056$ <br> $\quad .053$ <br> $+\quad .087$ | $\begin{array}{\|r} \hline+043 \\ \hline+ \\ \hline \\ \hline \end{array} \cdot 035$ |  | $\begin{array}{r}+\quad 099 \\ \hline \quad .131 \\ +\quad 122 \\ \hline\end{array}$ |  | $5 \cdot 1359072,7$ $4.8798320,3$ $5^{\circ} 0679319,5$ | $\begin{array}{r} 136743 \cdot 68 \\ 75828 \cdot 43 \\ 11693 \mathrm{~F} \cdot 63 \end{array}$ | $\begin{aligned} & 25 \cdot 898 \\ & 14 \cdot 361 \\ & 22 \cdot 146 \end{aligned}$ |
|  |  | XXXIX (A virimodu) <br> XXXVIII (Tirumani) <br> XL (Manamai Kunuatúr) | $2 \cdot 100$ |  |  |  | + 090 | $180 \quad 0 \quad 0.000$ |  |  |  |
|  |  |  | $\begin{array}{r} \cdot 425 \\ \cdot 426 \\ \cdot 426 \end{array}$ | ( 1119 |  | $+\quad .025$ <br> .028 <br> +.003 | - $\quad 094$ $-\quad .130$ $-\quad .049$ | 45 12 53 381 <br> 85 42 51 784 <br> 49 4 14 835 | $4 \cdot 8526936,3$ $5 \cdot 0003703,1$ $4.8798320,3$ | $\begin{array}{r}71235 \% \\ 100085 \\ \hline 75828.30 \\ \hline\end{array}$ | 13.491 18.956 $14.36:$ |
|  |  |  | 1-277 |  |  |  | $\cdot 27$ | 180 |  |  |  |
|  | 411 | XL (Manamai Kunnatúr) XXXVIII ('Tirumani) XLI (Pudupák) | $\begin{array}{r} +461 \\ -46 \mathrm{I} \\ -46 \mathrm{I} \\ \hline \end{array}$ | $\begin{gathered} + \\ + \\ + \\ + \\ + \\ + \\ \hline \end{gathered}$ |  | $\begin{array}{r}+ \\ \pm \\ \hline .020 \\ +\quad .004 \\ \hline\end{array}$ | $\begin{array}{r}+\quad .062 \\ +\quad .037 \\ +\quad .144 \\ \hline\end{array}$ |  | $4.9740757,8$ $4.9323501,0$ $4.8526936,3$ | $\begin{aligned} & 94205.39 \\ & 85575 \cdot 63 \\ & 71235.04 \end{aligned}$ | $17 \cdot 842$ <br> 16. 208 <br> 13.491 |
|  |  |  | $1 \cdot 383$ |  |  |  | + 243 | !80 000000 |  |  |  |
|  | 412 | XXXVIII (Tirumani) <br> XLI (Pudupák) <br> XXXVI (Malaipedu) | $\begin{array}{r}\cdot 513 \\ .514 \\ .513 \\ \hline\end{array}$ | $\left\|\begin{array}{cc} -211 \\ - & 098 \\ -\quad .171 \end{array}\right\|$ |  | $\begin{array}{r} \\ \hline-\quad .027 \\ +\quad .019 \\ +\quad .008 \\ \hline\end{array}$ | $\begin{array}{r}\text { - } 238 \\ -\quad .079 \\ -\quad 163 \\ \hline\end{array}$ | 45 45 $41 \cdot 119$ <br> 68 34 22.427 <br> 65 39 $56 \cdot 454$ | $4 \cdot 8696631,8$ $4.9833778,7$ $4.9740757,8$ | $\begin{aligned} & 74073 \cdot 56 \\ & 96244 \cdot 93 \\ & 94205 \cdot 39 \end{aligned}$ | 14.029 $18 \cdot 228$ 17.842 |
|  |  |  | I 540 |  |  |  | $\cdot 480$ | 180 |  |  |  |
|  | 413* | XLI (Pudupák) <br> XXXVI (Malaipedu) <br> XLII (Nanmangalam) | $\begin{array}{r} 198 \\ \cdot \\ \cdot \\ \cdot \\ \hline \end{array}$ | -.017 -.058 -.040 |  |  | $\left[\begin{array}{ll} -017 \\ - & 0.08 \\ - & 040 \end{array}\right.$ | $\begin{array}{\|l\|l\|l} \hline 51 & 30 & 43 \cdot 885 \\ 35 & 44 & 11 \\ \hline & 374 \\ \hline 2 & 45 & 4 \cdot 741 \\ \hline \end{array}$ | $\begin{aligned} & 4 \cdot 7637818,7 \\ & 4 \cdot 6366202,3 \\ & 4 \cdot 8696631,8 \end{aligned}$ | $\begin{aligned} & 58047 \cdot 28 \\ & 43313 \cdot 19 \\ & 74073 \cdot 56 \end{aligned}$ | $\begin{array}{r} 10.994 \\ 8.203 \\ 14^{\circ} 029 \end{array}$ |
|  |  | XXXVI (Malaipedu) <br> XLII (Nanmangalam) <br> XLIII (Mángád) | - 595 |  |  |  | $\cdot 115$ | 180 |  |  |  |
|  | 414* |  | $\begin{array}{r} 143 \\ -143 \\ -144 \\ \hline \end{array}$ | $\left\|\begin{array}{rr} - & 225 \\ -\quad 163 \\ - & 142 \end{array}\right\|$ |  |  | $\begin{array}{r}\text { r } \\ -\quad 225 \\ -\quad 163 \\ -\quad 142 \\ \hline\end{array}$ | $\begin{array}{llll} 43 & 46 & 17 & 062 \\ 50 & 52 & 48 \cdot 964 \\ 85 & 20 & 53.964 \\ \hline \end{array}$ | $\begin{aligned} & 4 \cdot 6051846,1 \\ & 4 \cdot 6549809,1 \\ & 4 \cdot 7637818,7 \end{aligned}$ | $\begin{aligned} & 40288 \cdot 83 \\ & 45183 \cdot 6 \mathrm{I} \\ & 58047 \cdot 28 \end{aligned}$ | $\begin{array}{r} 7.630 \\ 8.558 \\ 10.994 \end{array}$ |
|  |  | XLII (Nanmangalam) <br> XLIII (Mángád) <br> XLIV (St. Thomas's Mount) | 430 |  |  |  | - 530 | 180 |  |  |  |
|  | 415** |  | $\begin{array}{r} \cdot 076 \\ \cdot 076 \\ \cdot 077 \\ \hline \end{array}$ | $\begin{array}{\|} +\quad .440 \\ +\quad .354 \\ +\quad .255 \\ \hline \end{array}$ |  |  | $\begin{array}{r} +\quad 440 \\ +\quad 354 \\ +\quad 255 \\ \hline \end{array}$ | $\begin{array}{l\|llll} 55 & 48 & 43 \cdot 194 \\ \hline & 44 & 59 & 17 & 1938 \\ 7 & 79 & 11 & 58 \cdot & 968 \\ \hline \end{array}$ | $\begin{aligned} & 4 \cdot 530556 \mathrm{r}, \mathrm{I} \\ & 4 \cdot 4623427,6 \\ & 4 \cdot 6051846, \mathrm{r} \end{aligned}$ | $\begin{aligned} & 33927 \cdot 83 \\ & 28996 \cdot 3 \mathrm{I} \\ & 40288 \cdot 83 \end{aligned}$ | $\begin{aligned} & 6 \cdot 426 \\ & 5 \cdot 492 \\ & 7 \cdot 630 \end{aligned}$ |
|  |  |  | - 222 |  |  |  | +1.049 | $180 \quad 0 \quad 0.000$ |  |  |  |

although for convenience they are numbered as non-circuit triangles. Trigon each being connected by one side only. They have therefore no non-circuit corrections,

PRINCIPAL TRIANGOLATION. TRIANGLES:
65-a.


- These triangles form pendente to the triangulation of the 8 . Trigon each being connected by one side only. They have therefore no non-circuit corrections, although for convenience they are numbered as non-circuit triangles.
W. H. COLE,

In charge of Computing Office.

MADRAS LONGITUDINAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

| Station A |  |  |  | Side AB |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
| $\begin{aligned} & 43 \\ & " \\ & " \end{aligned}$ | $\begin{array}{\|l} \text { I (Mijár) } \\ " \quad " \\ " \quad " \\ \text { II (Mangalore) } \\ " \quad " \\ \text { III (Kudurěmukha) } \end{array}$ |  | $\left\|\begin{array}{ccc} \circ & \prime & \prime \prime \\ 74 & 58 & 39 \cdot 40 \\ & \prime \prime \prime & \\ & \prime \prime \prime & \\ 74 & 53 & 9.89 \\ " \prime \prime \end{array}\right\|$ | $\circ$ $\prime$ $\prime \prime$ <br> 25 54 $7 \cdot 54$ <br> 257 20 $31 \cdot 09$ <br> 328 54 $1 \cdot 19$ <br> 238 0 $0 \cdot 70$ <br> 284 30 $25 \cdot 13$ | $\begin{aligned} & 4^{\cdot} 8727712,6 \\ & 5^{\circ} \circ 787582,3 \\ & 5^{\circ} \circ 194751,9 \end{aligned}$ | $\left.\begin{array}{rrr\|} \circ & \prime & \prime \prime \\ 205 & 52 & 53 \cdot 63 \\ 77 & 24 & 59 \cdot 25 \\ 148 & 56 & 3 \cdot 40 \\ 58 & 5 & 41 \end{array} \right\rvert\, 12$ | II (Mangalore) <br> III (Kudurěmukha) <br> IV (Ballamale) <br> III (Kudurěmukha) <br> IV (Ballamale) |
|  |  | $13 \quad 7 \quad 40 \cdot 32$ | $75 \quad 18 \quad 23 \cdot 26$ | $283549 \times 49$ | 5'1199947,3 | 20833 26.36 | " " |
|  | " " | " | " | 301 $5553 \cdot 13$ | $5 \cdot 0154409,5$ | 1215914*02 | V (Ammerdikal) |
|  | " " | " |  | $244428 \cdot 43$ | 5.1859637,2 | 644729.73 | VI (Ånúr) |
|  | IV (Ballamale) | $124832 \cdot 03$ | $\begin{array}{lll}75 & 7 & 45\end{array}$ | $2475918 \cdot 31$ | 5.2118315,9 | $68 \quad 459$ io | V (Ammědikal) |
|  | " " | " | " | $3093727 \cdot 00$ | $5 \cdot 0374248,8$ | 1294033.62 | VII (Muchil) |
| 44 | V (Ammědikal) | 125836.28 | 7533 12.77 | $202561 \cdot 73$ | 5-1161211,6 | $225758 \cdot 97$ |  |
| " | " " | " | " | $271626 \cdot 77$ | 5•1666104,6 | 20713 56.31 | VII (Muchil) |
| * |  | $13 \quad 18 \quad 29.67$ | $75 \text { 4I" } 48 \cdot 43$ | $\left\lvert\, \begin{array}{llll} 252 & 19 & 54 \cdot 13 \\ 331 & 31 & 32 \cdot 95 \\ 330 & 28 & 57 \cdot 03 \end{array}\right.$ | $\begin{aligned} & 5.0248979,9 \\ & 5.1156519,8 \end{aligned}$ | $722344 \times 18$ | VIII (Kittávar) |
| " | $\ddot{\nabla I} \text { (Ānür) }$ |  |  |  |  | $\begin{aligned} & 151335^{\prime \cdot} 42 \\ & 1503052 \cdot 31 \end{aligned}$ | IX (Pushpagiri) |
|  |  |  |  |  | 5.0059083, 1 |  | VIII (Kittávar) |
|  | VII (Muchil) VIII (Kittávar) | $1237 \begin{array}{lll}12 & 11\end{array}$ | 75 21 53.48 | $263^{\circ} 210.08$ | $5 \cdot 1153656,1$ | $83 \quad 656 \cdot 26$ | IX (Pushpagiri) |
|  |  | $13 \quad 3 \quad 54.54$ | $75 \quad 5013 \cdot 79$ | $\begin{array}{r} 14498.05 \\ 298 \text { 10 } 35.26 \end{array}$ | 5.1814840, 1 | $1944740 \cdot 70$ | $" \bar{x} \text { (Sátanhalli) }$ |
|  | " " |  | $75 \quad 4341 \cdot 37$ |  | $\begin{aligned} & 5 \cdot 2293634,2 \\ & 5 \cdot 1698665,6 \\ & 5 \cdot 3006026,3 \end{aligned}$ |  |  |
|  | " ${ }^{\prime}$ | $123938.08$ |  | $\left\|\begin{array}{llll} 2 & 20 & 10 & 35 \cdot 20 \\ 238 & 34 & 45 \cdot 20 \\ 250 & 27 & 35 \cdot 60 \end{array}\right\|$ |  | $\begin{array}{r} 1181614 \cdot 04 \\ 583936 \cdot 38 \\ 703435 \cdot 80 \end{array}$ | XI (Desáni) <br> X (Sátanhalli) |
| 45 | IX (Pushpagiri) |  |  |  |  |  |  |


| Station A |  |  |  | Side AB |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Aximuth at B | Number and Name of Station |
| $\begin{gathered} 45 \\ 46 \\ " \\ " \\ " \end{gathered}$ | IX (Pushpagiri) <br> $\mathbf{X}$ (Sátanhalli) | - ' " | - 1 | $\bigcirc 1$ |  | , |  |
|  |  | $\begin{array}{lll} 12 & 39 & 38 \cdot 08 \\ 12 & 50 & 39 \cdot 07 \end{array}$ | 7543 41•37 | $287611 \cdot 14$ | 5.3430670, 1 | 1071353.85 | XII (Adhúrbętta) |
|  |  |  | $\begin{array}{lll} 76 & 15 & 24.98 \end{array}$ | 1713944.34 | 5.2010504,9 | 3513851.62 | XI (Desáni) |
|  | $\mathbf{X}$ (Sátanhalli) | $1250 \quad 39 \cdot 07$ | $"$$"$$"$ | 3503019.21 | 5•1254662,5 | 1703178 | XII (Adhúrbętta) |
|  |  |  |  | $2342817 \cdot 18$ | 5.0550705,5 | $543146 \cdot 39$ | XIII (Nughallibertta) |
|  | " " |  |  | $2895742 \cdot 34$ | 5.1484175,1 | 110 237.97 | XIV (Náráyandurga) |
|  | XI (Desáni) | $131638 \cdot 27$ | 76 11 31-67 | 30818 24-20 | 5•1676743,9 | $1282249^{\circ} 94$ | XIII (Nughallibětta) |
|  | XII (A dhúrbętta) | $\begin{array}{lllll}12 & 28 & 52\end{array}$ | $\left\|\begin{array}{rrr} 76 & 19 & 7 \cdot 29 \\ 76 & 30 & 59 \cdot 64 \end{array}\right\|$ | $2325020 \cdot 54$ | 5.1410843,2 | $525423 \cdot 56$ | XIV (Náráyandurga) |
|  | XIII (Nughallibettta) | $\begin{array}{lll}13 & 1 & 32 \cdot 95\end{array}$ |  | $3404612 \cdot 73$ | 5.0820455,2 | $1604742 \cdot 26$ |  |
|  | " " |  | $\begin{array}{lll} 76 & 30 & 59 \cdot 64 \end{array}$ | 297 228.97 | 5.0679459,3 | 117625.01 | XV (Háltibĕtta) |
|  | " " |  | " | $229 \quad 59.59$ | 4.9718174,0 | $49882^{\prime} 26$ | XVI (Chaudanhalli) |
| 47 | XIV (Náráyandurga) | 124241.53 | 7637 41•63 | $2263652 \cdot 79$ | 4.9474589,0 | $463916 \cdot 99$ | XV (Háltibytta) |
| " | XV (Háltiby̌tta) |  | $764_{8}^{\prime \prime}{ }_{32 \cdot 72}$ | 2913229.04 | 4-8637984,8 | 1113459.70 | XVII (Adhibêtta) |
|  |  |  |  | 1635044.48 | 5.0765323,9 | 34349 28•70 | XVI (Chaudanhalli) |
|  | " " | " | $"$$"$ | $35742 \begin{aligned} & \text { 3.93 }\end{aligned}$ | 4.9433411,2 | 17742 11.78 | XVII (Adhibětta) |
|  |  |  |  | 2335855.64 | 49516016,2 | 54139.70 | XLIII (Rangaswámibětta) |
| 48 | XVI (Chaudanhalli) | $13 \text { " }_{11} 41 \cdot 31$ | 76 42 ${ }^{\prime \prime}$ 56.77 | $2833927 \cdot 49$ | $5.0136290,3$ | $1034312 \cdot 83$ | XLIV (Hemagiri) |
|  |  |  |  | 30023 41•16 | 5.0877122,0 | 1202743.38 | XLIII (Rangaswámibetta) |
|  | XVII (Adhibětta) | $12 \begin{array}{lllll}12 & 15 & 11\end{array}$ | $76498 \cdot 29$ | $2364735 \cdot 38$ | 5.0630911,9 | $565110 \cdot 81$ | XLIV (Hemagiri) |
|  | XLIII (Rangaswámib®tta) | 13 13 26.52 | $77{ }^{7}$ | $340633 \cdot 45$ | 4.9131427,4 | $160 \quad 736 \cdot 40$ | " |
| 49 | XLIV (Hemagiri) | $124842 \cdot 80$ | $77 \quad 5 \quad 26.29$ |  |  |  |  |
|  | XLVIII (Kolar) | $13 \quad 8 \quad 47 \times 28$ |  | 04811.80 | 4.7365754,9 | $1804810 \cdot 05$ | XLIX (Bhúpatamma) |
|  | $" \quad "$ | " | $\left\lvert\, \begin{array}{cc}78 & 816.76 \\ "\end{array}\right.$ | $2854840 \cdot 82$ | 4.9684979,8 | 105526.23 | XVIII (Bandapalle) |
|  |  |  | $\begin{array}{lll} 78 & 8 & 9.03 \end{array}$ | $2575357 \cdot 78$ | 4.9942920,5 | $775740 \cdot 46$ | XIX (Kurudamale) |
| 68 | XLIX (Bhúpatamma) |  |  | 252 5 3.27 | 4.9770266,5 | $72 \quad 829^{\prime 27}$ | XVIII (Bandapalle) |
|  | ". " | " | $\left\|\begin{array}{ccc} 78 & 8 & 9 ` 03 \\ n & \end{array}\right\|$ | $305 \quad 629.38$ | 4:9031668,7 | 125857.50 | XX (Yerrakŏnda) |
|  | XVIII (Bandapalle) |  | 782322.25 <br>  <br> 1 | 18843 29.87 | 4•6680268,2 | $84346 \cdot 13$ | XIX (Kurudamale) |
|  |  | $\left\lvert\, \begin{array}{cc} 13 & 435^{\circ} 48 \\ " \prime \end{array}\right.$ |  | 181815.39 | 4•8985936,9 | $1981718 \cdot 95$ | XX (Yěrrakŏnda) |
|  |  | " | $\begin{gathered} " \\ 7 \\ 78 \quad 2433 \cdot 76 \end{gathered}$ | $2554124 \cdot 71$ | $4.8211579,1$ | 7543 51*95 | XXI (Káraveri) |
|  | $\begin{array}{ll} " & " \\ " & " \end{array}$ |  |  | $3072316 \cdot 26$ | 4-8742978,7 | $127253^{1} 77$ | XXII (Krishnamakönda) |
|  | XIX (Kurudamale) | 131211.98 |  | $29726 \quad 1 \cdot 24$ | 4.8086364,1 | $1172812 \cdot 90$ | XXI (Káraveri) |
| 69 | XX (Yĕrrakŏnda) XXI (Káraveri) | $12 \begin{array}{lll}12 & 52 & 9\end{array}$ | $\begin{array}{llll}78 & 19 & 10 & 84\end{array}$ | $2503455 \cdot 19$ | 4.9514891,6 | $\left\|\begin{array}{rrr} 70 & 38 & 5 \cdot 79 \\ 184 & 23 & 18 \cdot 08 \end{array}\right\|$ | XXII (Krishnamakŏnda) |
|  |  | $\left\lvert\, \begin{array}{cc} 13 \quad 7 \quad 17 \cdot 67 \\ " \end{array}\right.$ | 7834 11.92 | 423 28.91 | 4-7924812,4 |  |  |
| 70 | $\begin{gathered} " \\ \text { XXII (Krishnamakð̆nda) } \end{gathered}$ |  | " | 2871219.44 | 4•7202972,4 | 1071414.49 | XXIII (Devarakŏnda) |
|  |  | " | " | $246238 \cdot 69$ | 4.6562143,6 | 66 414.04 | XXIV (Patikŏnda) |
|  |  | $1257 \quad 4: 36$ | $78 \quad 33$ 23.89 | $2295151 \cdot 27$ | $4 \cdot 8562821,8$ | $495356 \cdot 4 \mathrm{I}$ | XXIII (Devarakð̌nda) |
| " | XXIII (Devarakŏnda) | $13 \quad 4 \quad 33.44$ |  | 2684224.37 | 4*9097333,1 | $884528 \cdot 49$ | XXVI (Satghur) |
|  |  |  |  | $1653336 \cdot 83$ | 4*5446196,7 | $3453316 \cdot 74$ | XXIV (Patikŏnda) |
|  |  | $\begin{array}{cc} 13 & 443.44 \\ " \end{array}$ | $\left\|\begin{array}{cc} 78 \quad 4239 \cdot 56 \\ " \end{array}\right\|$ | $2405427 \cdot 18$ | 4-8084595,8 | $605636 \cdot 37$ | XXV (Mugali) |
|  |  | $13 \text { " } 10 \text { " } 20.07$ | $7841 " 11 \cdot 10$ | 3292554.14 | 4.7131652,2 | 1492654.00 | XXVI (Satghur) |
|  | $\stackrel{\prime}{\prime} \stackrel{\prime}{\prime \prime}$ |  |  | 272.20 7.21 | 4.8129992,2 | 922237 O1 | XXV (Mugali) |

NOTE.-Stations XIIII (Rangaswámibětta), XIIV (Hemagiri), XLVIII (Kolar) and XLIX (Bhúpatamma) appertain to the Great Arc Meridional Series, Section $8^{\circ}$ to $\mathbf{1 8}^{\circ}$.

MADRAS LONGITUDINAL SERIES.

| Station A |  |  |  | Side AB |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Circuit } \\ \text { No. } \end{gathered}$ | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Asimuth at B | Number and Name of Station |
| $\begin{gathered} 71 \\ " \end{gathered}$ |  | - 11 | - 1 | - 11 |  | - 1 |  |
|  | XXV (Mugali) | $13 \quad 9 \quad 53.56$ | $78 \quad 52 \quad 8 \cdot 65$ | $213610 \cdot 77$ | 4.9109825,6 | 20135 2.21 | XXVI (Satghur) |
|  | " | ! | " | $2971647 \cdot 03$ | 5.0557373,2 | $1172038 \cdot 61$ | XXVII (Batinkŏnda) |
|  | XXVI (Satghur) | " | " | $2492146 \cdot 52$ | 4.9923663,2 | 692519.35 | XXVIII (Muruktøre) |
|  |  | $12572^{\prime 2} 19$ | $\begin{array}{lll}78 \quad 47 & 5 \cdot 29\end{array}$ | $2594526 \cdot 65$ | 5•1243637,0 | 795024.60 | XXVII (Batinkŏnda) |
|  | " " | " | " | $290722 \cdot 53$ | 5*0954527,0 | 110 11 $46 \cdot 47$ | XXIX (Kailásgarh) |
| 72 | XXVII (Batinkŏnda) | $13116{ }^{\circ} 11$ | $79 \quad 9 \quad 10 \cdot 94$ | $174440 \cdot 83$ | 4*9405957,5 | $3544^{20} 111$ | XXVIII (Muruktorre) |
| " | " | " | " | $12046 \cdot 17$ | 4*8325498,6 | $192014{ }^{16}$ | XXIX (Kailásgarh) |
|  | " 1 | 9 | " | $2281149^{\circ} 54$ | 5'0600425,2 | 4815 6.37 | XXX (Pullúr) |
| " | XXVIII (Muruktore) | " | " | $2875616 \cdot 25$ | 5.0266304,1 | $108 \quad 0 \quad 5 \cdot 96$ | XXXI (Anandalamalai) |
|  |  | 1315 36.59 | $\begin{array}{llll}79 & 7 & 39 & 82\end{array}$ | $276 \quad 916 \cdot 25$ | 4.9783825,2 | $961255 \cdot 72$ | XXX (Pullúr) |
| 78 | XXIX (Kailásgarh) XXX (Pullúr) | $125016 \cdot 30$ | $\begin{array}{llll}79 & 6 & 47 & 85\end{array}$ | 25340 3'16 | 5•0797350,6 | 734423 17 | XXXI (Anandalamalai) |
|  |  | 1313 54.91 | $79 \quad 23 \quad 37 \cdot 64$ | 351576.08 | 5*0429209,1 | $1715741{ }^{\prime} 45$ | " ${ }^{\prime}$ |
|  | " " | " | " | $296120 \cdot 51$ | 5'1936442,1 | $116 \quad 643.27$ | XXXII (Kurumkota) |
|  | " " | " | " | $2381519^{\circ} 67$ | 5.0071974,7 | 5818 41-27 | XXXIII (Nagari) |
|  | XXXI (Anandalamalai) | 1255 50'73 | $79 \quad 2613.94$ | $2515544 \cdot 58$ | 5'1185474,2 | $72028 \cdot 57$ | XXXII (Kurumkota) |
| " |  | " | " | $3051023 \cdot 18$ | 5*0709238,3 | 1251359.27 | XXXIV (Mávandur) |
| 83 | SXXII (Kurumkota) | $13 \quad 234^{\circ} 14$ | $7947 \quad 17 \times 68$ | $1561535 \cdot 56$ | 5'1251105,3 | 33613 31*22 | XXXIII (Nagari) |
| " | " " | " | " | $145^{1} 57.21$ | 5.0503713,3 | $1945052 \cdot 24$ | XXXIV (Mávandúr) |
| " | " ${ }^{\prime}$ | " | " | $2264248 \cdot 41$ | 5*0533505,5 | 4645 58-02 | XXXV (Chěmbedu) |
| " | " | " | " | 296 5 5 | 5*0249553,5 | 116 841.91 | XXXVI (Malaipedu) |
| 82 | XXXIII (Nagari) | $132245 \cdot 08$ | $79 \quad 38 \quad 13.62$ | $288 \quad 635 \cdot 92$ | 5'1557144,3 | 108 II 53.24 | XXXV (Chymbedu) |
| 74 | XXXIV (Mávandur) | $124437 \cdot 47$ | $79 \quad 42 \quad 26 \cdot 53$ | $24325 \quad 2 \cdot 80$ | 5.1416548,4 | 6329 41*05 | XXXVI (Malaipedu) |
| " | $"$ $"$ <br> $\mathbf{X X X V}$ (Chy̆mbedu) | 3 | " | $2863857^{\circ} 06$ | 5*0679319,5 | $10643 \quad 5 \cdot 81$ | XXXVIII (Tirumani) |
| " |  | " | " | $3201745^{\prime} 10$ | 5•1359072,7 | 1402057.43 | XXXIX (Avirimodu) |
|  |  | $13 \quad 15 \quad 22 \cdot 76$ | 80 111.17 | 354 918.11 | 5*0960668,8 | $174 \quad 947 \%$ | XXXVI (Malaipedu) |
|  | XXXXVI (Malaipedu) | " | " | $3053822 \cdot 79$ | 5*0707230,4 | 12542 3.15 | XXXTII (Madras Dome Obey.) |
|  |  | 1254 51•70 | $80 \quad 319.65$ | $23612 \quad 7 \cdot 54$ | 4*9991896,8 | $561516 \cdot 21$ | " $\quad$ |
|  | " $\quad$ | " | " | $71020 \cdot 31$ | 4*9833778,7 | $187 \quad 953 \cdot 45$ | XXXVIII (Tirumani) |
|  | $">$ | " | 9 | $3013023 \cdot 34$ | 4*8696631,8 | $1213245{ }^{\circ} 43$ | XLI (Pudupak) |
|  | " ${ }^{\prime}$ | " | " | 26546 II'77 | 477637818,7 | $854822 \cdot 67$ | XLII (Nanmangalam) |
|  | XXXVII (Madras Dome Obsy.) | " | " | 2215954.56 | 4.6549809,1 | $4213{ }^{1} 16$ | XLIII (Mángad) |
|  |  | $\begin{array}{llll}13 & 4 & 2 \cdot 06\end{array}$ | 80 $17718 \cdot 94$ |  |  |  |  |
|  | XXXVIII (Tirumani) | $\begin{array}{llll}12 & 39 & 4.47\end{array}$ | $80 \quad 1 \quad 18 \cdot 25$ | $19 \quad 329.92$ | 4-8798320,3 | $199235{ }^{\circ} 60$ | XXXIX (Avirimodu) |
|  |  | " | n | $2932037 \cdot 71$ | 4-8526936,3 | 113 23 1*93 | XL (Manamai Kunnatúr) |
|  |  | " | " | $2325535 \cdot 08$ | 4:9740757,8 | $5258.22 \cdot 49$ | XLI (Pudupák) |
|  | XXXIX (Avirimodu) | $12 \begin{array}{llll}12 & 13^{\circ} 49\end{array}$ | $\begin{array}{llll}79 & 57 & 8 \cdot 32\end{array}$ | 2441529.40 | 5'0003703,1 | $641846 \cdot 67$ | XL (Manamai Konnatir) |
|  | XL (Manamai Kunnatar) <br> XLI (Pudupák) | $\begin{array}{llll}12 & 34 & 24^{\circ} 25\end{array}$ | 80 12 18.77 | $1863518 \cdot 36$ | 4.9323501,0 | $63540 \cdot 17$ | XLI (Pudupak) |
|  |  | $12 \quad 48 \quad 27.50$ | $8013 \quad 58 \cdot 01$ | $173 \quad 329^{\circ} 51$ | 4*6366202,3 | 353 317173 | XLII (Nanmangalam) |
|  | XIII (Nanmangalam) | " | " | 20923 50'92 | 4*6473857,4 | $292439{ }^{\circ} 98$ | XLV (Injambákam) |
|  |  | $125533{ }^{\prime} 99$ | $80 \quad 13 \quad 5 \cdot 07$ | $1364111 \cdot 77$ | 4.6051846, 1 | $31640 \quad 9.04$ | XIIII (Mángád) |


| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Aximuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
|  | XLII (Nanmangalam) | $\left.\begin{array}{ccc} 0 & \prime & \prime \prime \\ 12 & 55 & 33^{\circ} 99 \\ & \prime \prime \\ 13 & 0 & 24 \cdot 72 \\ 13 & 0 & 14 \cdot 79 \\ 12 & 54 & 51 \end{array}\right) 18$ | $\left\|\right\|$ | $\left.\begin{array}{ccc} \circ & \prime \prime \\ 192 & 29 & 55 \cdot 04 \\ 279 & 3 & 42 \cdot 81 \\ 271 & 40 & 51 \\ 327 & 32 & 15 \end{array} \right\rvert\, 28$ | $\begin{aligned} & 4 * 4623427,6 \\ & 4.4372954,6 \\ & 4.5305561,1 \\ & 4.5872943,4 \end{aligned}$ | $\begin{array}{rrr} \circ & \prime & \prime \prime \\ 12 & 30 & 9 \cdot 29 \\ 99 & 4 & 43 \cdot 92 \\ 91 & 42 & 8 \cdot 33 \\ 147 & 33 & 2 \cdot 34 \end{array}$ | XLIV (St. Thomas's Mount) XLV (Injambákam) <br> XLIV (St. Thomas's Mount) XLV (Injambákam) |

October, 1889.
W. H. COLE,

In charge of Computing Office.

## MADRAS LONGITUDINAL SERIES．

## PRINCIPAL TRIANGULATION．HEIGHTS ABOVE MEAN SEA LEVEL．

The following table gives，first，the usual data of the observed vertical angles and the heights of the signal and instrument， \＆c．，in pairs of horizontal lines，the first line of which gives the data for the lst or the fixed station，and the second line the data for the 2nd or the deduced station．This is followed by the arc contained between the two stations，and then by the terrestrial refraction and the height of the 2nd station above or below the lst，as computed from the vertical angles in the usual manner． This difference of height applied to the given height above mean sea level of the fixed station，gives that of the deduced station． Usually there are two or three independent values of the height of the deduced station；the details are so arranged as to show these consecutively and their mean in the columns of＂Trigonometrical Results．＂The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations，which are shown up by the spirit levelling operations，wherever a junction between the two has been effected．The spirit levelled determinations are always accepted as final，and the trigonometrical heights of stations lying between those fixed by the levelling operations are adjusted by simple proportion to accord with the latter．In the table the spirit levelled values are printed thus， $3420.41, \& c$ ．，to dis－ tinguish them from the adjusted trigonometrical values．The column in which the mean trigonometrical heights are given is barred across where necessary，as after deduction of Manjerabad Auxiliary Station from Stn．IX，page 72＿a．，to indicate that one set of adjustments ends and another begins．The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood；when a spirit levelled height does not refer to either of these surfaces，it is given in combination with a correction，thus $\left\{\begin{array}{c}813.98 \\ -3.5\end{array}\right.$ ，and the sum of these two quantities，in this case 810.48 ，represents the value with which the corresponding trigonometrical mean height $808 \cdot 6$ is comparable．Descriptions follow these tables，exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights．

When the pillar of the station is perforated，the height given in the last column is that between the upper surface of pillar and the ground level mark－stone in the floor of the passage；otherwise，it is the approximate height of the structure above the ground at the base of the station．

The heights of the initial stations above Mean Sea Level are as follows：－
For the section between Mangalore and the Great Arc Meridional Series，Section $8^{\circ}$ to $18^{\circ}$

$$
\text { II (Mangalore) } 185.44 \text { feet; } \quad \text { IV (Ballamale) }\left\{\begin{array}{c}
813.98 \\
-3.5
\end{array}\right. \text { feet. }
$$

For the section between the Great Arc Meridional Series，Section $8^{\circ}$ to $18^{\circ}$ ，and Madras


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | $\left\|\begin{array}{l}\text { Terrestrial } \\ \text { Refraction }\end{array}\right\|$ |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1872 | 3fean of Times of obser ration |  |  |  | ， | 蓸 |  | 菦 |  |  | $\underset{\text { Resu }}{\text { Trigonor }}$ | metrical ults |  |  |
|  |  |  |  |  | \％ | 魚 |  | s | 合花 |  | $\begin{aligned} & \text { Br each } \\ & \text { deduc- } \\ & \text { tion } \end{aligned}$ | Mean | Result |  |
|  | $h \quad m$ |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  |  |
| Apr．6，7 | 158 | II（Mangalore） | E $01715 \%$ | 16 | 2.8 | $5 \cdot 3$ | 885 | 47 | －053 | ＋623．2 | $808 \cdot 6$ | $808 \cdot 6$ |  | 2．0 |
| Feb．21，22，24，2， 27 | 147 | IV（Ballamale） | D $03040 \cdot 7$ | 20 | $1 \cdot 5$ | $5 \cdot 3$ | 88 | 47 | －53 | ＋6232 |  |  | $-3.5$ | 20 |
| Feb．21，29，24，25，27 | 147 | IV（Ballamale） | D $03040 \cdot 7$ | 20 | 1.5 2.8 | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| Apr．6， 7 | 158 | II（Mangalore） | E 017154 | 16 | $2 \cdot 8$ |  | 885 | 47 | 053 | $-623 \cdot 2$ | 1873 | 187．3 | 18544 | II•3 |

[^22]| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle | suopprasesqo jo дequonn | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1872 | Mean ofTimesof obser－vation |  |  |  | 䣖 | 若 |  | 흥 |  |  | Trigonometrical Results |  | Final Result |  |
|  |  |  |  |  | \％ | $\begin{aligned} & \text { 黃 } \\ & \text { an } \end{aligned}$ |  |  |  |  | $\left\lvert\, \begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}\right.$ | Mean |  |  |
|  | $\boldsymbol{h} \quad \mathrm{m}$ |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Apr．6，7，8 | 23 | II（Mangalore） | E $01654^{\prime} \mathrm{I}$ | 16 | $2 \cdot 6$ | 5＊3 | 738 | 14 | －018 | $+498 \cdot 1$ | $683 \cdot 5$ |  |  |  |
| ＂10，11，12 | 27 | I（Mijár） | D 02859.6 | 16 | $2 \cdot 7$ | $5 \cdot 3$ | 738 | 14 |  | ＋498 I | 683 |  |  |  |
| Feb．25，26，27 | 220 | IV（Ballamale） | DoII 4I＇2 | 16 | $2 \cdot 7$ | $5 \cdot 3$ | 1034 | 6I | －059 | －121＊9 | 688－6 | 684＊3 | 685 | 174 |
| Apr．10，11，12 | 222 | I（Mijár） | DO $340 \cdot 4$ | 20 | $2 \cdot 8$ | $5 \cdot 3$ | 1034 | 61 |  | － 1219 |  | 6843 | 68 | 14 |
| ＂ 19 | 212 | III（Kudurěmukha） | D $24647 \% 9$ | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 1185 | 84 |  | $-5523 \cdot 1$ | 680＇9 |  |  |  |
| ＂ 10 | 20 | I（Mijár） | E $22940 \cdot 6$ | 6 | $2 \cdot 6$ | 5＇3 | 1185 | 84 | － 07 | －5523 1 | 6809 |  |  |  |
| ＂$\quad 6,7$ | 222 | II（Mangalore） | E $14448 \cdot 3$ | 10 | $2 \cdot 6$ | $5 \cdot 3$ | 1743 | 130 | －074 | ＋6015．8 | 6201 2 |  |  |  |
| ＂20，22 | 224 | III（Kudurĕmukha） | D $2940 \cdot 6$ | 12 | $1 \cdot 1$ | $5 \cdot 3$ | 1743 | 130 | 074 | ＋6015 | 620\％ 2 |  |  |  |
| Feb．21，22，24，25 | 247 | IV（Ballamale） | E 211217 | 16 | 1．8 | $5 \cdot 3$ |  | 101 |  | $+5396 \cdot 2$ | 6206•7 | 6205 7 | 6207 | $1 \cdot 2$ |
| Apr．22，28 | 250 | III（Kudurěmukha） | D 229 51．1 | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 1304 | IOI | 077 | ＋5396 |  | 62057 | 6207 | 12 |
| ＂ 10 | 20 | I（Mijár） | E $22940 \cdot 6$ | 6 | $2 \cdot 6$ | 5＊3 | 1185 | 84 |  | ＋5523．1 | $6209^{\circ} 3$ |  |  |  |
| ＂ 19 | 212 | III（Kudur®̀mukha） | D 24647.9 | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 1185 | 84 | 071 | 31 | 62092 |  |  |  |
| ＂19，20 | 34 | III（Kudurěmukha） | DIII 59＊7 | 12 | $2 \cdot 7$ | $5 \cdot 3$ $5 \cdot 3$ | 1025 | 72 | －071 | $-1947 \cdot 8$ | $4257{ }^{\circ} 9$ |  |  |  |
| Mar．13，14，16，19 | 30 | V（Ammědikal） | E 05798 | 20 | 1．6 | $5 \cdot 3$ | 1025 | 7 |  |  | 425 |  | 4261 | $1 \cdot 2$ |
| Feb．24，25，26，27 | 24 | IV（Ballamale） | E 1 1 13．7 | 24 | $2 \cdot 6$ | 5•3 | 1610 |  |  |  |  |  |  |  |
| Mar．18，19，20 | 25 | V（Ammědikal） | D 12422.4 | 16 | $2 \cdot 6$ | 5•3 | 1610 | 114 | －071 | $+3450$ | 42605 |  |  |  |
| （1） | I 44 | III（Kudurěmukha） | D $040^{\circ} 50 \cdot 0$ | 12 | $2 \cdot 8$ | $5 \cdot 3$ |  |  | － 061 | $-1324^{\circ} 8$ | 4880＇9 |  |  |  |
| Mar． 7 | I 40 | VI（Ånúr） | E $01830 \cdot 1$ | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 1517 | 92 | －061 | $-13248$ | 4880 | $4882 \cdot 6$ | 4885 | $2 \cdot 2$ |
| ${ }^{\prime} 18,14,15,16$ | 216 | V（Ammědikal） | E $066_{51} \mathrm{I}$ | 20 | 2＇7 | 5＇3 |  |  |  |  |  |  |  |  |
| （2） | 231 | VI（Ānúr） | D 0261.9 | 20 | $2 \cdot 7$ | $5 \cdot 3$ | 1292 | 75 | －058 | ＋625 1 | 48843 |  |  |  |
| Feb．19，20，21，22 | 218 | IV（Ballamale） | E $04337^{\circ} 1$ | 16 | $2 \cdot 8$ | 5＊3 | 1078 | 68 | －063 | ＋398．0 | $1208 \cdot 5$ |  |  |  |
| ，12，13，14 | 218 | VII（Muchil） | D 02029.3 | 16 | $2 \cdot 6$ | 5•3 | 1078 | 68 | 063 |  |  |  |  |  |
| Mar．14，15，16 | 237 | V（Ammédikal） | D $12156 \cdot 7$ | 16 | $2 \cdot 8$ | 5＊3 |  |  |  |  |  |  |  |  |
| Feb．14，15 | 234 | VII（Muchil） | E 11004 | 16 | $2 \cdot 6$ | $5 \cdot 3$ | 1451 | 101 | － 070 | $-3052 \cdot 4$ |  |  |  |  |
| Mar．13，14，15 | 2 I | V（Ammědikal） | D 02335.6 | 16 | $2 \cdot 8$ | 5＊3 |  |  |  |  | 3774－6 |  |  |  |
| Jan．7，8，9 | 21 | VIII（Kittávar） | E 0751.4 | 20 | $2 \cdot 7$ | 5＇3 | 1047 | 57 | 054 | － $484 \cdot 6$ | 37746 |  |  |  |
| ＂13，14 | 231 | VI（Ȧnúr） | D $045 \quad 8 \cdot 6$ | 16 | $2 \cdot 9$ | $5^{\circ} 3$ | 1002 | 60 | － 060 | －1112．3 | $3770 \times 3$ | 3773 －8 | 3777 | 11.0 |
| ＂5，6，7 | 230 | VIII（Kittávar） | E $03016 \cdot 1$ | 16 | $2 \cdot 6$ | $5 \cdot 3$ | 1002 | 60 | －60 | 11123 | － 3 | 3773 | 377 | 1 |
| ＂26，27，28，29 | 241 | IX（Pushpagiri） | D $05246 \cdot 3$ | 24 | $2 \cdot 6$ | 5•3 |  | 89 |  | －1841•6 | $3776 \cdot 6$ |  |  |  |
| ＂5，6，7 | 241 | VIII（Kittávar） | E $03036 \cdot 7$ | 16 | $4 \cdot 3$ | $5 \cdot 3$ | 1502 | 89 |  | －1841 6 | 3776 |  |  |  |
| Mar．13，14，15 | 239 | V（Ammědikal） | E 026219 | 16 | $2 \cdot 7$ | $5 \cdot 3$ |  | 85 | － 066 | ＋1358•6 | 5617．8 |  |  |  |
| Jan．27，28，29 | 238 | IX（Pushpagiri） | D 04511.4 | 16 | $2 \cdot 6$ | $5 \cdot 3$ | 1291 | 85 | －066 | ＋1358．6 | 56178 |  |  |  |
| Feb．12，13，14，15 | 22 | VII（Muchil） | E $14652 \cdot 5$ | 20 | $2 \cdot 7$ | 5＊3 |  |  | －070 | $+4410 \cdot 9$ | $5618 \cdot 6$ | 5616－8 | 5620 | 1．8 |
| Jan．26，27，28，29 | 23 | IX（Pushpagiri） | D $2530 \cdot 8$ | 16 | $2 \cdot 8$ | $5 \cdot 3$ | 1290 | 90 | － 0 | $+44109$ | 5618 | 5616 | 5620 |  |
| ＂5，6，7 | 241 | VIII（Kittávar） | E $03036 \cdot 7$ | 16 | $4 \cdot 3$ | 5＊3 |  | 89 | －059 | $+1841 \cdot 6$ | 5614．1 |  |  |  |
| ＂26，27，28，29 | 241 | IX（Pushpagiri） | D $05246 \cdot 3$ | 24 | $2 \cdot 6$ | $5 \cdot 3$ | 1502 | 89 | －059 | ＋1841 6 | 56141 |  |  |  |

（1）The mean of observations taken on 23rd April，1872，and 26th February， 1873.
（2）Do．do．13ih and 14th January，1872，and 7th March， 1873.

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | $\left\lvert\, \begin{array}{l\|} \hline \text { Terrestrial } \\ \text { Refraction } \end{array}\right.$ |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  | Height of Pillar or Tower |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1872 | $\left\|\begin{array}{c} \text { Mean of } \\ \text { Timos } \\ \text { of obser-- } \\ \text { vation } \end{array}\right\|$ |  |  |  | J | 若 |  |  |  |  | Trigonometrical Results |  | Final Result |  |
|  |  |  |  |  |  | 咅 |  |  |  |  | $\begin{gathered} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{gathered}$ | Mean |  |  |
|  | $h \quad m$ |  | - ' $\quad 1$ |  |  |  | " |  |  |  |  |  |  | foot |
| Jan. 6 | 25 | VIII (Kittávar) <br> * Manjerabad | D $02625^{\circ} \mathrm{O}$ | 4 | $1 \cdot 3$ | $5 \cdot 3$ | 550 | 32 |  | $-358 \cdot 3$ | 3415.5 |  |  |  |
| " 26 | 128 | IX (Pushpagiri) <br> * Manjerabad | D 12543 I | 4 | 1•1 | 5*3 | 951 | 55 |  | -2199.6 | $3417^{\circ}$ |  |  | $\ddagger$ |
| ${ }^{1871}{ }^{\text {5,6,7 }}$ | 229 | VIII (Kittávar) | D $01752^{2} 2$ | 16 | $2 \cdot 6$ | 5•3 |  |  |  |  |  |  |  |  |
| Dec. 18,19,22 | 229 | $\mathbf{X}$ (Sátanhalli) | D $0653^{\circ} \mathrm{I}$ | 16 | 2.6 | $5 \cdot 3$ | 1677 | 99 |  | - 271 - | - |  |  |  |
| $\begin{array}{\|c\|c\|} \hline \text { Jan. } 26,27,28,29 \\ 1871 \end{array}$ | 155 | IX (Pushpagiri) | D 0512.6 | 20 | $2 \cdot 6$ | 5*3 |  |  |  |  |  | $3503 \cdot 6$ | 3504 | $2 \cdot 1$ |
| $\text { Deo. }{ }_{1872}^{17,18,19}$ | 154 | X (Sátanhalli) | E $02150 \cdot 9$ | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 1976 | 115 |  |  | 501 2 |  |  |  |
|  | 28 | VIII (Kittávar) | D ○ $1050 \cdot 7$ | 16 | 0.7 | $5 \cdot 3$ |  |  |  |  | 3778-2 |  |  |  |
| $\begin{gathered} \text { 1871-72 } \\ \text { Deo. } 31, \text { Jan. } 1871 \end{gathered}$ | 29 | XI (Desáni) | D 01048.3 | 16 | $2 \cdot 6$ | $3 \cdot 1$ | 1462 | 85 | -058 | $+1$ | $3778 \cdot 2$ |  |  |  |
| $\begin{gathered} \text { Dec. } 22,23,24 \\ 1871.72 \end{gathered}$ | 241 | X (Sátanhalli) | D o 5 50.3 | 16 | 0.5 | $5 \cdot 3$ |  |  |  |  |  | $3777 \times 4$ | 3779 | $2 \cdot 1$ |
| $\begin{aligned} & \text { Dec. 31, Jan. } 1 \\ & -\quad 1872 \end{aligned}$ | 240 | XI (Desáni) | D 01733.7 | 16 | $2 \cdot 6$ | $3 \cdot 1$ | 1571 | 87 | -055 | + 273.0 | $3776 \cdot 6$ |  |  |  |
| Jan. ${ }_{1871} 27,29$ | 310 | IX (Pushpagiri) | D $\circ 5944.8$ | 16 | $2 \cdot 9$ | $5 \cdot 3$ |  |  |  |  | 2824.4 |  |  |  |
| Dec. 12,13 | 37 | XII (Adhárbětta) | E 02727.9 | 16 | $2 \cdot 7$ | $5 \cdot 3$ | 2179 | 123 | O57 | -2795 6 | 2824 |  |  |  |
| , 17,18,19 | 254 | X (Sátanhalli) | D 02713.2 | 12 | $2 \cdot 6$ | 5•3 |  |  |  |  |  | 282 | 2828 | $2 \cdot 6$ |
| " 7,8,10 | 253 | XII (Adhúrbětta) | E $0730 \cdot 9$ | 20 | $2 \cdot 6$ | $5 \cdot 3$ | 1320 | 73 | $\cdot 055$ | - 674.6 | 829.0 |  |  |  |
| " 17,19,22 | 235 | X (Sátanhalli) | D ○ 1927.5 | 16 | $2 \cdot 8$ | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { Nov.20,21,23,27 } \\ \quad 1871.72 \end{gathered}$ | 234 | XIII (Nughallibětta) | E $0245 \%$ | 16 | $2 \cdot 6$ | $5 \cdot 3$ | 1123 | 65 |  | - 367.0 | $3136 \cdot 6$ |  |  |  |
| $\begin{aligned} & \text { Dec. } 31, \text { Jan. } 1 \\ & 1871 \end{aligned}$ | 225 | XI (Desáni) | D $02540 \cdot 8$ | 16 | $2 \cdot 8$ | 3•1 |  |  |  | - $637 \cdot 4$ |  |  |  |  |
| $\text { Deo. }{ }_{1868}{ }^{27,28}$ | 225 | XIII (Nughallibětta) | E 041  | 20 | $1 \cdot 5$ | $5 \cdot 3$ | 1455 | 81 | -055 | -637* | 3140.0 | $3137 \cdot 6$ | 3140 | $1 \cdot 0$ |
| Apr. $\quad 23$ | 140 | XIV (Náráyandurga) | D 02138.2 | 12 | $2 \cdot 8$ | 5.4 |  |  |  |  |  |  |  |  |
| $\begin{gathered} \quad, \quad 30, \text { May } 3 \\ 1871 \end{gathered}$ | 113 | XIII (Nughallibĕtta) | E $0346 \cdot 6$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 1197 | 67 |  | - $446 \cdot 7$ | $3136 \cdot 3$ |  |  |  |
| Dec.17,18,19 | 255 | X (Sátanhalli) | D ○ 818.0 | 12 | $2 \cdot 6$ |  |  |  |  |  |  |  |  |  |
| " 1,2 | 254 | XIV (Náráyandurga) | D 012115 | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 1392 | 85 | -061 | + 79\%7 | $3583 \cdot 3$ |  |  | - |
| " 6,7,9 | 225 | XII (Adhúrbêtta) | E 08842.7 | 20 | $2 \cdot 6$ |  |  |  |  |  |  |  |  | 1-0 |
| $" 1868^{2}$ | 225 | XIV (Náráyandurga) | D $\bigcirc 2850 \cdot 3$ | 12 | $2 \cdot 6$ | $5 \cdot 3$ | 1368 | 85 | -062 | + $756 \cdot 0$ | $3582 \cdot 7$ | $3583 \cdot 7$ | 3586 | 1•0 |
| Apr. 30, May 3 | 113 | XIII (Nughallibetta) | E O $346 \cdot 6$ | 12 | $2 \cdot 7$ | 5.4 |  |  |  |  |  |  |  |  |
| " $1871{ }^{23}$ | 140 | XIV (Náráyandurga) | D 02138.2 | 12 | $2 \cdot 8$ | 5.4 | 1197 | 67 |  | + $446 \cdot 7$ | $3585 \circ$ |  |  |  |
| Dec. 18 | 320 | X (Sátanhalli) <br> * Chanráypatna | D $042 \mathbf{2 4 . 4}$ | 4 | 1•3 | 5*3 | 650 | 38 |  | $-714.8$ | 2788-8 |  |  |  |
| Nov. 21 | 322 | XIII (Nughallibetta) <br> * Chanráypatna | D 0261711 | 4 | $1 \cdot 2$ | $5 * 3$ | 539 | 31 |  | - 349.6 | $2788 \cdot 0$ | $2787 \cdot 8$ | 279194 | $\ddagger$ |
| $\text { Dec. } \quad 1$ | 242 | XIV (Náráyandurga) <br> * Chanráypatna | D 03512.5 | 4 | 1.6 | 5•3 | 968 | 59 |  | $\left\|-797^{\circ} 1\right\|$ | 2786.6 |  |  |  |
| May $\quad 3$ | 10 | XIII (Nughallibětta) | D ○ 1128.6 | 12 | $2 \cdot 7$ | 5*4 |  |  |  |  |  |  |  |  |
| Apr. 12 | 153 | XV (Háltibětta) | D ○ 5152.4 | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 1154 | 61 | $\cdot 053$ | - 953 | $3042 \cdot 3$ | $3041 \cdot 4$ | $\begin{array}{r} 304740 \\ -3.5 \\ \hline \end{array}$ | $2 \cdot 5$ |

[^23]| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  | $\begin{aligned} & \text { g } \\ & \text { " } \\ & \text { 最 } \\ & \text { O } \end{aligned}$ | $\begin{array}{\|l\|} \text { Terrestrial } \\ \text { Refraction } \end{array}$ |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1868 | Mean of <br> Times of obser－ vation |  |  |  | 硈 | 若 |  | 若 |  |  | Trigonom <br> Hesu | metrical ults |  |  |
|  |  |  |  |  | \％ | 最 |  | ． | 胸品 |  | By each deduc－ tion | Mean | Result |  |
|  | $\boldsymbol{h} \mathrm{m}$ |  | －＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| $\text { Apr. } 23$ | 227 | XIV（Náráyandurga） | $\text { D } \circ 2744^{\circ} 2$ | 12 |  | 5．4 | 876 |  |  |  |  |  |  |  |
| $\text { " } \quad 12$ | 237 | XV (Háltibětta) | $\text { E O } 1424^{\circ} 9$ | 12 | $2 \cdot 9$ | $5 \cdot 4$ | 876 | 44 | －051 | －543＊2 | $3040 \cdot 5$ |  |  |  |
| ＂ 80 | 134 | XIII（Nughallibetta） | D $02442 \cdot 9$ | 12 | $2 \cdot 9$ | 5＊4 |  |  |  |  |  |  |  |  |
| ＂ 8 | I 46 | XVI（Chaudanhalli） | E \％ro $9^{\circ} 9$ | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 926 | 32 | － 035 | $475{ }^{\circ} 5$ | $2664{ }^{\circ} 6$ |  |  |  |
| ＂ 12 | 247 | XV（Háltibětta） | D o 19 59．9 | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 1182 | 47 |  |  | $2667{ }^{\circ}$ | 2664＊ 1 | 2664 | 1＇0 |
| ＂ 7 | 230 | XVI（Chaudanhalli） | E O 142.5 | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 1182 | 47 | O40 | － $376 \cdot 7$ | 26673 | 2664 I | 2664 | 10 |
| ＂ 2 | 223 | XLIII（Rangaswámibětta） | D 018 28．7 | 12 | $2 \cdot 9$ | 5．4 |  |  |  |  |  |  |  |  |
| ＂7，8 | 328 | XVI（Chaudenhalli） | E O 0．20．8 | 20 | $2 \cdot 6$ | $5 \cdot 4$ | 1208 | 65 | $\cdot 054$ | － $335^{\circ} 2$ | 2660＊5 |  |  |  |
| $\text { " } 23$ | 231 | XIV（Náráyandurga） | $\text { D } \circ 3827.4$ | 12 | $2 \cdot 6$ | $5{ }^{\circ} 4$ | 721 | 35 |  |  | $2886 \cdot 4$ |  |  |  |
| $\text { " } \quad 18$ | 226 | XVII（Adhibětta） | E 02722.6 | 12 | $2 \cdot 9$ | $5 \cdot 4$ | 721 | 35 | － 049 | － 6998 | 2886 4 |  |  |  |
| ＂ 11 | 247 | XV（Háltibětta） | D $01243{ }^{\prime} 7$ | $12$ | $2 \cdot 6$ | $5{ }^{\circ} 4$ | 871 |  |  |  |  |  | 2888 | $2 \cdot 0$ |
| ＂ 18 | 237 | XVII（Adhibětta） | D ○ 0 37＊3 | 16 | $2 \cdot 7$ | $5 \cdot 4$ | 871 | 41 | － 047 | － 154.5 | 2889 5 | 2887 ＇ 7 | 2888 | $2 \cdot 0$ |
| Mar． 80 | 15 | XLIV（Hemagiri） | D O 1418.6 | 12 | $2 \cdot 7$ | $5^{\circ} 4$ |  | 67 |  |  | $2887^{\circ} 2$ |  |  |  |
| ${\underset{1867}{ }}^{\text {Apr. }} 18 \mid$ | 317 | XVII（Adhibytta） | D $0239^{\circ} 2$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 1142 | 67 | 059 | $196 \cdot 1$ | 28872 |  |  |  |
| $\text { Jan. } 30$ | 254 | XLIII（Rangaswámibětta） | D 0221.1 | 12 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| $\# \quad 27$ | 252 | XLIV（Hemagiri） | D $0949^{\circ}$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 812 | 47 | －058 | ＋88．9 | $3084 \cdot 6$ |  |  |  |
| Apr． 12 | I 39 | XV（Háltibětta） | D 0612.7 | 12 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  | 3084•8 | 3083 | $2 \cdot 9$ |
| Mar． 30 | 114 | XIIV（Hemagiri） | D o 8 $55^{\circ} 9$ | 12 | $2 \cdot 7$ | $5^{\circ} 4$ | 1017 | 60 | －060 | $+40 \cdot 9$ | 3084＊9 |  |  |  |
| 1868 |  |  |  |  | 2 | 54 |  |  |  |  |  |  |  |  |
| Apr． 12 | 154 | XV（Háltibětta） | $\text { D } \circ 826 \cdot 3$ | $12$ | $2 \cdot 6$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| ${ }^{1866}{ }^{2}$ | 128 | XLIII（Rangaswámibětta） | D $0443 \cdot 6$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 884 | 53 | － 060 | －48．3 | $2995{ }^{\circ} 7$ | 2995 7 | $2998 \cdot 74$ | $1 \cdot 9$ |
| Mar．30，31 | 247 | XLIX（Bhúpatamma） | D 02043.2 | $12$ | $2 \cdot 8$ | 5＊4 |  |  |  |  |  |  |  |  |
| Feb． 28 | 246 | XX（Yěrrakŏnda） | E O 849.9 | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 790 | 45 | $\cdot 057$ | － $344^{\circ} \mathrm{O}$ | $3354^{\circ} 7$ | $3354 * 7$ | $\left\|\begin{array}{r} 3356 \cdot 79 \\ -3.5 \end{array}\right\|$ | 2 |
| Mar．22，23 | 30 | XI，VIII（Kolar） | D 05116.6 | 12 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| ＂10，12 | 257 | XVIII（Bardapalle） | $\text { E } \circ 3734^{\circ} 4$ | 12 | 2.6 | $5 \cdot 4$ | 917 | 53 | －058 | － $1202{ }^{\circ} \mathrm{I}$ | 2819＊1 |  |  |  |
| ＂30，31 | 215 | XLIX（Bhúpatamma） | D ○ $3854^{\circ}$ ○ | 12 | $2 \cdot 6$ | $5 \cdot 4$ |  |  |  | － $879 \cdot 8$ |  | 2818－8 | 2819 |  |
| ＂ 12 | 216 | XVIII（Bandapalle） | E $0245^{2 \cdot 2}$ | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 935 | 53 | $\cdot 056$ | －879＊8 | 2818＊9 | 2818．8 | 2819 | $1 \cdot 3$ |
| Feb． 28 | 310 | XX（Y̌̌rrakŏnda） | D 029 9＊3 | 12 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| $\underset{1867}{\text { Mar. }} 10,12$ | 310 | XVIII（Bandapalle） | E○1716．5 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 785 | 43 | －055 | － $534 \cdot 8$ | 2818＊5 |  |  |  |
| Jan． 17 | 223 | XVIII（Bandapalle） | E $03216^{6}$ I | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 462 | 26 |  |  | $3304 \cdot 6$ |  |  |  |
| ＂ 15 | 27 | XIX（Kurudamale） | D 03928.3 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 462 | 26 | 057 | ＋ 485 | 33046 |  |  |  |
| ＂ 10 | 32 | XLVIII（Kolar） | Do3159．2 | 12 | $2 \cdot 9$ | $5 \cdot 4$ |  |  |  |  |  | $3306 \cdot 4$ | 3307 | 1－8 |
| ＂ 186015 | 247 | XIX（Kurudamale） | E○ $1740^{\circ} 3$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 973 | 63 | －064 | 713＊1 | 3308•1 |  |  |  |
| 1866 |  |  | D01740．3 |  |  |  |  |  |  |  |  |  |  |  |
| Mar．10，12 | 330 | XVIII（Bandapalle） | D 0812.6 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 740 | 41 | －055 | $-56 \cdot 6$ | 2762．2 |  |  |  |
| Feb．23，24 | 328 | XXII（Krishnamakð̆nda） | Do 3 0．6 | 12 | $2 \cdot 6$ | $5 \cdot 4$ |  |  |  |  |  | 2762．6 | 2763 | I＇7 |
| ＂ 28 | 220 | XX（Y̌̌rrakð̌nda） | D $02919^{\circ} \mathrm{O}$ | 12 | 2.6 | 5＊4 | 882 | 50 | －057 | $-590 \cdot 4$ | 2762．9 |  |  |  |
| ＂24 | 214 | XXII（Krishnamakŏnda） | E $016 \quad 4 \times 3$ | 12 | $2 \cdot 6$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |

Nors．－Station XIIII（Rangaswamibetta），XIIV（Hemagiri），XIVIII（Kolar）and XIIX（Bhúpatamma）appertain to the Great Arc Meridional Seriea， Section $8^{\circ}$ to $\mathbf{1 8}^{\circ}$

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  | $\begin{aligned} & \frac{y}{4} \\ & \text { च } \\ & \text { 易 } \\ & \text { O } \end{aligned}$ | Terrestrial <br> Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1866 | Mean of <br> Times <br> of obser－ <br> ration |  |  |  | 3 | 蕞 |  | 思 | $\left\|\begin{array}{c} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ E \end{array}\right\|$ |  |  | metrical <br> ults |  |  |
|  |  |  |  |  | \％ | 唇 |  | $\begin{aligned} & \mathbf{g} \\ & \mathbf{1} \end{aligned}$ |  |  | $\begin{array}{c}\text { By each } \\ \text { deduc－} \\ \text { tion }\end{array}$ | Mean | Result |  |
|  |  |  | －＇＂ |  |  |  | ＂ |  |  |  |  |  |  |  |
| Mar．10，12 | 215 | XVIII（Bandapalle） |  | 12 | 2.6 | 5.4 5.4 | 653 | 29 | －044 | －232．1 | $2586 \cdot 7$ |  |  |  |
| Peb．20，21 Mar． 14 | 225 | XXI（Káraveri） | E $0656 \cdot 1$ | 24 | $2 \cdot 6$ | $5 \cdot 4$ |  | 29 |  | 23－1 |  |  |  |  |
| ＂23，24 | 36 | XXII（Krishnamakŏnda） | D ○ 1423.9 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 615 | 36 | $\cdot 058$ | －175．3 | $2587 \cdot 3$ |  |  |  |
| ＂20，21 | 36 | XXI（Káraveri） | E O 5 2．9 | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 615 | 3 | O5 | －175 3 | 25873 |  |  |  |
| ＂20，21 | 36 | XXI（Káraveri） |  | 12 | 2.6 | 5．4 | 518 | 30 | －058 | ＋139 ${ }^{\circ}$ | 2726．2 |  |  |  |
| ＂17，18 | 36 | XXIII（Devaraǩ̌nda） | D○ 1366 | 12 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  | $2726^{\circ}$ | 2727 | $4^{\circ} 2$ |
| ＂23，24 | 231 | XXII（Krishnamakŏnda） | D o 714.6 | 12 | $2 \cdot 6$ | 5．4 | 710 | 42 | －060 | $-36 \cdot 4$ | $2726 \cdot 3$ |  |  |  |
| ＂17，18 | 232 | XXIII（Devarakǒnda） | D o 335.3 | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 710 | 42 |  | 364 | 2726 |  |  |  |
| ＂20，21 | 227 | XXI（Káraveri） | E $02029^{\circ} 9$ | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 447 | 25 | －057 | $+316 \cdot 3$ | 2903.3 |  |  |  |
| ＂ 15 | 226 | XXIV（Patikðuda） | D 027 29．9 | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 448 | 5 | － |  |  | $2903 \cdot 3$ | 2905 | 1.6 |
| ＂17，18 | 250 | XXIII（Devarakǒnda） | E 01433.7 | 12 | $2 \cdot 8$ | 5．4 | 347 | 20 | －058 | $+177{ }^{1}$ | 2903.3 |  |  |  |
| ＂ 15 | 250 | XXIV（Patikǒnda） | D 020 11＇9 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 347 | 20 | － |  |  |  |  |  |
| ＂17，18 | 216 | XXIII（Devaraǩnda） | D O 1915．9 | 12 | 2.6 | 5.4 | 635 | 36 | $\cdot 057$ | －270．1 | $2456 \cdot 1$ |  |  |  |
| ＂10，11 | 221 | XXV（Mugali） | E O $936{ }^{\circ} \mathrm{O}$ | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 635 | 3 | － 5 | － |  |  |  |  |
| ＂ 15 | 310 | XXIV（Patikŏnda） | D 02829.5 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 641 | 36 | $\cdot 057$ | －446•6 | $2456 \cdot 7$ | 2455 \％ 9 | 2458 | $2{ }^{\circ} 0$ |
| ＂10，11 | 311 | XXV（Mugali） | E $\bigcirc 1844.8$ | 12 | $2 \cdot 8$ | $5 \cdot 4$ | 64 | 36 | －5 |  |  |  |  |  |
| ＂3，4 | 253 | XXVI（Satghur） | D ○ ○ $1 \cdot 8$ | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 807 | 46 | －056 | ＋143．5 | $2455{ }^{\circ}$ |  |  |  |
| ＂10，11 | 253 | XXV（Mugali） | D 0128.3 | 12 | $2 \cdot 7$ | 5.4 | 807 | 46 | －56 | ＋1435 | 24550 |  |  |  |
| ＂28，24 | 310 | XXII（Krishnamakǒnda） | D 0256.4 | 12 | $2 \cdot 7$ | 5．4 | 801 | 48 |  | －451．6 | 23110 |  |  |  |
| ＂3，4 | 310 | XXVI（Satghur） | E 01378 | 12 | $2 \cdot 8$ | $5 \cdot 4$ |  |  |  |  | 23 I |  |  |  |
| ＂17，18 | 324 | XXIII（Devarakŏnda） | D $03130 \cdot 4$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 512 | 30 | －058 | －414．2 | $2312{ }^{\circ}$ | $2312{ }^{\circ}$ | 2314 | 2 |
| ＂8，4 | 324 | XXVI（Satghur） | E 023 36．3 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 512 | 30 | － 58 | －4142 | 2312 | 2312 | 2314 |  |
| ＂10，11 | 253 | XXV（Mugali） | D $\bigcirc 128: 3$ | 12 | $2 \cdot 7$ | 5．4 | 807 | 46 | ． 056 | －143．5 | $2312 \cdot 9$ |  |  |  |
| ＂8，4 | 253 | XXVI（Satghur） | D ○ ○ 1．8 | 12 | $2 \cdot 6$ | $5 \cdot 4$ |  | 46 |  |  | 23129 |  |  |  |
| ＂10，11 | 223 | XXV（Mugali） | D 025 2．9 | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 1122 | 71 | ． 063 | $-555 \cdot 4$ | $1900 \cdot 5$ |  |  |  |
| Jan．22，23 | 223 | XXVII（Batinkŏnda） | E $0832^{\circ}$ | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 1122 | 71 | －63 | －555 4 | 19005 | $1900 \cdot 3$ | 1902 | $2 \cdot 5$ |
| Feb． 8 | 210 | XXVI（Satghur） | D $02015 \%$ | 8 | $2 \cdot 7$ | $5 \cdot 4$ |  | 83 |  |  |  |  |  |  |
| Jan．22，23 | 210 | XXVII（Batinkŏnda） | E 0 I 0.3 | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 1313 | 83 | 063 | －4119 | 19001 |  |  |  |
| Feb．3，4 | 238 | XXVI（Satghur） | E o $247 \% 5$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 1229 | 79 | $\cdot 66$ | ＋427．3 | 2739 3 |  |  |  |
| Jan．28，29 | 237 | XXIX（Kailásgarh） | D $02047 \cdot 2$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 1229 | 79 |  | ＋4273 |  | $2738 \cdot 5$ | 2741 | 1．6 |
| ＂22，23 | 258 | XXVII（Batinkǒnda） | E 03717.3 | 12 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| ＂28，29 | 258 | XXIX（Kailásgarh） | D 04721.5 | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 674 | 43 |  | ＋8374 | 2737 |  |  |  |
| Jan．22，23 | 243 | XXVII（Batinkŏnda） | D ○ 3918.8 | 12 | $2 \cdot 8$ | $5{ }^{\circ} 4$ | 1049 | 72 |  | －980．1 | 920＊2 |  |  |  |
| ＂ 6 | 243 | XXXI（Anandalamalai） | E 024 3．3 | 8 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  | 920＇7 | 920．96 | $1 \cdot 5$ |
| ＂28，29 | 224 | XXIX（Kailásgarh） | D $10036 \cdot 8$ | 12 | $2 \cdot 8$ | 5．4 | 1185 | 79 | $\cdot 067$ | －1817＊4 | 921＇1 |  | － $3^{\cdot} 5^{*}$ |  |
| ＂ | 224 | XXXI（Anandalamalai） | E 04321.8 | 8 | $2 \cdot 7$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |

[^24]| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle | suọfesiesqo fo aequmn | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1865 | Mean of <br> Times of obser－ ration |  |  |  | 硄 | $\begin{aligned} & \text { 若 } \\ & \text { 昌 } \end{aligned}$ |  | 畧 |  |  | Trigonom Res | metrical ults |  |  |
|  |  |  |  |  | $\infty$ | 苗 |  | ， | A |  | $\left\lvert\, \begin{gathered} \text { By each } \\ \text { deduc• } \\ \text { tion } \end{gathered}\right.$ | Mean | Result |  |
|  | $\boldsymbol{h m}$ |  | － 1 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Apr．14，15 | 325 | XXXI（Anandalamalai） | D $02459^{\circ} \mathrm{I}$ | 12 | $2 \cdot 7$ | 5•3 | 1296 | 76 |  |  |  |  |  | 4 |
| $" 1866$ | 327 | XXXII（Kurumkota） | E $0548^{\circ} \mathrm{O}$ | 12 | $2.9$ | $5 \cdot 3$ | 1296 | 76 | －59 | －588－2 | 3353 | 3353 | $\left\lvert\, \begin{gathered} 336.87 \\ -3.5 \end{gathered}\right.$ | 4 |
| Jan． 22 | 312 | XXVII（Batinkǒnda） | D o 818.4 | 8 | $2 \cdot 9$ | 5．4 |  |  |  |  |  |  |  |  |
| $\text { „ } 18$ | 310 | XXX（Pullár） | $\text { D } \circ 833^{\circ} 4$ | 8 | $2 \cdot 6$ | $5 \cdot 4$ | 1135 | 71 | － 063 | － $6 \cdot 9$ | $1909 \times 3$ |  |  |  |
| （1） | 35 | XXXI（A nandalamalai） | E $0.2237{ }^{\circ} \mathrm{O}$ | 20 | $2 \cdot 7$ | 5＊3 |  | 67 | － 060 |  |  | $1908 \cdot 9$ |  | 1＊5 |
| $\begin{gathered} (2) \\ 1865 \end{gathered}$ | 35 | $\mathbf{X X X}$（Pullúr） | D ○ $3847^{\circ} \mathrm{O}$ | 20 | $2 \cdot 9$ | $5^{\circ} 3$ | 1094 | 67 | －060 | $+9859$ | 19094 | 1908 | 1909 | 15 |
| Apr． 233 | 240 | XXXII（Kurumkota） | E 0.2318 .0 | 8 | $2 \cdot 7$ | 5＊3 |  |  | －060 |  | $1908 \cdot 0$ |  |  |  |
| ${ }^{\prime} 1866$ | 240 | $\mathbf{X X X}$（Pullúr） | D 046 | 12 | $2 \cdot 7$ | 5＊3 | 1541 | 93 | －060 | ＋1574 6 | 1908 O |  |  |  |
| Feb．10，11 | 237 | XXV（Mugali） | D $03050 \cdot 5$ | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 969 | 59 | －061 |  | I•3 |  |  |  |
| Jan． 18 | 238 | XXVIII（Muruktŏre） | E $01628 \cdot 8$ | 8 | $2 \cdot 6$ | $5 \cdot 4$ | 969 | 59 | ． 061 |  | 1781 |  |  |  |
| ＂22，23 | 323 | XXVII（Batinkŏnda） | DO1114＊0 | 12 | $2 \cdot 7$ | $5 \cdot 4$ | 865 | 53 | －062 | － $122{ }^{\circ}$ | $1780 \cdot 4$ | 1781．2 | 1781 | 2 |
| ＂ 18 | 323 | XXVIII（Muruktore） | Do 1 $37^{\circ} 2$ | 8 | $2 \cdot 6$ | $5 \cdot 4$ | 865 | 53 | －062 | － 122 O | 1880 4 | 1781 | 178 |  |
| ＂18，14 | 343 | XXX（Pullúr） | D O II 29.4 | 16 | $2 \cdot 7$ | $5 \cdot 4$ | 938 | 61 |  |  | I78I•8 |  |  |  |
| $" 1865{ }^{18}$ | 255 | XXVIII（Muruktorre） | D o 21719 | 8 | $2 \cdot 8$ | $5 \cdot 4$ | 938 | 61 | ．065 | －1271 | 1781 8 |  |  |  |
| Apr．4，5 | 236 | XXX（Pullúr） | Efo 031009 | 12 | $2 \cdot 7$ | 5＊3 |  | 62 | －062 |  | 813．9 |  |  |  |
| Mar．26，28 | 237 | XXXIII（Nagari） | D 038 0．7 | 12 | $2 \cdot 7$ | $5 \cdot 3$ | 1004 | 62 | －062 | ＋905 | 2813 9 | 814＊4 | 2814 | r．5 |
| Apr． 23 | 344 | XXXII（Kurumkota） | E 05412.6 | 8 | $2 \cdot 6$ | $5 \cdot 3$ | 1322 | 81 | －061 | ＋248I．4 | 2814•8 |  |  |  |
| Mar．26，27 | 348 | XXXIII（Nagari） | D $11340{ }^{\circ} \mathrm{O}$ | 12 | $2 \cdot 8$ | $5 \cdot 3$ | 1322 | 81 |  | $+2481$ | 28148 |  |  |  |
| Apr．$\quad 14$ | 247 | XXXI（Anandalamalai） | D 022 58．0 | 8 | $2 \cdot 6$ | 5＊3 | 1163 | 73 | $\cdot 063$ | － $493 \cdot 8$ | $429 \cdot 7$ |  |  |  |
| ＂18，20 | 247 | XXXIV（Mávandúr） | E $0552 \cdot 7$ | 12 | 2.9 | 5•3 | 1163 | 73 | ．063 |  | 4297 |  |  |  |
| ＂23，25 | 333 | XXXII（Kurumkota） | D o 5 58．2 | 12 | $2 \cdot 7$ | $5 \cdot 3$ |  | 40 |  | $+89.0$ | $422 \cdot+$ | $429 \cdot 8$ | 430 |  |
| ＂ $1880{ }^{18}$ | 334 | XXXIV（Mávandúr） | DO $1125^{\prime} 1$ | 8 | $2 \cdot 7$ | $5 \cdot 3$ | 1113 | 40 | ． 036 | ＋89 0 | 4224 | 4298 | 430 | $1 \cdot 5$ |
| Jan．14，15，16 | 228 | XXXVIII（Tirumani） | D 01815.2 | 12 | $6 \cdot 0$ | $5^{\prime 2}$ |  |  |  |  |  |  |  |  |
| ＂ $1865^{4,5}$ | 228 | XXXIV（Mávandur） | EO 131.5 | 8 | $2 \cdot 7$ | $5^{\prime 2}$ | 1156 | 77 | $\cdot 067$ | － $338^{\circ} \mathrm{I}$ | $429 *$ |  |  |  |
| 1865 A pr． 23，25 | 256 | XXXII（Kurumkota） | D ○ $329^{\circ} 4$ | 12 | 2.6 | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| May 22 | 253 | XXXVI（Malaipedu） | D $0125^{\circ} \mathrm{I}$ | 8 | $2 \cdot 9$ | $5 \cdot 3$ | 1045 | 60 | $\cdot 058$ | ＋ 132.6 | $466 \cdot 0$ |  |  |  |
| （3） | 245 | XXXIV（Mávandúr） | D o 9 4．9 | 12 | $3 \cdot 7$ | $5 \cdot 3$ | 1369 | 84 | －062 | $+38 \cdot 8$ | 468－6 |  |  |  |
| （4） | 217 | XXXVI（Malaipedu） | D $01059^{\circ} 5$ | 12 | $4 \cdot 3$ | 5＇3 | 1369 | 84 | －062 | ＋ $38 \cdot 8$ | $468 \cdot 6$ |  |  |  |
| June 9 | 235 | XXXVII（Madras Dome Obry．） | E $055^{\circ} 0$ | 12 | $2 \cdot 7$ | 5＊3 |  |  |  |  |  | $467^{\circ} 7$ | 468 | 10 |
| May 22，23 | 237 | XXXVI（Malaipedu） | D $02018 \cdot 7$ | 12 | $8 \cdot 6$ | 3＊3 | 986 | 58 | －058 | $+382 \cdot 5$ | $466 \cdot 9$ |  |  |  |
| 1880 |  |  |  |  |  | 33 |  |  |  |  |  |  |  |  |
| Jan．14，15，16 | 1 58 | XXXVIII（Tirumani） | D 017 36＊7 | 12 | $4 \cdot 8$ | 5＇2 |  | 59 | －062 | －298．5 | $469^{\circ} 5$ |  |  |  |
| Feb．1，2，3 | 159 | XXXVI（Malaipedu） | E $0345^{\circ} \mathrm{I}$ | 12 | 6．0 | $5^{\prime 2}$ | 952 | 59 | －062 | －298 5 | 4695 |  |  |  |
| Apr．24，25 | 231 | XXXII（Kurumkota） | D O 11 41－8 | 12 | $27^{\circ} 6 *$ |  | 1118 |  |  | $-74 \cdot 5$ | 258．9 |  |  |  |
| May 11，12 | 231 | $\mathbf{X X X V}$（Chěmbedu） | D 0546.4 | 12 | $2 \cdot 9$ |  | 1118 | 53 | － 047 | $\mid-\quad 74^{\circ} 5$ | 2589 |  |  |  |
| $\begin{array}{lr}\text { Mar．} & 26 \\ \text { May } & 1173\end{array}$ | 38 | XXXIII（Nagari） | $\begin{array}{lllll}\text { D } 13 & 5.7\end{array}$ | 8 | $43 \cdot 8^{*}$ | $5 \div 3$ |  | 89 | －063 | $-2566 \cdot 8$ | $\begin{array}{r} t \\ 247.6 \end{array}$ |  |  |  |
| May 11，13 | 315 | $\mathbf{X X X V}$（Chěmbedu） | EO5143＇1 | 8 | $4 \cdot 6$ | $10^{\circ} 0^{\circ}$ | 1412 | 89 | －663 | －2560．8 |  |  |  |  |

[^25]| Astronomical Date |  | Number and Name of Station | Observed <br> Vertioal Angle |  | Height in feet |  | $\begin{aligned} & \text { 导 } \\ & \text { " } \\ & \text { 量 } \\ & \text { O } \end{aligned}$ | $\begin{aligned} & \text { Terrestrial } \\ & \text { Refraction } \\ & \hline \end{aligned}$ |  |  | Height in foet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1865 | Mean of Times of obser－ vation |  |  |  | 鄀 | 若晋品 |  |  |  |  | Trigonomotrical Results |  | $\underset{\text { Rounalt }}{\text { Final }}$ |  |
|  |  |  |  |  |  |  |  |  |  |  | By each deduc－ deduc－ tion | Mean |  |  |
|  | $\hbar \mathrm{m}$ |  | －＇ |  |  |  | $\prime$ |  |  |  |  |  |  | foet |
| May $\begin{array}{rr}22 \\ & 11,13\end{array}$ | 355 | XXXVI（Malaipedu） |  | 8 | 3.6 |  | 1237 |  |  | －208．4 | 259＊3 | 256•8 | 257 | 70＊3 |
| ＂11，13 | 325 | XXXV（Chæ̌mbedu） | D ○ 259.4 | 4 | 2.6 | 10．0＊ | 1237 | 74 |  | － 208 ＇4 | 2593 | 256 | 257 | 70 |
| \％ 6 | 423 | XLIV（Rettambedu） | $\text { D } \circ 121 \cdot 7$ | 8 | 13．0＊ | 5＇3 |  |  |  |  |  |  |  |  |
| ＂ 11 | 423 | XXXV（Chĕmbedu） | $\text { D O } 1421.6$ | 16 | 11.4 | 10．0＊ | 928 | －11 |  | ＋ 1973 | 2521 |  |  |  |
| ＂ 16 | 17 11 | XXXV（Cȟ̌mbedu） | D o 1059.6 | 12 | $9^{\circ} 3$ | 10．0＊ | 1162 |  |  |  |  |  |  | § |
| $\left\|\begin{array}{cc} \text { June } & 10 \\ 1880 \end{array}\right\|$ | $17 \quad 9$ | XXXVII（Madras Dome Obsy．） | Do $230 \cdot 5$ | 8 | 3.7 | $5 \cdot 3$ | 1162 |  |  |  |  | ．．． | $\left\|\begin{array}{c} 50 \cdot 38 \\ +30 \cdot 97 \end{array}\right\|$ | 43 |
| Jan．4，5 | 23 | XXXIV（Mávandúr） | D o 8 22．2 | 8 | 2.5 | $5{ }^{\prime 2}$ |  |  |  |  |  |  |  |  |
| ＂9，10 | 23 | XXXIX（Avirimodu） | D ○ II 19．7 | 8 | $6 \cdot 0$ | $5 \cdot 2$ | 1352 |  |  | ＋607 | 490＇5 |  |  | － 6 |
| ＂14，15，16 | 25 | XXXVIII（Tirumani） | D ○ $1759^{\circ} 5$ | 12 | $6 \cdot 0$ | $5 \cdot 2$ |  |  |  |  |  | 4904 | O |  |
| ＂9，10 | 25 | XXXIX（Avirimodu） | E $072 \cdot 1$ | 8 | $2 \cdot 7$ | $5^{\circ} 2$ | 750 | 48 |  | 7 | $490 \cdot 3$ |  |  |  |
| $\# \quad 9,10$ | 25 | XXXIX（Avirimodu） | $\text { E } \circ 72 \cdot 1$ | 8 |  | $5 \cdot 2$ |  | 48 |  | ＋ $277 \cdot 7$ | 768． 1 | 768．1 | 77145 | 3.0 |
| $\not \equiv 14,15,16$ | 25 | XXXVIII（Tirumani） | $\text { D } \circ 1759.5$ | 12 | $6 \cdot 0$ | $5^{\circ} 2$ | 750 | 48 |  | ＋ 2777 | 768 1 | 768 | $-3.5$ |  |
| ＂14，15，16 | 210 | XXXVIII（Tirumani） | D o 3848.9 | 12 | 2.5 6.0 | $5 \cdot 2$ |  |  |  | － $693 \cdot 8$ | $74^{\circ} 2$ |  |  |  |
| ＂19，20 | 210 | XL（Manamai Kunnatúr） | E 02818.5 | 8 | $6 \cdot 0$ | $5 \cdot 2$ | 704 | 40 |  | － 6938 | 74 |  |  |  |
| ＂ 9,10 | 152 | XXXIX（Avirimodu） | D 021373 | 8 | 2.5 |  |  |  |  |  | $77^{\circ} 0$ | $75 \cdot 2$ | 75 | 3＊0 |
| ＂19，20 | 152 | XL（Manamai Kunnatúr） | E 0653.7 | 8 | $6 \cdot 0$ | $5 \cdot 2$ | 990 | 55 |  | － 4134 | $77^{\circ}$ | 75 | 75 | 3 |
| ＂26，27，28 | 221 | XLI（Pudupák） | D 01022.7 | 12 | $6 \cdot 0$ | $5 \cdot 2$ | 846 |  |  |  |  |  |  |  |
| ＂19，20 | 219 | XL（Manamai Kunnatúr） | D $0255^{\circ}$ | 8 | $2 \cdot 5$ | $5 \cdot 2$ | 846 |  |  |  | 745 |  |  |  |
| Feb．1，2，3 | 222 | XXXVI（Malaipedu） | D 01913.0 | 12 | 6．0 | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| Jan．26，27，28 | 221 | XLI（Pudupák） | E $0830 \cdot 3$ | 12 | 4.8 | $5 \cdot 2$ | 733 | 45 |  | － 2993 | $168 \cdot 4$ |  |  |  |
| ＂14，15，16 | $1 \begin{array}{ll}146 \\ 1 \\ 1\end{array}$ | XXXVIII（Tirumani） |  | 12 | 2.5 6.0 | 5．2 |  | 60 |  |  | $170 \cdot 1$ |  |  |  |
| ＂26，27 | 148 | XLI（Pudupák） | EO15 4．5 | 8 | $6 \cdot 0$ | $5 \cdot 2$ | 931 |  |  | － 5979 | 1701 | $169 \cdot 6$ | 170 | $3^{\circ}$ |
| ＂19，20 | 219 | XL（Manamai Kunnatúr） | D o $255^{\circ} \mathrm{O}$ | 8 | $2 \cdot 5$ | $5 \cdot 2$ | 846 | 26 |  | ＋94．7 |  |  |  |  |
| ＂26，27，28 | 221 | XLI（Pudupák） | D 01022.7 | 12 | 6．0 | $5{ }^{2}$ | 846 | 26 |  | ＋ 947 | 1703 |  |  |  |
| Feb．1，2，3 | 23 | XXXVI（Malaipedu） | D 01814.9 | 12 | 2.5 | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ，10，11，12 | 24 | XLII（Nanmangalam） | E $0946 \cdot 7$ | 12 | 6．0 | $5 \cdot 2$ | 574 | 36 |  | － $234{ }^{\circ} 9$ | $232 \cdot 8$ |  |  |  |
| Jan．26，27，28 | 211 | XLI（Pudupák） |  | 12 | 2.5 6.0 | $5 \cdot 2$ |  |  |  | ＋ 63.8 |  |  |  |  |
| Feb．10，11，12 | 2 II | XLII（Nanmangalam） | D 088.7 | 12 | 6．0 | 5．2 | 428 | 26 |  | ＋ 63.8 | 233.4 | $232 \cdot 6$ | 233 | $3 \cdot 0$ |
| ＂24，25 | 22 | XLIV（St．Thomas＇s Mount） | D ○ 727.5 | 8 | 2.4 |  |  |  |  |  |  |  |  |  |
| " 10,11,12 | 23 | XLII（Nanmangalam） | W0 3 3．2 | 12 | 30．7 | 5．2 | 287 |  |  |  | $231 \cdot 7$ |  |  |  |
| ＂1，2，3 | 149 | XXXVI（Malaipedu） | D $02549{ }^{\circ} 4$ | 12 | 2.5 | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂6，7 | 150 | XLIII（Mángád） | E 0191011 | 8 | 6．0 | $5 \cdot 2$ | 447 | 29 |  | － $294 \circ$ | 1737 |  |  |  |
| ＂10，11，12 | $2 \begin{array}{ll}2 & 1 \\ 1 & 5\end{array}$ | XLII（Nanmangalam） | D o $755^{\circ} \mathrm{O}$ | 12 | $6 \cdot 0$ | $5{ }^{\circ} \mathrm{z}$ |  |  |  | － $58 \cdot 8$ |  |  |  |  |
| ＂6，7 | 159 | XLIII（Mángád） | E O $149^{\circ} \mathrm{O}$ | 8 | 2.5 | 5.2 | 398 | 22 |  | －58．8 | $173 \cdot 8$ | 173.6 | 174 | 1 |
| ＂24，25 | I 44 | XLIV（St．Thomas＇s Mount） | D 0 12 312.2 | 8 | 6．0 | 29．0 | 336 | 22 |  | － $76 \cdot 8$ |  |  |  |  |
| ＂6，7 | 142 | XLIII（Mángád） | E $0755^{\circ} 3$ | 8 | 30．6 | $5 \cdot 2$ | 336 | 22 |  | － 76. | 173.2 |  |  |  |

Nors．－Station XLIV（Rettambedu）appertains to the Madras Meridional and Coast Series．
＊These heights are to be combined with negative signs because the tower at XXXV（Chémbedu）had a subsequent permanent addition made to it of $15 \cdot$ I foet．
sbore the cround level，to which the observations refer，but the pillar was subeequentirely． $\ddagger$ Bejected．\＆This was the height of the top of the piller，

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle | Number of obserrations | Height in feet |  |  | Terrestrial <br> Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1880 | Mean ofTimesof obser－ration |  |  |  |  | 若曾号 |  | $\begin{aligned} & \text { 营 } \\ & \text { © } \\ & \text { an } \end{aligned}$ |  |  | Trigonometrical Results |  | Final Result |  |
|  |  |  |  |  |  |  |  |  |  |  | $\left\lvert\, \begin{gathered} \text { By each } \\ \text { deduce- } \\ \text { tion } \end{gathered}\right.$ | Mean |  |  |
|  | $\boldsymbol{h} \boldsymbol{m}$ |  | － 11 |  |  |  | $\prime$ |  |  |  |  |  |  | feet |
| Jan．26，27，28 | 150 | XLI（Pudupák） | D 01432.4 | 12 | 2.4 | $5 \cdot 2$ |  | 6 |  |  |  |  |  |  |
| Feb．14，16，17 | 151 | XLV（Injambåkam） | EO $714{ }^{\circ}$ | 12 | $6 \cdot 0$ | $5 \cdot 2$ | 439 | 6 | 014 | $-138 \cdot 8$ | $30 \cdot 8$ |  |  |  |
| $\text { „ } 10,11,12$ | 147 | XLII（Nanmangalam） | $\text { D } \circ 2813 \cdot 3$ | 12 | 2.5 | 5．2 | 270 | 7 | $\cdot 026$ | －205＊ | $27 \cdot 6$ | $29^{\circ} 0$ | 29 |  |
| „ 14,16,17 | 147 | XLV（Inj̇ambákam） | E $02315^{\circ} 4$ | 12 | $2 \cdot 4$ | $5 \cdot 2$ | 270 | 7 | －26 | $-205^{\circ}$ | 276 | 29 | 29 | 5 |
| ＂ 24,25 | 28 | XLIV（St．Thomas＇s Mount） | D 024 53．0 | 8 | 2.5 30.5 | 29．0 | 382 | 19 | －050 | －221．4 | $28 \cdot 6$ |  |  |  |
| ＂14，16，17 | 27 | XLV（Injambákam） | E 01961 | 12 | $30 \cdot 5$ | $5 \cdot 2$ |  | 19 | 050 | $-2214$ |  |  |  |  |
| ＂6，7 | 142 | XLIII（Mángád） | E ○ 755.3 | 8 | $30 \cdot 6$ | $5 \cdot 2$ |  | 22 | －065 | ＋76．8 | $250 \cdot 4$ | 250＊ 4 | 250．04 | ＊ |
| ＂24，25 | 144 | XLIV（St．Thomas＇s Mount） | D $01233^{\circ}$ | 8 | 6．0 | $29^{\circ} \mathrm{O}$ |  |  |  |  | 2504 |  |  |  |

＊See description of this station，page ${ }^{13}$－ $\boldsymbol{e}$ ．

## Description of Spirit－levelled Points．

When determining the Spirit－levelled heights，given on pages 70 ＿a．$^{\text {to }} 77$＿a．$^{\text {，the levelling staff stood }}$ on the surfaces hereafter described．

II（Mangalore）

IV（Ballamale）

Mánjarabad Auxiliary Station

On a peg at the foot of the station pillar，height $=174 \cdot 61$ feet．To this value， 10.83 feet（the height of the upper mark－stone above this peg）being added，the height of the upper mark－stone was found to be $185 \cdot 44$ feet．

On the stone step of the station platform，height $=810 \cdot 27$ feet．To this value， 3.71 feet（the height of the top of the rectangular protecting pillar above this stone step）being added，the height of the upper surface of the rect－ angular protecting pillar was found to be 813.98 feet．

On a stone at the foot of the stone parapet wall，height $=3415 \cdot 64$ feet．$\quad$ To this value，4．77 feet（the height of the station mark，circle and dot，above this stone）being added，the height of the station mark was found to be $3420 \cdot 41$ feet．

Chanráypatna Auxiliary Station XV（Halltibětta）

[^26]On the station mark consisting of a circle and dot engraved on the north wall of the highest bastion in the N．W．quarter of the old fort．

On a stone below the foot of the station platform，height $=3034.27$ feet．To this value， $13 \cdot 22$ feet（the height of the top of the rectangular protecting pillar alove this stone）being added，the height of the upper surface of the rectangular protecting pillar was found to be $3047 \cdot 49$ feet．

On the top of the circular pillar，near and opposite $N$ ．face of the rectangular protecting pillar．
78-a.
XX (Yěrrakŏnda)

Description of Spirit-levelled Points.-(Continued).
 For further particulars of these stations, see pages 4_u. ${ }^{\text {to }} 13$ _a. Novomber, 1889.

## M•ADFASE LONGITUDINAL SERIPEF.

## PRINCIPAL TRIANGULATION: AZIMUTHAL OBSERVATIONS.

## At II (Mangalore)

Lat. N. $12^{\circ} 52^{\prime} 14^{\prime \prime} \cdot 76$; Long. E. $74^{\circ} 53^{\prime} 9^{\prime \prime} \cdot 89=45932 \cdot 7$; Height above Mean Sea Level, 185 feet. March 1873 ; observed by Major B. R. Branfill with Barrow's 24-inch Theodolite No. 1.

Star observed
Mean Right Ascension 1873.0
Mean North Polar Distance 1873.0
Local Mean Time of Elongation, March 19
a Ursæ Minoris (West).
$1^{\mathrm{h}} 12^{\mathrm{m}} 18^{\mathrm{a}}$
$1^{\circ} 22^{\prime} 4^{\prime \prime} \cdot 30$
Western $7^{\mathrm{h}} 2 \mathbf{1 m}^{\mathrm{m}}$


Abstract of Astronomical Azimuth observed at II (Mangalore) 1873.
By Western Elongation of $a$ Ursæ Minoris.


Astronomical Azimuth of Referring Mark or I (Mijár)
\{ by Western Elongation

| ... | ... | 205 | 52 | 50 |
| :--- | :--- | :--- | :--- | :--- |

Geodetical Azimuth of Mijár by calculation from that
adopted (Vol. II, page 141) at Kaliánpur, see page 66_a. ante ... ... $205 \quad 5253.63$
Astronomical - Geodetical Azimuth at II (Mangalore) ... ... ... ... - 3.10

## At XIII (Nughallibětta)


November 1871; observed by Major B. R. Branfill, with Troughton and Simms' 24 -inch Theodolite No. 1.

Stars observed
Mean Right Ascension 1871.0
Mean North Polar Distance $1871 \cdot 0$
Local Mean Times of Elongation, November 20
$\delta$ Ursæ Minoris (West) and Cephei 51 (Hev.) (East).
$18^{\mathrm{h}} 13^{\mathrm{m}} 57^{\mathrm{t}}$
$3^{\circ} 23^{\prime} 37^{N} \cdot 75 \quad 2^{\circ} 45^{\prime} 41^{\prime \prime} \cdot 8 \mathrm{I}$


|  |  |  | pack lipt |  |  |  | yack bight |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref. Mark - Star at Elongation | Observed <br> Horizontal Angle : Diff. of Readings Ref. Mark-Star |  | Reduction in Are to Time of Elongation | Reduced Observation Ref. Mark- Star at Elongation |
| Nov. 20 | W. | $\begin{gathered} 35434 \\ \& \\ 17434 \end{gathered}$ | $\begin{array}{rrc} \circ & \prime \prime \prime \\ -121 & 59 & 33 \cdot 16 \\ & 59 & 37 \cdot 62 \\ 61 & 49 \cdot 60 \\ 63 & 14 \cdot 94 \end{array}$ | $\left\|\begin{array}{rr} m & s \\ 3 & 7 \\ 6 & 38 \\ 34 & 7 \\ 43 & 30 \end{array}\right\|$ | $\left\|\begin{array}{rr} 0 & 1 \cdot 15 \\ 0 & 5 \cdot 24 \\ 2 & 18 \cdot 04 \\ 3 & 44 \cdot 01 \end{array}\right\|$ | $\begin{array}{rr} -1215932 \cdot 01 \\ & 32 \cdot 38 \\ & 31 \cdot 56 \\ & 30 \cdot 93 \end{array}$ | - 11 | m | ' " | - , " |
|  |  |  |  |  |  |  | $\begin{array}{rrr} -121 & 60 & 19: 30 \\ 60 & 1: 84 \\ 60 & 9 & 36 \\ & 60 & 51: 96 \end{array}$ | $\begin{aligned} & 1958 \\ & 1557 \end{aligned}$ | $\begin{array}{r} +047.45 \\ 030.27 \end{array}$ | $\begin{array}{rr} -121 & 5931 \cdot 85 \\ & 31 \cdot 57 \end{array}$ |
|  |  |  |  |  |  |  |  | 1727 <br> 25 | - $\begin{aligned} & \text { - } 36 \cdot 20 \\ & 119.96\end{aligned}$ | $33 \cdot 16$ |
| " 20 |  |  |  |  |  |  |  |  |  |  |
|  | E. | $\begin{gathered} 354 \quad 34 \\ \& 4 \\ 17434 \end{gathered}$ | $\left\lvert\, \begin{array}{rrr} -128 & 17 & 8 \cdot 54 \\ 17 & 21 \cdot 28 \\ 18 & 34 \cdot 90 \\ 18 & 31 \cdot 08 \end{array}\right.$ | $\left\|\begin{array}{rr} 30 & 19 \\ 28 & 1 \\ 5 & 32 \\ 8 & 10 \end{array}\right\|$ | $\left\|\begin{array}{rrr} 1 & 29.05 \\ 1 & 16.08 \\ 0 & 2.97 \\ 0 & 6.47 \end{array}\right\|$ | $\left\lvert\, \begin{array}{rrr} -128 & 18 & 37 \cdot 59 \\ & 37 \cdot 36 \\ & 37 \cdot 87 \\ & 37 \cdot 55 \end{array}\right.$ | $\left\lvert\, \begin{array}{rrr} -128 & 18 & 24 \cdot 96 \\ 18 & 30 \cdot 90 \\ & 17 & 46 \cdot 70 \\ & 17 & 31 \cdot 74 \end{array}\right.$ | $\begin{array}{r} 11 \\ \mathbf{1} 8 \\ 849 \end{array}$ | $\begin{array}{r} -012 \cdot 41 \\ 0 \quad 7.56 \end{array}$ | $\text { - } \begin{array}{rlr} 128 & 18 & 37 \cdot 37 \\ & 38 \cdot{ }_{4} 6 \end{array}$ |
|  |  |  |  |  |  |  |  | $\begin{array}{ll} 23 & 12 \\ 26 & 31 \end{array}$ | $\begin{array}{lc} \circ & 52.27 \\ \mathrm{I} \\ \hline 8.28 \end{array}$ | $\begin{aligned} & 38 \cdot 97 \\ & 40 \cdot 02 \end{aligned}$ |
| , 21 | W. | $\begin{array}{r} 7346 \\ \& 546 \\ 25346 \end{array}$ | $\begin{array}{\|rrr} -121 & 60 & 24 \cdot 37 \\ 60 & 6 \cdot 66 \\ & 59 & 53 \cdot 98 \\ 60 & 33 \cdot 45 \end{array}$ | $\begin{array}{ll} 21 & 29 \\ 17 & 37 \\ 13 & 52 \\ 22 & 49 \end{array}$ | $\begin{array}{r} +\quad 0 \quad 54 \cdot 93 \\ 036 \cdot 93 \\ 022 \cdot 83 \\ 1 \quad 1 \cdot 78 \end{array}$ | $\begin{array}{rr} -12159 & 29 \cdot 44 \\ & 29 \cdot 73 \\ & 31 \cdot 15 \\ & 31 \cdot 67 \end{array}$ | $\begin{array}{rrr} -121 & 6210 \cdot 50 \\ 61 & 46 \cdot 11 \\ & 5934 \cdot 38 \\ & 5934 \cdot 40 \end{array}$ | $\begin{array}{r} 3626 \\ 33 \\ 56 \\ 529 \end{array}$ | $\left\lvert\, \begin{array}{r} 237.92 \\ 214.33 \\ 0 \quad 3.57 \end{array}\right.$ | -121 $59 \begin{array}{r}32 \cdot 58 \\ \\ \\ \\ \\ \\ 30 \cdot 781\end{array}$ |
|  |  |  |  |  |  |  |  |  | $\begin{array}{cc}0 & 3.57 \\ 0 & 2.71\end{array}$ | $30 \cdot 81$ $31 \cdot 69$ |
| , 21 | E. | $\begin{gathered} 7346 \\ \& \\ 25346 \end{gathered}$ | $\begin{array}{rrr} -128 & 18 & 17.78 \\ 18 & 24.45 \\ 18 & 15.76 \\ 18 & 5.66 \end{array}$ | $\begin{aligned} & 1433 \\ & 123 \\ & 1524 \\ & 1842 \end{aligned}$ | $\left\lvert\, \begin{array}{rrrr} -0 & 20 \cdot 54 \\ 0 & 14 \cdot 09 \\ 0 & 23.06 \\ -0 & 33 \cdot 99 \end{array}\right.$ | $\begin{array}{r} -1281838 \cdot 32 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 38 \cdot 54 \cdot 82 \\ \\ 39 \cdot 65 \end{array}$ | $\begin{array}{rrr} -128 & 1643 \cdot 88 \\ 17 & 6 \cdot 98 \\ 18 & 37 \cdot 30 \\ 18 & 35 \cdot 51 \end{array}$ | $\begin{array}{rl} 34 & 17 \\ 30 & 32 \\ 2 & 20 \\ 4 & 14 \end{array}$ | $\left\|\begin{array}{rrr\|} -1 & 53.75 \\ 1 & 30.27 \\ 0 & 0.53 \\ 0 & 1.74 \end{array}\right\|$ | $\text { - } 128 \quad 18 \begin{array}{r} 37 \cdot 63 \\ \\ 37 \cdot 25 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 37 \cdot 83 \\ & 37 \cdot 25 \end{aligned}$ |
| \% 22 | W. | $\begin{gathered} 152 \quad 58 \\ { }^{2}{ }^{5} \\ 33^{2} 58 \end{gathered}$ | $\left\lvert\, \begin{array}{rrr} -121 & 61 & 23 \cdot 22 \\ & 6 \mathrm{I} & 6 \cdot 38 \\ & 59 & 34 \cdot 56 \\ & 59 & 55 \cdot 98 \end{array}\right.$ | $\begin{array}{lll} 30 & 51 \\ 28 & 23 \end{array}$ | $\begin{array}{r} 1 \\ +153.28 \\ 135.89 \\ 03 \\ 0.26 .11 \end{array}$ | $\begin{array}{\|rl} -121 & 5929 \cdot 94 \\ & 30 \cdot 49 \\ & 31 \cdot 08 \\ & 29 \cdot 87 \end{array}$ | $\begin{array}{rrr} -121 & 60 & 2 \cdot 22 \\ & 59 & 37 \cdot 33 \\ & 61 & 2 \cdot 53 \\ & 62 & 17 \cdot 44 \end{array}$ | $\begin{array}{rr} 16 & 7 \\ 6 & 7 \\ 27 & 46 \\ 37 & 33 \end{array}$ | $\begin{array}{r} +\begin{array}{rrr} 0 & 30 \cdot 92 \\ 0 & 4 \cdot 45 \\ 1 & 31 \cdot 52 \\ 2 & 47 \cdot 11 \end{array} \end{array}$ | $\left\lvert\, \begin{array}{rr} -121 & 5931 \cdot 30 \\ & 32 \cdot 88 \end{array}\right.$ |
|  |  |  |  | $\begin{array}{r} 524 \\ 1449 \end{array}$ |  |  |  |  |  | $31 \cdot 01$ $30 \cdot 33$ |
| " 22 | E. | $\begin{gathered} 15^{2} 58 \\ \& \\ \&^{5} \quad 58 \end{gathered}$ | $\begin{array}{r} -1281741 \times 87 \\ 17 \\ 186 \cdot 46 \\ 18 \\ 7 \cdot 61 \\ 17 \\ 56 \cdot 20 \end{array}$ | $\begin{array}{ll} 23 & 57 \\ 20 & 25 \\ 17 & 45 \\ 20 & 24 \end{array}$ | $\begin{array}{r} -\quad 055.57 \\ 040.40 \\ 030.64 \\ 040.46 \end{array}$ | $\begin{array}{rrr} -128 & 18 & 37.44 \\ & 36 \cdot 86 \\ & 38 \cdot 25 \\ & 36 \cdot 66 \end{array}$ | $\left\lvert\, \begin{array}{rr} -128 & 15 \\ 151 \cdot 40 \\ 15 & 52.31 \\ 18 & 38 \cdot 07 \\ 18 & 37.91 \end{array}\right.$ | $\begin{array}{rr} 43 & 55 \\ 41 & 28 \\ 1 & 24 \\ 1 & 39 \end{array}$ | $\left\lvert\, \begin{array}{rr} -3 & 6 \cdot 33 \\ 2 & 46 \cdot 18 \\ 0 & 0 \cdot 19 \\ 0 & 0.27 \end{array}\right.$ | $\begin{array}{r} -128.1837 \cdot 73 \\ 38 \cdot 49 \\ 38 \cdot 26 \\ 38 \cdot 18 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |


|  |  |  | fater ibit |  |  |  | jacr bight |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star |  | Reduction in Are to Time of Elongation | Reduced Observation <br> Ref. Mark - Star at Elongation | Observed <br> Horizontal Angle : Diff. of Readings Ref. Mark-Blar |  | Reduction in Are to Time of Elongation | Roduced Obeervation <br> Ref. Mark - Star at Elongation |
| Nov. 26 | W. | $\begin{gathered} 31123 \\ \& \\ { }_{13}{ }^{23} 23 \end{gathered}$ | - ' " | $\boldsymbol{m} \boldsymbol{8}$ | , | - 1 " | - 1 | $\boldsymbol{m}$ s | , | - 11 |
|  |  |  | -121 60 1.01 | 1618 842 | + + 0 0 ${ }^{31} \cdot 65$ | -121 59 $29 \cdot 36$ <br>  $30 \cdot 10$  | $\begin{array}{rrr}-121 & 61 & 0 \cdot 05 \\ & 60 & 43.81\end{array}$ | $\begin{array}{lll}27 & 27 \\ 24 & 51\end{array}$ | 1 +129.73 113.54 | 121 59 <br>  $30 \cdot 32$ <br> $30 \cdot 27$  |
|  |  |  | $\begin{array}{ll}59 & 39 \\ 60 & 1.85 \\ 60 & 55\end{array}$ | 1634 |  |  | 5931.03 | - 049 | 1 0 | $30 \cdot 27$ $30 \cdot 95$ |
|  |  |  | $6055 \cdot 42$ | $\begin{array}{r}16 \\ 27 \\ \hline 1\end{array}$ | 127.50 | 27.92 | $5936 \cdot 32$ | 73 | - 5.91 | 30*41 |
| " 26 | E. |  | $\left\lvert\, \begin{array}{rr} -128 & 15 \\ 15 & 15.44 \\ 15 & 32.32 \\ 18 & 22.39 \\ 18 & 30.26 \end{array}\right.$ | $\begin{array}{rlr} 45 & 38 \\ 43 & 31 \\ 11 & 31 \\ 8 & 6 \end{array}$ | $\left\lvert\, \begin{array}{rrrr} -3 & 21 \cdot 10 \\ 3 & 2.94 \\ 0 & 12.86 \\ 0 & 6.36 \end{array}\right.$ | $\begin{array}{rr} -128 \quad 18 & 36 \cdot 54 \\ & 35 \cdot 26 \\ & 35 \cdot 25 \\ & 36 \cdot 62 \end{array}$ | $\begin{array}{r} -12817 \cdot 8 \cdot 04 \\ 1721 \cdot 51 \\ 1834 \cdot 61 \\ 1826 \cdot 17 \end{array}$ | $\begin{array}{r} 3020 \\ 2757 \\ 523 \\ 5012 \end{array}$ | $\left\|\begin{array}{rr} 1 & 29.08 \\ 1 & 15.65 \\ 0 & 2.82 \\ 0 & 10.12 \end{array}\right\|$ | $\left\lvert\, \begin{array}{rrr} -128 & 18 & 37 \cdot 12 \\ & 37 \cdot 16 \end{array}\right.$ |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 37 \cdot 43 \\ & 36 \cdot 29 \end{aligned}$ |
| " 27 | W. | $\begin{gathered} 232 \text { II } \\ \text { \& } 11 \\ 52 \end{gathered}$ | $\begin{array}{\|rrr} -121 & 60 & 32 \cdot 23 \\ 59 & 43 \cdot 95 \\ & 59 & 45 \cdot 40 \\ 60 & 15 \cdot 00 \end{array}$ | 2315 | $\left\lvert\, \begin{array}{rrr} 1 & 4.40 \\ 0 & 15.67 \\ 0 & 17.31 \\ 0 & 47.43 \end{array}\right.$ | -121 5927.83 <br>  28.28 <br>  28.09 <br>  27.57 | $\left\lvert\, \begin{array}{rrr} -121 & 61 & 51 \cdot 10 \\ 61 & 33 \cdot 42 \\ & 59 & 31 \cdot 15 \end{array}\right.$ | $\begin{array}{rr} 34 & 17 \\ 32 & 8 \\ 2 & 36 \end{array}$ | $\left\|\begin{array}{rr} 2 & 10^{\circ} \\ 2 & 27 \\ 2 & 2.97 \\ 0 & 0.81 \end{array}\right\|$ | -12159 31 13 |
|  |  |  |  | 1128 |  |  |  |  |  | 1215931 $30 \cdot 45$ 30.34 |
|  |  |  |  | 124 |  |  |  |  |  | 30*34 |
|  |  |  |  | 1959 |  |  | $5933 \cdot 94$ | 413 | 02.11 | 31-83 |
| " 27 | E. | $\begin{gathered} 232 \text { II } \\ \& 2 \text { 11 } \\ 5^{2} \text {. } \end{gathered}$ | $\begin{array}{rrr} -128 & 14 & 26 \cdot 33 \\ 15 & 9 \cdot 53 \\ 18 & 5 \cdot 25 \\ 18 & 11 \cdot 88 \end{array}$ |  | $\left\lvert\, \begin{array}{rrr} -4 & 5 \cdot 05 \\ 3 & 25 \cdot 04 \\ 0 & 30.47 \\ 0 & 22.74 \end{array}\right.$ | $\begin{array}{rr} -128 \quad 18 & 31 \cdot 38 \\ 34 \cdot 57 \\ & 35 \cdot 72 \\ & 34 \cdot 62 \end{array}$ | -12816$15 \cdot 40$  <br> 17 $10 \cdot 04$ <br> $1837 \cdot 49$  <br> $1836 \cdot 37$ ,$~$ | $\begin{array}{rr} 32 & 39 \\ 30 & 20 \\ 2 & 4 \\ 0 & 17 \end{array}$ | $\left\|\begin{array}{rrr} 1 & 43.15 \\ 1 & 29.05 \\ 0 & 0.41 \\ 0 & 0.01 \end{array}\right\|$ | $\left\|\begin{array}{rr} -128 & 18 \\ 38 \cdot 55 \\ 39 \cdot 09 \\ & 37 \cdot 90 \\ & 36 \cdot 38 \end{array}\right\|$ |
|  |  |  |  | 46 |  |  |  |  |  |  |
|  |  |  |  | 1744 15 15 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Abstract of Astronomical Azimuth observed at XIII (Nughallibĕtta) 1871.

1. By Eastern Elongation of Cephei 51 (Hev).


Abstract of Astronomical Azimuth observed at XIII (Nughallibětta) 1871-(Continued).
2. By Western Elongation of $\delta$ Ursæ Minoris.


| Astronomical Azimuth of Referring Mark or $\left\{\begin{array}{l}\text { by Eastern Elongation } \\ \text { by Western ", }\end{array}\right.$ | ... | ... |  | 31 | $39 \cdot 62$ 37.88 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Astronomical Azimuth of Sátanhalli by observation, mean of above | ... | ... | 54 | 31 | 38.75 |
| Geodetical Azimuth of $\quad$ by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 67_a ante | ... | ... | 54 | 31 | 46•39 |
| Astronomical - Geodetical Azimuth at XIII (Nughallibětta) ... | ... | ... |  |  | $7 \cdot 64$ |

## At XXXI (Anandalamalai)

 January 1866 ; observed by Captain B. R. Branfill with Troughton and Simms' 24-inch Theodolite No. 1.

Stars observed
Mean Right Ascension 1866.0
Mean North Polar Distance 1866.0
Local Mean Times of Elongation, January 3
B. A.C. 7291 (West) and B.A.C. 8199 (East).


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Astronomical Date} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{fact left} \& \multicolumn{4}{|c|}{face bight} \\
\hline \& \& \& \begin{tabular}{l}
Observed \\
Horizontal Angle: \\
Diff. of Readings \\
Ref. Mark - Star
\end{tabular} \&  \& Reduction in Arc to Time of Elongation \& Reduced Observation Ref. Mark - Star at Elongation \& Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star \&  \& Reduction in Arc to Time of Elongation \& Reduced Observation Ref. Mart - Star at Elongation \\
\hline Jan. 3 \& W. \& \[
\begin{array}{cc}
0 \& 1 \\
180 \& 1 \\
\& \& \\
0 \& 1
\end{array}
\] \& \[
\begin{array}{rrr}
+1625 \& 4 \cdot 98 \\
\& 2421 \cdot 3
\end{array}
\] \& \[
\begin{array}{rr}
m \& s \\
21 \& 40 \\
25 \& 3
\end{array}
\] \&  \& \[
\begin{array}{r}
0111 \\
+162714.30 \\
\\
14.02
\end{array}
\] \& \[
\begin{array}{rrr}
+16 \& 20 \& 51 \cdot 70 \\
21 \& 46 \cdot 52 \\
27 \& 5 \cdot 88 \\
26 \& 54 \cdot 44
\end{array}
\] \& \[
\begin{array}{rr}
\boldsymbol{m} \& \boldsymbol{\varepsilon} \\
37 \& 15 \\
34 \& 24 \\
5 \& 52 \\
8 \& 33
\end{array}
\] \& \[
\begin{array}{r}
\prime \prime \\
+624 \cdot 78 \\
528 \cdot 29 \\
0 \\
0.53 \\
020 \cdot 18
\end{array}
\] \& \[
\begin{array}{rl}
+1627 \& 16.48 \\
\& 14.8 \mathrm{I} \\
\& 15.41 \\
\& 14.62
\end{array}
\] \\
\hline " 8 \& E. \&  \& \(\begin{array}{rrr}+ \& 1 \& 1 \\ + \& 6.86 \\ \sim \& 0 \& 43.28 \\ \& 1 \& 11.60 \\ \& 1 \& 3.94\end{array}\) \& \(\begin{array}{rrr}22 \& 25 \\ 10 \& 38 \\ 3 \& 14 \\ 6 \& 5\end{array}\) \& -220.59
0 \(\begin{array}{rr}11.71 \\ 0 \& 2.94 \\ 0 \& 10.39\end{array}\) \& \(\begin{array}{rr}-1 \& 13.73 \\ \& 14.99 \\ \& 14.54 \\ \& 14.33\end{array}\) \& \begin{tabular}{lr}
+ \& 0 \\
\& 538.38 \\
- \& 1 \\
\hline
\end{tabular} \& \(\begin{array}{rr}38 \& 21 \\ 29 \& 25 \\ 7 \& 7 \\ 18 \& 17\end{array}\) \& \(\begin{array}{rrr}-6 \& 50.20 \\ 4 \& 1.79 \\ 0 \& 14.24 \\ 1 \& 34.05\end{array}\) \& \(\begin{array}{rr}-011182 \\ \& 12.53 \\ \& 15.00 \\ \& 13.65\end{array}\) \\
\hline " 4 \& W. \& \[
\begin{gathered}
259 \quad 12 \\
\& \quad 12
\end{gathered}
\] \& \[
\begin{array}{rrr}
+16 \& 24 \& 23.34 \\
25 \& 9.60 \\
25 \& 50 \cdot 06 \\
25 \& 17.34
\end{array}
\] \& \[
\begin{array}{lr}
25 \& 3 \\
21 \& 18 \\
17 \& 34 \\
20 \& 39
\end{array}
\] \& \(\begin{array}{rr}2 \& 53.99 \\ 2 \& 5 \cdot 65 \\ 125 \cdot 06 \\ 157.56\end{array}\) \& 1627
17.33
15.25

15.12

14.90 \& $$
\begin{array}{rr}
16 & 20 \\
215.48 \\
27 & 5.66 \\
27 & 14.88 \\
27 & 16.46
\end{array}
$$ \& $\begin{array}{rrr}39 & 0 \\ 36 & 28 \\ 0 & 19 \\ 2 & 17\end{array}$ \&  \& \[

$$
\begin{array}{r}
+1627 \begin{aligned}
& 17 \cdot 61 \\
& 14.57 \\
& 14 \cdot 91 \\
& 17.91
\end{aligned}
\end{array}
$$
\] <br>

\hline " 4 \& E. \& $$
\begin{gathered}
259 \& 12 \\
7912
\end{gathered}
$$ \& \[

\left\lvert\, $$
\begin{array}{ccc}
+ & 0 & 2 \\
\hline- & 5.72 \\
& 1 & 0.48 \\
& 0 & 49 \cdot 80 \\
& 0 & 36 \cdot 48
\end{array}
$$\right.

\] \& \[

$$
\begin{array}{r}
2636 \\
642 \\
910 \\
1129
\end{array}
$$
\] \& 317.87

012.59
023.59
037.09 \& $\begin{array}{rr}-012.15 \\ & 13.07 \\ & 13.39 \\ & 13.57\end{array}$ \& 1
$+\quad 881.06$
$-\quad 435.28$
-13.50

113.04 \& $\begin{array}{rr}44 & 41 \\ 35 & 16 \\ 1 & 4 \\ 1 & 18\end{array}$ \& $\begin{array}{rr}-9 & 15.83 \\ 5 & 46.92 \\ 0 & 0.32 \\ 0 & 0.47\end{array}$ \& $\begin{array}{rl}-0 \quad 1 & 14.77 \\ & 11.64 \\ & 13.82 \\ & 13.51\end{array}$ <br>

\hline " 5 \& W. \& $$
\begin{gathered}
33824 \\
\& \\
15824
\end{gathered}
$$ \& \[

$$
\begin{array}{rrr}
16 & 25 & 56 \cdot 36 \\
26 & 23 \cdot 28 \\
26 & 2 \cdot 30 \\
25 & 3 \mathrm{r} \cdot{ }^{2} 8
\end{array}
$$
\] \& 16

164
13
16
16 39 \& 1
+17.62
051.34
116.45

145.26 \& $$
\begin{array}{r}
+162713.98 \\
14.62 \\
18.75 \\
\\
16.84
\end{array}
$$ \& \[

$$
\begin{array}{r}
162345 \cdot 18 \\
2425: 88 \\
2716: 06 \\
2714.98
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
27 & 34 \\
24 & 42 \\
2 & 51 \\
0 & 50
\end{array}
$$
\] \&  \& 162715.91

14.94
18.31
15.16 <br>

\hline " 5 \& E. \& $$
\begin{gathered}
33824 \\
\& \\
15824
\end{gathered}
$$ \& \[

$$
\begin{array}{rrr}
+ & 0 & 2 \\
\hline & 11.86 \\
- & 0 & 24.50 \\
& 1 & 11.62 \\
& 1 & 4.74
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
26 & 54 \\
13 & 16 \\
2 & 57 \\
5 & 33
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
322.31 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0.32 .64
\end{array}
$$

\] \& \[

$$
\begin{array}{rl}
-0 \quad 1 & 10.45 \\
& 13.82 \\
& 14.06 \\
& 13.40
\end{array}
$$

\] \& $\begin{array}{llr}+ & 8 & 34.10 \\ & 5 & 9.74 \\ - & 1 & 0.32 \\ & 1 & 8.76\end{array}$ \& $\begin{array}{rr}45 & 56 \\ 37 & 3 \\ 6 & 50 \\ 4 & 9\end{array}$ \&  \& \[

$$
\begin{array}{rl}
-\quad 1 & 13.09 \\
& 11.97 \\
& 13.42 \\
& 13.62
\end{array}
$$
\] <br>

\hline
\end{tabular}

|  |  |  | pact ixit |  |  |  | pacb brame |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star |  | Reduction in Arc to Time of Elongation | Reduced Observation <br> Ref. Mark - Star <br> at Elongation | Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref. Mark-Star at Elongation |
| Jan. 6 | W. | $\begin{array}{r} 57 \quad 36 \\ \& \\ 2373^{6} \end{array}$ | $\begin{array}{rrr} \circ & \prime \prime \\ +1626 & 41 \cdot 40 \\ 27 & 6 \cdot 44 \\ 22 & 50 \cdot 22 \\ 21 & 44 \cdot 98 \end{array}$ | $\left.\begin{array}{rrr} m & s \\ 11 & 3 \\ 6 & 14 \\ 31 & 12 \\ 34 & 49 \end{array} \right\rvert\,$ | $\begin{array}{r} \prime \prime \prime \\ +033 \cdot 78 \\ 0.10 \cdot 75 \\ 427 \cdot 70 \\ 532 \cdot 98 \end{array}$ | $\begin{array}{rrr} \circ \quad 111 \\ +1627 & 15^{\circ} 18 \\ & 17 & 19 \\ & 17 \cdot 92 \\ & 17 & .96 \end{array}$ | $\begin{array}{rcc} \circ & \prime \prime \\ +16 & 24 & 56 \cdot 92 \\ 25 & 37 \cdot 80 \\ 26 & 58 \cdot 06 \\ 26 & 31 \cdot 58 \end{array}$ | $\begin{array}{cc} \boldsymbol{m} & 8 \\ 22 & 29 \\ 18 & 48 \end{array}$ | $\begin{array}{r} 1 \prime \prime \\ +220 \cdot 03 \\ 137 \cdot 92 \end{array}$ | $\circ$ <br> +16 <br> +17 <br> $16 \cdot 95$ |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | $\begin{array}{r} 831 \\ 1229 \end{array}$ | $\begin{aligned} & \circ 20 \cdot 01 \\ & 043 \cdot 03 \end{aligned}$ | $\begin{aligned} & 18 \cdot 07 \\ & 14.61 \end{aligned}$ |
| " 6 | E. | $\begin{array}{r} 573^{6} \\ \& \\ 23736 \end{array}$ | $\begin{array}{rlr} - & 0 & 1 \\ & 1 & 12 \cdot 02 \\ + & 0 & 29 \cdot 50 \\ & 152 \cdot 72 \end{array}$ | $\begin{array}{rrr}15 & 53 \\ 0 & 8\end{array}$ | - $\begin{array}{rrr}1 & 10.63 \\ 0 & 0.00\end{array}$ | $\begin{aligned} & -0 \quad 111 \cdot 65 \\ & 12 \cdot 02 \end{aligned}$ | $\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$ | $\begin{array}{ll} 36 & 4 \\ 24 & 24 \end{array}$ | $\left\lvert\, \begin{array}{rr} -6 & 2 \cdot 86 \\ & 2 \\ 46 \cdot 54 \end{array}\right.$ | - 0 1 12.12 .96 |
|  |  |  |  | $\begin{array}{ll} 19 & 10 \\ 25 & 36 \end{array}$ | $\begin{array}{rr} 1 & 43 \cdot 42 \\ 3 & 4.63 \end{array}$ | $\begin{aligned} & 13.92 \\ & 11.91 \end{aligned}$ | $-\quad 056.92$ $-\quad 037.68$ | $\begin{array}{rrr}7 & 23 \\ 11 & 1\end{array}$ | $\begin{array}{lll} \circ & 15 \cdot 34 \\ \circ & 34 \cdot 11 \end{array}$ | $\begin{aligned} & 12 \cdot 26 \\ & 11 \cdot 79 \end{aligned}$ |
| " 7 | W. | $\begin{aligned} & \left.136 \begin{array}{c} 13 \\ \\ 816 \\ 31 \end{array}\right) \end{aligned}$ | $\begin{array}{r} +162639 \cdot 66 \\ \\ 26 \\ 59 \cdot 64 \end{array}$ | $\begin{array}{rrr}11 & 42 \\ 8 & 2\end{array}$ | $\begin{array}{r} +\quad 037.93 \\ 017.83 \end{array}$ | $\begin{array}{r} 162717.59 \\ 17.47 \end{array}$ | $\left\lvert\, \begin{array}{rrr} 16 & 24 & 33 \cdot 82 \\ & 25 & 17 \end{array}\right.$ | $\left\lvert\, \begin{array}{ll} 24 & 13 \\ 20 & 49 \end{array}\right.$ | $\begin{array}{r} 242.66 \\ 20.04 \end{array}$ | 162716.48 $+17 \cdot 14$ |
|  |  |  | 24 24 24 26 | $\begin{array}{rr} 22 & 25 \\ 25 & 9 \end{array}$ | $\begin{array}{ll} 2 & 18 \cdot 49 \\ 2 & 54 \cdot 08 \end{array}$ | $\begin{aligned} & 16 \cdot 03 \\ & 16 \cdot 18 \end{aligned}$ | $\begin{array}{r} 2713.94 \\ 27 \quad 6.78 \end{array}$ | $\begin{array}{lr} 2 & 55 \\ 6 & 5 \end{array}$ | $\begin{array}{cr} 0 & 2.35 \\ 0 & 10.20 \end{array}$ | $\begin{aligned} & 16 \cdot 29 \\ & 16 \cdot 98 \end{aligned}$ |
| " 7 | E. | $\begin{aligned} & { }^{136} 53 \\ & { }_{\&}^{16} 53 \\ & 316 \end{aligned}$ | $\begin{array}{rlll}  \pm & \circ & 0 & 53 \cdot 76 \\ - & 0 & 48 \cdot 24 \\ & 0 & 56 \cdot 96 \\ - & 0 & 44 \cdot 48 \end{array}$ | $\begin{array}{rr} 21 & 20 \\ 9 & 18 \\ 7 & 37 \\ 10 & 3 \end{array}$ | $\left\lvert\, \begin{array}{rrr} -2 & 7 \cdot 45 \\ 0 & 24 \cdot 29 \\ 0 & 16 \cdot 34 \\ 0 & 28 \cdot 38 \end{array}\right.$ | $\begin{array}{rll} - & 1 & 13.69 \\ & 12.53 \\ & 13.30 \\ & 12.86 \end{array}$ | $\left\lvert\, \begin{array}{lll} + & 0 & 6 \\ & 39 \cdot 06 \\ - & 3 & 6.68 \\ - & 1 & 9: 50 \\ & 1 & 10.48 \end{array}\right.$ | $\begin{array}{rr} 41 & 8 \\ 30 & 29 \\ 3 & 41 \\ 0 & 44 \end{array}$ | $\begin{array}{rrr} -7 & 51 \cdot 22 \\ 4 & 19.49 \\ 0 & 3.79 \\ 0 & 0.15 \end{array}$ | $\begin{array}{rr} -0 \quad 112 \cdot 16 \\ & 12 \cdot 81 \\ & 13 \cdot 29 \\ & 10.63 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |

## Abstract of Astronomical Azimuth observed at XXXI (Anandalamalai) 1866.

1. By Eastern Elongation of B.A.C. 3199.

| Face <br> Zero |  | $\begin{gathered} \mathbf{L} \\ 180^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$ | $\begin{gathered} \mathrm{L} \\ 259^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 79^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ \mathbf{8 3 8} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 158^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 58^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 238^{\circ} \end{gathered}$ | L $187^{\circ}$ | R $817^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date |  | January 3 |  | January 4 |  | January 5 |  | January 6 |  | January 7 |  |
|  |  | " | " | " | " | " | " | " | " | " | $\prime \prime$ |
| Observed difference |  | 13.73 | 11.83 | $12 \cdot 15$ | 14.77 | 10.45 | 13.09 | 11.65 | 12.96 | 13.69 | 12.16 |
| of Circle-Readings, |  | 14.99 | 12.53 | 13.07 | 11.64 | 13.82 | 11.97 | 12.02 | 12.26 | 12.53 | 12.81 |
| Ref. M. - Star |  | 14.54 | 15.00 | 13.39 | 13.82 | 14.06 | 13.42 | 13.92 | 12.26 | 13.30 | 13.29 |
| reduced to Elongation |  | 14.33 | 13.65 | 13.57 | 13.51 | 13.40 | 13.62 | 1 1 -91 | 11'79 | 12.86 | $10 \cdot 63$ |
| Means | 14.40 |  | 13.25 | 13.05 | 13.44 | 12.93 | 13.03 | 1238 | $12 \cdot 32$ | $13 \cdot 10$ | 12.22 |
|  | $\bigcirc$ | , |  |  |  |  |  |  |  |  |  |
| Means of both faces | - 0 | 11 |  |  |  |  |  |  |  |  |  |
| Level Corrections |  |  |  |  |  |  |  |  |  | - |  |
| Corrected Means | - 0 | $1{ }^{1} 1$ |  |  |  |  |  |  |  |  |  |
|  |  | 181 |  |  |  |  |  |  |  |  |  |
| Az. of Ref. M. " |  | 165 |  |  |  |  |  |  |  |  |  |

Abstract of Astronomical Azimuth observed at XXXI (Anandalamalai) 1866-(Continued).
2. By Western Elongation of B.A.C. 7291.

| Face <br> Zero |  | $\begin{gathered} \mathbf{L} \\ 180^{\circ} \end{gathered}$ |  | $\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$ | $\begin{gathered} \mathbf{L} \\ 259^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 79^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ \mathbf{8 3 8} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 158^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 58^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 238^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 137^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ \mathbf{8 1 7} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date |  | January 3 |  |  | January 4 |  | January 5 |  | January 6 |  | January 7 |  |
|  |  | " |  | " | , | * | - | - | " | " | " | - |
| Observed difference |  | $\begin{aligned} & 14.30 \\ & 14.02 \end{aligned}$ | 1 | 16.48 |  |  | 13.98 |  | 15.18 | 16.95 | 17.59 | $16 \cdot 48$ |
| of Circle-Readings, |  |  |  | 14.81 | 15.25 | $14.57$ | 14.62 | 14.94 | 17.19 | $15^{\circ} 72$ | 17.47 | 17.14 |
| Ref. M. - Star |  |  |  | 15.41 | 15.12 | 14.91 | 18.75 | 18.31 | 1792 | 18.07 | 16.03 | 16.29 |
| reduced to Elongation |  |  |  | 14.62 | 14.90 | 1791 | 16.84 | $15 \cdot 16$ | 17.96 | 14.61 | 16.18 | 16.98 |
| Means |  | 14•16 | 1 | $15 \cdot 33$ | $15 \cdot 65$ | $16 \cdot 25$ | 16.05 | 16.08 | 17.06 | 16•34 | 16.82 | 16•72 |
|  | - | 1 | " |  | " |  | " |  | " |  | * |  |
| Means of both faces + |  | 27 | 14.75 |  | $\begin{array}{r} 15.95 \\ -\quad 0.66 \end{array}$ |  | 16.06 |  | 16.70 |  | 16.77 |  |
| Level Corrections |  |  | 10.5114.24 |  |  |  | - 1.02 |  | - 1.15 |  | - 1.02 |  |
| Corrected Means ${ }^{+}$ |  | 27 |  |  | $\begin{array}{r}15.66 \\ \hline 15.29\end{array}$ |  | 15.0443.68 |  | $\begin{aligned} & 15.55 \\ & 43.39 \end{aligned}$ |  |  |  |
| Az. of Star fr. S., by W. |  |  |  |  | 43.97 |  |  |  | $58 \cdot 86$ |  |  |  |
| Az. of Ref. M. . ${ }^{\text {a }}$ |  |  | 58.50 |  | 59:26 |  | $58 \cdot 72$ |  |  |  | 58.94 |  |



## At XLIV (St. Thomas's Mount)


February 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1.
Stars observed
Mean Right Ascension 1880.0
Mean North Polar Distance $1880 \cdot 0$
Local Mean Times of Elongation, February 21
$\delta$ Ursæ Minoris (East) and Cephei 51 (Hev.) (West).
$18^{\text {h }} 1^{1 \mathrm{~m}} 3^{\text {B }}$
$6^{\text {h }} 43^{\mathrm{m}} 47^{\mathrm{s}}$
$\begin{array}{lllll} & 3^{\circ} & 23^{\prime} & 27^{\prime \prime} .65\end{array}$
Western $14^{\mathrm{h}} 37^{\mathrm{m}}$

|  |  |  | FAGE LEPT |  |  |  | PACE RIGHT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle: Diff. of Readings Ref. Mark-Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref. Mark-Star at Elongation | Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star |  | Reduction in Are to Time of Elongation | Reduced Observation Ref. Mark-Star at Elongation |
| Feb. 21 | E. | $\begin{array}{cc} 315 & 2 \\ \& & \\ 135 & 3 \end{array}$ | - 11 | m 8 | 11 | - 11 | - 11 | m 8 | 11 | - 11 |
|  |  |  | $\begin{array}{rrr}170 & 58 & 54.41 \\ 59 & 0.61 \\ & 55 & 12.04\end{array}$ | $\begin{array}{lll}9 & 25 \\ 6 & 35 \\ & 3\end{array}$ | $\begin{array}{rrr}-0 & 10 \cdot 56 \\ 0 & 5 \cdot 16 \\ 3 & 54.96\end{array}$ |  | $\begin{array}{rrr}170 & 57 & 6 \cdot 96 \\ 57 & 30 \cdot 01 \\ & 58 & 38 \cdot 50\end{array}$ | $\begin{array}{ll}30 & 54 \\ 27 & 26\end{array}$ | - 1553.44 | $-1705860 \cdot 40$ 59.45 61.62 |
|  |  |  | $5512 \cdot 04$ <br> 54 <br> $12 \cdot 18$ | $\begin{array}{rrr}44 & 25 \\ 47 & 7\end{array}$ | 354.96 $424 \cdot 37$ | $67 \cdot 00$ $65 \cdot 55$ | $\begin{array}{ll}58 & 38 \cdot 50 \\ 58 & 26 \cdot 98\end{array}$ | $\begin{array}{rrr}13 & 55 \\ 17 & 0\end{array}$ | $\begin{array}{ll} 0 & 23 \cdot 12 \\ 0 & 34^{\circ} \end{array}$ | $\begin{aligned} & 61 \cdot 62 \\ & 6 I \cdot 47 \end{aligned}$ |
| " 21 | W. | $\begin{array}{cc} 315 & 2 \\ \& & \\ 135 & 2 \end{array}$ | $\begin{array}{rrr} -164 & 4 \mathrm{I} & 3.39 \\ 40 & 43 \cdot 6 \mathrm{I} \\ 39 & 45 \cdot 3 \mathrm{I} \\ 39 & 5 \mathrm{I} \cdot 38 \end{array}$ | $\begin{array}{rr} 30 & 8 \\ 26 & 24 \\ 10 & 6 \\ 12 & 30 \end{array}$ | $\begin{array}{rr} 1 & 28 \cdot 21 \\ 1 & 7 \cdot 72 \\ 0 & 9 \cdot 89 \\ 0 & 15 \cdot 15 \end{array}$ | $\left\|\begin{array}{lll} -164 & 39 & 35 \cdot 18 \\ & 35 \cdot 89 \\ & 355^{\circ} 42 \\ & 36 \cdot 23 \end{array}\right\|$ | $\begin{array}{rrr} -164 & 39 & 34 \cdot 82 \\ 39 & 32 \cdot 36 \\ 41 & 8 \cdot 59 \\ 41 & 36 \cdot 43 \end{array}$ | $\begin{array}{rr} 5 & 9 \\ 2 & 14 \end{array}$ | $+\begin{array}{rr} 0 & 2.57 \\ 0 & 0.48 \end{array}$ | $\begin{array}{rrr}-164 & 39 & 32 \cdot 25 \\ & 31 \cdot 88\end{array}$ |
|  |  |  |  |  |  |  |  | $\begin{array}{ll} 31 & 41 \\ 35 & 52 \end{array}$ | $\begin{array}{lr} 1 & 37 \cdot 21 \\ 2 & 4 \cdot 50 \end{array}$ | $\begin{aligned} & 3 I \cdot 38 \\ & 3 I \cdot 93 \end{aligned}$ |
| " 22 | E. | $\begin{gathered} 3415 \\ \& \\ 21415 \end{gathered}$ | $\begin{array}{rrr} -170 & 57 & 46 \cdot 66 \\ 57 & 59 \cdot 43 \\ 58 & 47 \cdot 52 \\ 58 & 40 \cdot 47 \end{array}$ | $\begin{array}{ll} 25 & 52 \\ 23 & 19 \\ 11 & 53 \\ 13 & 52 \end{array}$ | $\begin{array}{rr} -1 & 19.50 \\ 1 & 4.61 \\ 0 & 16.83 \\ 0 & 22.93 \end{array}$ | $\left\|\begin{array}{r} -1705866 \cdot 16 \\ 64 \cdot 04 \\ 64 \cdot 35 \\ 63 \cdot 40 \end{array}\right\|$ | $\begin{array}{rll} -170 & 58 & 54 \cdot 62 \\ 58 & 56 \cdot 41 \\ 57 & 37 \cdot 59 \\ 57 & 20 \cdot 88 \end{array}$ | $\begin{array}{rr} 7 & 34 \\ 5 & 13 \\ 26 & 29 \\ 29 & 0 \end{array}$ | $\begin{array}{rr} -0 & 6.83 \\ 0 & 3.25 \\ 1 & 23.63 \\ 1 & 40.28 \end{array}$ | $\begin{array}{r} -1705861 \cdot 45 \\ \\ 59 \cdot 66 \\ \\ \\ \\ \\ 61 \cdot 22 \\ 61 \cdot 16 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| " 22 | W. | $\begin{gathered} 34 \quad 15 \\ \& \& 15 \\ 214 \quad 15 \end{gathered}$ | $\begin{array}{rr} -16443 & 20 \cdot 55 \\ 42 & 51 \cdot 79 \\ 3948 \cdot 21 \\ 3942.94 \end{array}$ | $\begin{array}{rr} 48 & 1 \\ 45 & 4 \\ 11 & 18 \\ 9 & 10 \end{array}$ |  | $\begin{array}{rr} -16439 & 36 \cdot 82 \\ & 34 \cdot 65 \\ & 35 \cdot 8 \mathrm{I} \\ & 34 \cdot 79 \end{array}$ | $\begin{array}{rrr} -164 & 41 & 3 \cdot 45 \\ 40 & 32 \cdot 11 \\ 39 & 33 \cdot 78 \\ 39 & 36 \cdot 14 \end{array}$ | $\begin{array}{ll} 30 & 17 \\ 24 & 55 \end{array}$ | $+\begin{array}{rr} 1 & 29.09 \\ 1 & 0.32 \end{array}$ | -164 $3934 \cdot 36$ |
|  |  |  |  |  |  |  |  |  |  | 3I'79 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 425 6 | 0 | $31 \cdot 46$ |
| " 23 | E. | $\begin{aligned} & 11326 \\ & \& \\ & 29326 \end{aligned}$ | $\begin{array}{rrr} -170 & 56 & 46 \cdot 93 \\ 57 & 9 \cdot 15 \\ 58 & 41 \cdot 94 \\ 58 & 30 \cdot 86 \end{array}$ | $\begin{array}{ll} 33 & 58 \\ 31 & 15 \end{array}$ | $\begin{array}{r} 216.93 \\ 155.95 \end{array}$ | $-170 \begin{array}{cc} 58 & 63 \cdot 86 \\ 65 \cdot 10 \end{array}$ | $\begin{array}{rrr} -170 & 58 & 29^{\circ} 03 \\ 58 & 59^{\circ} 90 \end{array}$ | $\begin{array}{r} 1658 \\ 350 \end{array}$ | $-034.29$ | $\begin{array}{r} -170 \quad 58 \quad 63 \cdot 32 \\ 61 \cdot 65 \end{array}$ |
|  |  |  |  | $\begin{aligned} & 1354 \\ & 1654 \end{aligned}$ | $\begin{array}{ll} 0 & 23 \cdot 04 \\ 0 & 34^{\circ} 06 \end{array}$ | $\begin{aligned} & 64 \cdot 98 \\ & 64 \cdot 92 \end{aligned}$ | $\begin{array}{rr}56 & 36 \cdot 88 \\ 56 & 7 \cdot 59\end{array}$ | $\begin{array}{ll} 34 & 53 \\ 38 & 14 \end{array}$ | $\begin{array}{ll} 2 & 25^{\circ} 09 \\ 2 & 54^{\circ} \end{array}$ | $\begin{aligned} & 6 \mathrm{r} \cdot 97 \\ & 6 \mathrm{r} \cdot 84 \end{aligned}$ |
| " 23 | W. | $\begin{aligned} & 11326 \\ & \& \\ & 29326 \end{aligned}$ | $\begin{array}{rrr} -164 & 40 & 11 \cdot 27 \\ 40 & 2 \cdot 03 \\ 40 & 31 \cdot 20 \\ 40 & 50 \cdot 25 \end{array}$ | $\begin{array}{ll} 19 & 32 \\ 16 & 50 \\ 24 & 11 \\ 27 & 53 \end{array}$ | $\begin{array}{r} +\begin{array}{rl} 0 & 37 \cdot 08 \\ 0 & 27.54 \\ 0 & 56 \cdot 74 \\ 1 & 15.31 \end{array} \end{array}$ | $\left\|\begin{array}{rrr} -164 & 39 & 34 \div 19 \\ & 34.49 \\ & 34.46 \\ & 34.94 \end{array}\right\|$ | $\begin{array}{rrr\|} -164 & 42 & 2 \cdot 60 \\ & 41 & 36 \cdot 99 \\ & 39 & 32 \cdot 30 \\ & 39 & 33 \cdot 20 \end{array}$ | $\begin{array}{rr} 3912 \\ 35 & 45 \\ 0 & 32 \\ 3 & 6 \end{array}$ | $\begin{array}{rr} +2 & 29.25 \\ 2 & 4.17 \\ 0 & 0.03 \\ 0 & 0.93 \end{array}$ | $\begin{array}{rl} -16439 & 33 \cdot 35 \\ 32 \cdot 82 \\ & 32 \cdot 27 \\ & 32 \cdot 27 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |


|  | ．品品㽞 |  | pact left |  |  |  | paci might |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed <br> Horizontal Angle ： Diff．of Readings Ref．Mark－Star |  | Reduction in Arc to Time of Flongation | Reduced Observation <br> Ref．Mark－Star at Elongation | Observed Horizontal Angle ： Diff．of Readings Ref．Mark－Star |  | Reduction in Arc to time of Elongation | Reduced Observation Ref．Mark－Star at Elongation |
| Feb． 24 | E． | $\begin{array}{r} 19239 \\ \& \\ 1239 \end{array}$ | $\left\|\begin{array}{rrr} -170 & 57 & 12 \cdot 27 \\ 57 & 32 \cdot 32 \\ 58 & 51 \cdot 67 \\ 58 & 42 \cdot 35 \end{array}\right\|$ | 3051 <br> 2748 <br> 10． 35 <br> 1344 | $\prime$ | － 11 | － 11 | $\boldsymbol{m}$ s | 1 | － 1 |
|  |  |  |  |  | $\left\lvert\, \begin{array}{rrrr} -1 & 53 \cdot 11 \\ 1 & 31 & 11 \\ 0 & 13 \cdot 3 \\ 0 & 22 \cdot 50 \\ 0 \end{array}\right.$ | $\begin{array}{r} \text { - } \left.170 \begin{array}{r} 58 \\ 65 \cdot 38 \\ 64 \cdot 19 \\ 65 \cdot 03 \\ 64 \cdot 85 \end{array} \right\rvert\,, ~ \end{array}$ | $\left\|\begin{array}{rrrr} -170 & 58 & 49 \cdot 28 \\ 58 & 56 \cdot 19 \\ & 57 & 38 \cdot 97 \\ 57 & 17 \cdot 60 \end{array}\right\|$ | $\begin{array}{r} 10 \quad 23 \\ 729 \\ 26 \quad 32 \\ 29 \quad 32 \end{array}$ | $\begin{array}{rrr} -0 & 12 \cdot 85 \\ 0 & 6.67 \\ 1 & 23.99 \\ 1 & 44.05 \end{array}$ | $\begin{array}{rl} -170 & 58 \\ & 62 \cdot 13 \\ & \mathbf{6 2} \cdot 86 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 62 \cdot 96 \\ & 61 \cdot 65 \end{aligned}$ |
| ， 24 | W． | $\begin{gathered} 19239 \\ \& 239 \\ 1239 \end{gathered}$ | $\left.\begin{array}{rrr} -164 & 40 & 26 \cdot 38 \\ 40 & 16 \cdot 41 \\ 40 & 8 \cdot 99 \\ 40 & 22 \cdot 19 \end{array} \right\rvert\,$ | $\begin{array}{cc} 23 & 2 \\ 20 & 40 \\ 18 & 38 \\ 21 & 46 \end{array}$ | $\begin{array}{r} +\quad 051 \cdot 58 \\ 041 \cdot 52 \\ 033 \cdot 70 \\ 045 \cdot 96 \end{array}$ | $\begin{array}{\|lll} -164 & 39 & 34 \cdot 80 \\ & 34 \cdot 89 \\ & 35 \cdot 29 \\ & 36 \cdot 23 \end{array}$ | $\begin{array}{rll} -164 & 42 & 44 \cdot 35 \\ 42 & 21 \cdot 39 \\ & 39 & 36 \cdot 54 \\ & 39 & 37 \cdot 79 \end{array}$ | $\begin{array}{r} 4424 \\ 4138 \\ 433 \\ 6 \quad 12 \end{array}$ | $\left\lvert\, \begin{array}{rrr} +3 & 11.42 \\ 2.48 .35 \\ 0 & 2.01 \\ 0 & 3.73 \end{array}\right.$ | $\begin{array}{rr} -1643932 \cdot 93 \\ & 33 \cdot 04 \\ & 34 \cdot 53 \\ & 34 \cdot 06 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| \％ 25 | E． |  | $\left\lvert\, \begin{array}{rrr} -170 & 5714 \cdot 60 \\ 57 & 32 \cdot 67 \\ 58 & 58 \cdot 96 \\ 58 & 54 \cdot 10 \end{array}\right.$ | $\begin{array}{rr} 30 & 43 \\ 28 & 4 \\ 6 & 36 \\ 9 & 32 \end{array}$ | $\left\lvert\, \begin{array}{rrr} -1 & 52 \cdot 06 \\ 1 & 33 \cdot 57 \\ 0 & 5 \cdot 19 \\ 0 & 10 \cdot 83 \end{array}\right.$ | $\left\lvert\, \begin{array}{rr} -17058 & 66 \cdot 66 \\ & 66 \cdot 24 \\ & 64 \cdot 15 \\ & 64 \cdot 93 \end{array}\right.$ | $\left\|\begin{array}{rll} -170 & 58 & 30 \cdot 88 \\ 58 & 42 \cdot 54 \\ 57 & 17 \cdot 06 \\ 56 & 55 \cdot 49 \end{array}\right\|$ | $\begin{array}{rr} 16 & 39 \\ 13 & 15 \\ 30 & 8 \\ 32 & 48 \end{array}$ | $\left\lvert\, \begin{array}{rrrr} - & 0 & 32 \cdot 97 \\ 0 & 20.88 \\ 1 & 48.27 \\ 2 & 8.26 \end{array}\right.$ | $\begin{array}{r} -1705863 \cdot 85 \\ 63 \cdot 42 \\ 65 \cdot 33 \\ 63 \cdot 75 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| ， 25 | W． | $\begin{gathered} 271 \\ \&{ }^{21} \\ 9 \mathrm{I} 51 \end{gathered}$ | $\begin{array}{rl} -164 & 39 \\ 39 & 55 \cdot 77 \\ & 47 \cdot 96 \\ 40 & 29 \cdot 02 \\ 40 & 44 \cdot 90 \end{array}$ | $\begin{array}{ll} 14 & 24 \\ 11 & 42 \\ 23 & 39 \\ 26 & 52 \end{array}$ | $\begin{array}{r} +0 \\ + \\ 0 \\ 0 \\ \hline \end{array} 13.140$ | $\left\lvert\, \begin{array}{rr} -16439 & 35 \cdot 63 \\ & 34 \cdot 66 \\ & 34.82 \\ & 34 \cdot 98 \end{array}\right.$ | $\begin{array}{r} -164 \begin{array}{rr} 41 & 40 \cdot 24 \\ 41 & 14.44 \\ 39 & 41 \cdot 98 \\ 39 & 47.43 \end{array} \\ \\ \end{array}$ | $\begin{array}{rr} 36 & 6 \\ 32 & 7 \\ 8 & 30 \\ 11 & 26 \end{array}$ | $\begin{array}{rr} +2 & 6 \cdot 58 \\ 1 & 40.21 \\ 0 & 7 \cdot 03 \\ 0 & 12 \cdot 70 \end{array}$ | $\left\lvert\, \begin{array}{rr} -16439 & 33 \cdot 66 \\ & 34 \cdot 23 \\ & 34.95 \\ & 34.73 \end{array}\right.$ |
|  |  |  |  |  |  |  |  |  |  |  |

Abstract of Astronomical Azimuth observed at XLIV（St．Thomas＇s Mount） $\mathbf{1 8 8 0}$.
1．By Eastern Elongation of $\delta$ Ursæ Minoris．


Abstract of Astronomical Azimuth observed at XLIV (St. Thomas's Mount) 1880-(Continued).
2. By Western Elongation of Cephei 51 (Hev.)


Astronomical Azimuth of Referring Mark or \{by Eastern Elongation
XLII (Nanmangalam)
\{by Western
"
$\begin{array}{lllll}\cdots & \cdots & 12 & 30 & 5 \cdot 35\end{array}$
Astronomical Azimuth of Nanmangalam by observation, mean of above Geodetical Azimuth of $\quad, \quad$ by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 69_a. ante ... ... 12 30 9.29
Astronomical - Geodetical Azimuth at XLIV (St. Thomas's Mount) ... ... - 4.84

## At XLV (Injambákam)

Lat. N. $12^{\circ} 54^{\prime} 51^{\prime \prime} \cdot 18$; Long. E. $80^{\circ} 17^{\prime} 38^{\prime \prime} \cdot 41=\begin{gathered}\hbar \\ 5 \\ 2\end{gathered} \mathbf{m}_{1} 10^{\prime} \cdot 6$; Height above Mean Sea Level, 29 feet.
February 1880; observed by Lieut.-Colonel B. R. Branfill with Troughton and Simms' 24 -inch Theodolite No. 1.

Stars observed
Mean Right Ascension $1880^{\circ} 0$
Mean North Polar Distance 1880.0
Local Mean Times of Elongation, February 14
$\delta$ Ursæ Minoris (East) and Cephei 51 (Hev.) (West).
$6^{\text {b }} 43^{\text {m }} 47^{\text {B }}$
$2^{\circ} 46^{\prime} \quad 15^{\prime \prime} \cdot 05$
Eastern $14^{\mathrm{h}} 37^{\text {m }}$
Western $15^{\mathrm{t}} 5^{\mathrm{m}}$

|  |  |  | fack left |  |  |  | fact bigit |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed <br> Horizontal Angle : <br> Diff. of Readings <br> Ref. Mark - Star |  | Reduction in Are to Time of Elongation | Reduced Obserration Ref. Mark - Star at Elongation | Observed <br> Horizontal Angle: Diff. of Readings Ref. Mark-Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref. Mark-Star at Elongation |
| Feb. 14 | E. | $\begin{array}{r} \circ \\ 48 \\ 48 \\ \& \\ 228 \\ 28 \end{array}$ | $\begin{array}{rrr} -8423 & 4 \cdot 66 \\ 23 & 20 \cdot 13 \\ 23 & 36 \cdot 56 \\ & 23 & 19.99 \end{array}$ | $\boldsymbol{m} 8$ | $1 \quad 1$ | - 11 | $\begin{array}{ccc} \circ & \prime \prime \prime \\ -8424 & 6.67 \end{array}$ | $\boldsymbol{m} 8$ |  | $-842421 \cdot 95$ |
|  |  |  |  | $\begin{array}{lll}25 & 44 \\ 22 & 56\end{array}$ | $\begin{array}{rrr} -1 & 18 \cdot 68 \\ 1 & 2 \cdot 52 \end{array}$ | $-8424 \begin{aligned} -83 \cdot 34 \\ 22 \cdot 65 \end{aligned}$ |  | II 20 | $-015 \cdot 28$ |  |
|  |  |  |  | 2256 |  |  | $24^{20 \cdot 35}$ | 526 | $0 \quad 3.53$ | 23.88 |
|  |  |  |  | 1947 | $\bigcirc 46.62$ | $\begin{aligned} & 23 \cdot 18 \\ & 22 \cdot 55 \end{aligned}$ | $\begin{array}{ll} 20 & 44 \cdot 29 \\ 20 & 19.97 \end{array}$ | 4247 | 3 37*95 | 22.24 |
|  |  |  |  | 2255 | 12.56 |  |  | 454 | 4 1.79 | $21 \cdot 76$ |
| " 14 | W. | $\begin{gathered} 4829 \\ \& \\ 22829 \end{gathered}$ | $-78 \quad 5 \quad 1 \cdot 71$ | 131 | $\begin{array}{rr}+0 & 0.22 \\ 0 & 0.06 \\ 1 & 38.71 \\ 2 & 8.06\end{array}$ | -78 4 61.49 | $\begin{array}{lll}-78 & 5 & 39 \cdot 46 \\ & 5 & 48 \cdot 64 \\ & 8 & 26 \cdot 01 \\ & 9 & 9.50\end{array}$ | $\begin{array}{lr} 20 & 9 \\ 22 & 18 \\ 46 & 15 \\ 50 & 49 \end{array}$ | $\begin{array}{rr} +0 & 39 \cdot 40 \\ 0 & 48 \cdot 25 \\ 3 & 26 \cdot 62 \\ 4 & 9.21 \end{array}$ | -78 $460 \cdot 06$ |
|  |  |  |  | - 49 |  |  |  |  |  | 60.39 |
|  |  |  |  | 3156 |  |  |  |  |  | 59:39 |
|  |  |  |  | 3623 |  |  |  |  |  | 60*29 |
| " 16 | E. | 20653 | $-842215.68$ | 3239 | - 26.49 | $-842422 \cdot 17$ | -84 23 24.28 | 2230 | -10.15 | $-842424^{\circ} 43$ |
|  |  |  | 2419.71 | 5 2 <br> 2 1 | $\bigcirc \quad 3.03$ | 22.74 22.86 | 23 39.34 | 1930 | $045 \cdot 19$ | 24.53 |
|  |  | 2653 | $2422 \cdot 37$ | 2 1 | $\bigcirc 0.49$ | $22 \cdot 86$ | 23 43.27 | 1830 | - $40 \cdot 80$ | $24 \cdot 07$ |
|  |  |  | $2135 \%$ | 3725 | $246 \cdot 79$ | $22^{\circ} 49$ | 2324.48 | 229 | $\bigcirc 58 \cdot 48$ | $22 \cdot 96$ |
| " 16 | W. | 20653 | $-78 \quad 710 \cdot 18$ | 3635 | + 29.92 | $-78 \quad 460 \cdot 26$ | $-78 \quad 5 \quad 31 \cdot 12$ | 1719 | + 029.16 | $-78461 \cdot 96$ |
|  |  |  | 614.85 | 2717 | 112.29 | -62.56 | 5 5 | 227 | 00.59 | 61.79 |
|  |  | 2653 | $5 \quad 5.05$ | 538 | - 3.08 | 61.97 | $\begin{array}{ll}6 & 2 \cdot 87\end{array}$ | 2450 | - $59 \times 78$ | $63 \cdot 09$ |
|  |  |  | $521 \cdot 55$ | 1457 | - 21.69 | $59 \cdot 86$ | $\begin{array}{ll}7 & 9 \cdot 33\end{array}$ | 3626 | $28 \cdot 47$ | $60 \cdot 86$ |
| " 18 | E. | ${ }_{\text {¢ }} 17$ | $-8422 \begin{array}{ll}41 \cdot 43 \\ 22 & 59.91\end{array}$ | 2930 2632 | $\begin{array}{r} 143.29 \\ 123.69 \end{array}$ | $\begin{array}{ll} -8424 & 24.72 \\ & 23.60 \end{array}$ | $\begin{array}{rrr}-84 & 24 & 0.27 \\ & 24 & 10 \cdot 46\end{array}$ | $\begin{array}{rr}14 & 0 \\ 10 & 39\end{array}$ | $\begin{array}{r} -023 \cdot 35 \\ 0 \\ \hline \end{array}$ | $-8424 \begin{array}{r} 23.62 \\ \\ \\ 23.98 \end{array}$ |
|  |  | 18517 | 2424.28 | 218 | - 0.63 | $24^{\circ} 91$ | $2237 \cdot 92$ | 2951 | $146 \cdot 21$ | 24*13 |
|  |  |  | 2414.06 | 924 | $010 \cdot 53$ | $24^{\circ} 59$ | $2218 \cdot 60$ | 3225 | $25^{\circ} 25$ | $23 \cdot 85$ |
| " 18 | W. |  | $-78 \quad 5 \quad 24.03$ | 1422 | + 020.06 | $-78 \quad 4 \quad 63.97$ | $\begin{array}{llll}-78 & 5 & 2 \cdot 47\end{array}$ | 116 | +00.15 | $-78 \quad 462 \cdot 32$ |
|  |  |  | $517 \cdot 60$ | II 47 | -13.50 | $64^{\circ} 10$ | $\begin{array}{lll}5 & 8 \cdot 57\end{array}$ | 83 | -6.30 | 62.27 |
|  |  | $185 \quad 17$ | 5 5 $38 \cdot 14$ | $\begin{array}{rrr}19 & 5 \\ 21 & 47\end{array}$ | $035 \cdot 33$ | $\begin{aligned} & 62 \cdot 81 \\ & 62 \cdot 87 \end{aligned}$ | $\begin{array}{ll}6 & 37 \cdot 53 \\ 6 & 54.02\end{array}$ | $\begin{array}{ll}31 & 23 \\ 33 & 51\end{array}$ | $135 \cdot 42$ | $62 \cdot 11$ |



Abstract of Astronomical Azimuth observed at XLV (Injambákam) 1880.

1. By Eastern Elongation of $\delta$ Ursæ Minoris.


Abstract of Astronomical Azimuth observed at XLV (Injambákam) 1880-(Continued).
2. By Western Elongation of Cephei 51 (Hev.)

| Face Zero |  | $\begin{gathered} \mathbf{L} \\ \mathbf{4 8} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 228^{\circ} \end{gathered}$ | $\mathbf{L}$ $207^{\circ}$ | $\begin{gathered} \mathbf{R} \\ 27^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{L} \\ & 5^{\circ} \end{aligned}$ | $\begin{gathered} \mathbf{R} \\ 185^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 128^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ \mathbf{3 0 8} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 286^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 106^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | February 14 |  |  | February 16 |  | February 18 |  | February 19 |  | February 20 |  |
|  | - " |  |  | " | " | " | " | " | " | 17 | " |
| Observed difference | $\begin{aligned} & 6 \mathrm{I} \cdot 49 \\ & 6 \mathrm{I} \cdot 12 \\ & 6 \mathrm{I} \cdot 87 \\ & 6 \mathrm{I} \cdot 50 \end{aligned}$ |  | $\begin{aligned} & 60 \cdot 06 \\ & 60 \cdot 39 \\ & 59 \cdot 39 \\ & 60 \cdot 29 \end{aligned}$ | $\begin{aligned} & 60 \cdot 26 \\ & 62 \cdot 56 \\ & 61 \cdot 97 \\ & 59 \cdot 86 \end{aligned}$ | $\begin{aligned} & 61 \cdot 96 \\ & 61 \cdot 79 \\ & 63 \cdot 09 \\ & 60 \cdot 86 \end{aligned}$ | $\begin{aligned} & 63 \cdot 97 \\ & 64 \cdot 10 \\ & 62 \cdot 81 \\ & 62 \cdot 87 \end{aligned}$ | $\begin{aligned} & 62 \cdot 32 \\ & 62 \cdot 27 \\ & 62 \cdot 11 \\ & 63 \cdot 06 \end{aligned}$ | $\begin{aligned} & 62 \cdot 71 \\ & 63 \cdot 01 \\ & 63 \cdot 84 \\ & 61 \cdot 42 \end{aligned}$ | $\begin{aligned} & 62 \cdot 37 \\ & 62 \cdot 28 \\ & 63 \cdot 42 \\ & 63 \cdot 70 \end{aligned}$ | $\begin{aligned} & 62 \cdot 67 \\ & 64 \cdot 47 \\ & 64 \cdot 81 \\ & 63 \cdot 78 \end{aligned}$ | $\begin{aligned} & 62 \cdot 97 \\ & 62 \cdot 20 \\ & 62 \cdot 90 \\ & 62 \cdot 58 \end{aligned}$ |
| of Circle-Readings, |  |  |  |  |  |  |  |  |  |  |  |
| Ref. M. - Star |  |  |  |  |  |  |  |  |  |  |  |
| reduced to Elongation |  |  |  |  |  |  |  |  |  |  |  |
| Means | $61 \cdot 50$ |  | $60 \cdot 03$ | 61-16 | 61.93 | $63 \cdot 44$ | 62.44 | 62.75 | 62.94 | 63.93 | 62.66 |
|  | $\bigcirc$ | 1 |  |  |  |  |  |  |  |  |  |
| Means of both faces | - 78 | 46 |  |  |  |  |  |  |  |  |  |
| Level Corrections |  |  |  |  |  |  |  |  |  |  |  |
| Corrected Means | -78 | 4 |  |  |  |  |  |  |  |  |  |
| Az. of Star fr. S., by W. Az. of Ref. M. |  |  |  |  |  |  |  |  |  |  |  |
| Az. of Ref. M. " |  | 4 |  |  |  |  |  |  |  |  |  |


W. H. COLE,

In charge of Computing Office.

## RIRINOIPAT TRIANGUIAIION-MADEAB ININGITUDINVAI BHMRIEBS.










List of Published Works of the Great Trigonometrical Survey of India.

An Account of the Measurement of an Arc of the meridian between the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$, being a continuation of the Grand Meridional Arc of India as detailed by the late Lieutenant-Colonel Lambton in the Volumes of the Asiatic Society of Calcutta. By Captain George Everest, of the Bengal Artillery, F.R.S., \&c. London, 1830. (Out of print).

An Account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels $18^{\circ} 3^{\prime} 5^{\prime \prime} ; 24^{\circ} 7^{\prime} 11^{\prime \prime}$; and $29^{\circ} 30^{\prime} 18^{\prime \prime}$. By Lieutenant-Colonel Everest, F.R.S., \&c., late Surveyor General of India, and his Assistants. London, 1847. (Out of print).

Account of the Operations of the Great Trigonometrical Survey of India.
Price Rupees 10-8 per volume.
Volume I. The Standards of Measure and the Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey. Dehra Dún, 1870.
Do. II. History and General Description of the Principal Triangulation and of its Reduction. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
Do. III. The Principal Triangulation, the Base-Line Figures, the Karáchi Longitudinal, N.W. Himalaya, and the Great Indus Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1873.
Do. IV. The Principal Triangulation, the Great Arc (Section $24^{\circ}-30^{\circ}$ ), Rahún, Gurhágarh and Jogi-Thila Meridional Series, and the Sutlej Series of the NorthWest Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1876.
Do. IVA. The Principal Triangulation of the North-West Quadrilateral, including the Reduction and Details of the Jodhpore and Eastern Sind Meridional Series. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offg. Deputy Surveyor General, in charge, and published under the orders of Colonel G. C. DePree, S.C., Surveyor General of India. Dehra Dún, 1886.
Do. V. Details of the Pendulum Operations by Captains J. P. Basevi, R. E., and W. J. Heaviside, R.E., and of their Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún and Calcutta, 1879.

Account of the Operations of the Great Trigonometrical Survey of India-(Continued).
Volume VI. The Principal Triangulation of the South-East Quadrilateral, including the Great Arc-Section $18^{\circ}$ to $24^{\circ}$, the East Coast Series, the Calcutta and the Bider Longitudinal Series, the Jabalpur and the Biláspur Meridional Series, and the Details of their Simultaneous Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1880. (Out of print).
Do. VII. General Description of the Principal Triangulation of the North-East Quadrilateral, including the Simultaneous Reduction and the Details of five of the component Series, the North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karára Meridional. Prepared under the directions of Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882.
Do. VIII. Details of the Principal Triangulation of eleven of the component Series of the North-East Quadrilateral, including the following Series; the Gurwáni Meridional, the Gora Meridional, the Huríláong Meridional, the Chendwár Meridional, the North Párasnáth Meridional, the North Malúncha Meridional, the Calcutta Meridional, the East Calcutta Longitudinal, the Brahmaputra Meridional, the Eastern Frontier-Section $23^{\circ}$ to $26^{\circ}$, and the Assam Longitudinal. Prepared under the directions of Lieut.-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882.
Do. IX. Electro-T'elegraphic Longitude Operations executed during the years 1875-77 and 1880-81, by Lieut.-Colonel W. M. Campbell, R.E., and Major W. J. Heaviside, R.E. Prepared under the directions of Lieut.-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the 'Trigonometrical Survey. Dehra Dún, 1883.
Do. X. Electro-Telegraphic Longitude Operations executed during the years 1881-82, 1882-83 and 1883-84, by Major G. Strahan, R.E., and Major W. J. Heaviside, R.E. Prepared under the directions of Colonel C. T. Haig, R.E., Deputy Surveyor General, Trigonometrical Branch, and published ander the orders of Lieut.Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1887.
Do. XI. Astronomical Observations for Latitude made during the period 1805 to 1885, with a General Description of the Operations and Final Results. Prepared under the directions of Lieut.-Colonel G. Strahan, R.E., Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dán, 1890.
Do. XII. General Description of the Principal Triangulation of the Southern Trigon, including the Simultaneous Reduction and the Details of two of the component Series, the Great Arc Meridional-Section $8^{\circ}$ to $18^{\circ}$, and the Bombay Longitudinal. Prepared under the directions of Lieut.-Colonel G. Strahan, R.E., Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1890.
Do. XIII. Details of the Principal Triangulation of five of the component Series of the Southern Trigon, including the following Series; the South Konkan Coast, the Mangalore Meridional, the Madras Meridional and Coast, the South-East Coast, and the Madras Longitudinal. Prepared under the directions of Lieut:-Colonel G. Strahan, R.E., Deputy Surveyor General, Trigonometrical Brauch, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1890.

## List of Published Works of the Great Trigonometrical Survey of India.

Synopses of the Results of the Great Trigonometrical Survey of India, comprising Descriptions, Co-ordinates, \&c., of the Principal and Secondary Stations and other Fixed Points of the Several Series of Triangles. Price Rupees 2 per volume.
Volume I. The Great Indus Series, or Series $D$ of the North-West Quadrilateral. By Colonel J. 'I. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. II. The Great Arc-Section $24^{\circ}$ to $30^{\circ}$, or Series $A$ of the North-WestQuadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. III. The Karáchi Longitudinal Series, or Series $B$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. IV. The Gurhágarh Meridional Series, or Series $F$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. V. The Rahún Meridional Series, or Series $E$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. VI. The Jogí-'I'la Meridional Series, or Series $G$, and the Sutlej Series, or Series $H$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. VII. The North-West Himalaya Series, or Series $C$ of the North-West Quadrilateral, and the Triangulation of the Kashmir Survey. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
Do. VIIA. The Jodhpore Meridional Series and the Eastern Sind Meridional Series of the North-West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel H. R. Thuilier, R.E., Surveyor General of India. Dehra Dún, 1887.
Do. VIII. The Great Arc-Section $18^{\circ}$ to $24^{\circ}$, or Series $\boldsymbol{A}$ of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
Do. IX. The Jabalpur Meridional Series, or Series $\boldsymbol{E}$ of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
Do. X. The Bider longitudinal Series, or Series $D$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XI. The Biláspur Meridional Series, or Series $F$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India aud Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XII. The Calcutta Longitudinal Series, or Series $B$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XIII. The East Coast Series, or Series $C$ of the South-East Quadrilateral. By MajorGeneral J. T. Walker, C.B., R.E., F.R.S., \&c.., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XIIIA. The South Párasnáth Meridional Series and the South Malúncha Meridional Series of the South-East Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offg. Deputy Surveyor General, in charge, and published under the orders of Colonel G. C. DePrée, S.C., Surveyor General of India. Dehra Dún, 1885.

Synopses of the Results of the G. T. Survey of India, \&c.-(Continued).
Volume XIV. The Budhon Meridional Series, or Series $J$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XV. The Rangír Meridional Series, or Series $K$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVI. The Amua Meridional Series, or Series $\boldsymbol{L}$, and the Karára Meridional Series, or Series $M$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVII. The Gurwáni Meridional Series, or Series $N$, and the Gora Meridional Series, or Series $O$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVIII. The Huriláong Meridional Series, or Series $P$, and the Chendwár Meridional Series, or Series $Q$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XIX. The North Párasnáth Meridional Series, or Series $R$, and the North Malúncha Meridional Series, or Series $S$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Offg. Surveyor General of India. Dehra Dún, 1883.
Do. XX. The Calcutta Meridional Series, or Series T, and the Brahmaputra Meridional Series, or Series $\boldsymbol{V}$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Offg. Surveyor General of India. Dehra Dún, 1883.

Do. XXI. The East Calcutta Longitudinal Series, or Series $U$, and the Eastern Frontier Series-Section $23^{\circ}$ to $26^{\circ}$, or Series $W$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Offg. Surveyor General of India. Dehra Dún, 1883.

Spirit-Levelling Operations of the Great Trigonometrical Survey of India. Price Rupee 1 per volume.

Heights in Sind, the Punjab, N.W. Provinces, and Central India, to May 1862. Calcutta, 1863.

Do. in N.W. Provinces and Bengal, to May 1865. Roorkee, 1866.
Do. in the Punjab and N.W. Provinces, Season 1866-67, Sections I to IV. Dehra Dún, 1869.

Do. in the N.W. Provinces and Oudh, Seasons 1867-69, Sections V and VI. Dehra Dún, 1869.
Do. from Lucknow vid Goruckpore \&c., to Dildernugger G. T. Survey Bench-mark near Ghazeepore, Seasons 1868-70, Section VII. Dehra Dún, 1871.
Do. from Goruckpore vid Bettiah \&c., to G. T. Survey Bench-mark near Parsurman, Season 1870-71, Section VIII. Dehra Dún, 1872.

List of Published Works of the Great Trigonometrical Survey of India.
Spirit-Levelling Operations of the G. T. Survey of India-(Continued).
Heights from G. T. Survey Bench-mark near Parsurman to G. T. Survey Bench-mark at Pirpanti Railway Station, and from G. T. Survey Bench-mark at Purniah Church to N.E. End of Sonakhoda Base-Line; Season 1871-72, Section IX. Dehra Dún, 1873.
Do. in Cutch, Kattywar, Guzerat, Thána and Bombay districts, No. 1 Bombay Presidency, Seasons 1874-78. Dehra Dún, 1879.
Do. in Cuttack, Balasore, Midnapore, Howrah, 24-Pergunnahs, the Sundarbans and Hooghly districts of Bengal, Seasons 1881-83. Dehra Dún, 1884.
Do. in the Thána, Násik and Khándesh districts of Bombay, and in Dhár, Dewás, Gwalior, Bhopal and Tonk, Native States of the Central India Agency. No. 4 Bombay Presidency and Central India Agency, Seasons 1877-78 and 1881-84. Dehra Dún, 1885.
Do. in the Bombay Presidency and Nizam's Dominions, Nos. 2 and 3 (Revised Edition), Seasons 1877-80. Dehra Dún, 1886.
Do. in the Madras Presidency, No. 1, Seasons 1869-85. Dehra Dún, 1886.
Do. in the Madras Presidency, No. 2, Season 1885-86. Dehra Dún, 1887.
Do. in the Madras Presidency, No. 3, Season 1886-87. Dehra Dún, 1888.
Do. in the Madras Presidency, No. 4, Season 1887-88. Dehra Dún, 1889.
Do. in the Madras Presidency, No. 5, Season 1888-89. Dehra Dún, 1890.

Auxiliary Tables to facilitate the Calculations of the Survey of India. Third Edition. Revised and extended under the directions of Lieut.-Colonel H. R. Thuillier, R.E., Surveyor General of India, by Colonel C. T. Haig, R.E., Deputy Surveyor General, in charge of the Trigonometrical Branch of the Survey of India. Dehra Dún, 1887. Price Two Rupees.

April, 1890.
$\qquad$
-
-


[^0]:    * Lieutenant Jacob afterwards became Government Astronomer at Madras.
    + For a full desoription of the instrument and the work performed by it, see Appendix No. 2 of Volume II of the dccount of the Operations, \&o.

[^1]:    *The manner in which this connection was effected is described by the Officer in charge of the Tidal and Levelling Party as follows :-- Before going to Agoada, Mr. Corkery and Narsing Das set their watches by the tide gauge clock at Mormugáo tidal observatory in order 'that their observations at Agoada and the observatory clerk's at Mormugáo might be made simultaneously. Agoada Station was then 'connected by double levelling with a bench-mark laid down at Agoada Fort Jetty, in a convenient position for observing the difference 'between its height and that of the tide as shown upon a levelling staff set up in the water. One complete observation consisted in 'reading the back and forward staff and the height of the water on the latter, and noting the time. Observations were taken at intervals ' of 5 minutes, beginning about one hour before high-water and continuing for an equal time after high-water, and the duration of actual - high-water was sufficient to enable a couple of observations to be taken then, so that a whole set comprised about 26 observations. - A similar set of observations was taken before, during and after low-water. Observations were not taken at night. * * While these 'observations were being taken at A goada the observatory clerk was taking simultaneous observations at the Mormugao tidal observatory. - * * * They were taken on the 22nd, 23rd and 24th May. I wished to oblain the exact times of high and low-water at Agoada 'to compare with the corresponding times at Mormugáo; but the sea was not smooth enough to enable this to be done in the available 'time'. After interpolating between the data furnished by the Kárwár and Bombay tidal observations, il was found that 'no correctiona 'for minute differences of time or for difference of range were required. One set of observations at Agoads combined with the synchro'nous set at Mormugáo gave one value of the height of the Agoada bench-mark, nbove the zero of the tide-gauge at Mormugáo. Six 'such values were obtained-three at high-water and three at low-water-the mean of which gave the final height of the bench-mark 'above the zero of the gauge. The difference of level between the zero of the gauge and mean sea-level * * * was a known quantity 'by means of which the heights above mean sea-level of the bench-mark and Agoada Station were finally deduced. * * The 'height of Agoada Station now obtained is probably accurate to 0.03 of a foot'.

[^2]:    W．H．COLE，
    In charge of Computing Office．

[^3]:    Nots.-Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

[^4]:    * This chain of triangles is now considered a part of the South Konkan Coast Series.

[^5]:    * For a full description of the instrument and the work performed by it, see Appendix No. 2 of Volume II of the Account of the Operations, \&c.

[^6]:    The station consists of a platform of loose stones enclosing a circular, perforated and isolated pillar of masonry 5 feet high, which contains two mark-stones, one in the upper surface of the pillar and the other below; an aperture gives accexs to the lower mark. The approximate directions and distances of the circumjacent villages are:-Hatti W. by N., miles 3; Kelvi S.E., miles $8 \frac{1}{\frac{1}{2}}$; and Puranhatti N.E. by E., miles $4 \frac{3}{4}$.

[^7]:    －Not forthcoming．

[^8]:    W. H. COLE, In charge Computing Office.

[^9]:    October, 1883.

[^10]:    （1）The mean of obserrations taken on 8th December，1863，and 27th April， 1868.
    $\begin{array}{llll}\text {（2）} & \text { Do．} & \text { do．} & \text { 10th }\end{array} \quad$ do．

[^11]:    The station consists of a mark engraved on the rock a little below the floor level, $42 \cdot 2$ feet from the N . wall, $18 \cdot 6$ feet from the W. wall, $23 \cdot 2$ feet from the $S$. wall, $13 \cdot 2$ feet from the $E$. wall, and $1 \cdot 1$ feet from the $S . E$. corner of the south central pier. A low perforated masonry pillar, $3 \frac{1}{3}$ feet in diameter, surrounded by a platform 10 feet square, is built on the roof concentric with an old air or smoke hole which permits of plumbing over the mark in the floor: the upper surface of this pillar is $25 \cdot 7$ feet above the mark in the floor. The azimuth and distance of Krishnagedi (dome on the summit of the Kacheri) are $231^{\circ} 12^{\prime}$, mile 0.91 .
    VI. Kallapat Trestle Station, lat. $11^{\circ} 57^{\prime}$, long. $79^{\circ} 36^{\prime}$-observed at in 1879 -is situated on the extensive piece of rising ground locally named Jandamodu, $4 \frac{1}{2}$ miles E. by N. from Villupuram, 17 miles W. from Pondicherry (Puducheri), 500 yards S.E. by S. from the trijunction boundary stone of Kallapat, Melpádi and Kurumkota villages, and $1 \frac{1}{2}$ miles W. by N. of Colonel Lambton's survey station "Chengcaud" on a similar point of rising ground called Kudimodu; its site was identified by a slight mound and a few pieces of broken bricks. It is in the lands of Kallapat village, taluk Villupuram, district South Arcot.

    The station consists of a rectangular perforated pillar of masonry 11 feet high, the upper 1 foot of which is circular and $3 \frac{1}{3}$ feet in diameter, standing on a foundation of solid masonry in which two mark-stones are imbedded, one at the ground level and the other $2 \cdot 17$ feet below it. The azimuths and distances of the following places are:-Kallapat $335^{\circ}$, mile 0.84 ; Melpadi $115^{\circ}$, mile 0.75 ; Kurumkota $178^{\circ}$, mile 0.51 ; Chěnkád $250^{\circ}$, miles 1.50 ; Naraigúr (temple) $337^{\circ} 18^{\prime}$, miles 1.5 ; and Villupuram (Railway station) $77^{\circ} 39^{\prime}$, miles $4 \cdot 43$.

[^12]:    The station consists of the usual platform of earth and stones, enclosing a solid isolated pillar of masonry $3 \frac{1}{\frac{1}{3}}$ feet in diameter, which contains two mark-stones, one at the ground level and the other 1 foot above it on the surface of the pillar. The station is built over a mark which was found imbedded in the surface of a rough platform flush with the ground level, probably of Colonel Lambton's station of "Kolanelloor." Search was made at the time for lower marks but none were found. When again visited in December 1874, in connection with the operations of the South-East Coast Series, "the station was found covered up just as when left last season and in good order and evidently untouched in the interval." The directions, azimuths and distances of the following places and objects are :-Araikulam $120^{\circ}$, mile $\frac{3}{4}$; Kulasekharanallúr $7^{\circ}$, miles $1 \frac{3}{4}$; Moramban S.W., miles $3 \frac{1}{2}$;

[^13]:    The station consists of a solid circular pillar of masonry 2 feet high and $3 \frac{1}{3}$ feet in diameter and contains two mark-stones, one in the foundation about 1 foot below the ground level and the other 2 feet above it flush with the upper surface of the pillar. The azimuths and distances of the circumjacent villages are:-Devamankád $314^{\circ}$, miles $1 \cdot 7$; and Vadakád $55^{\circ}$, miles $1 \cdot 1$.
    LXXXV. Masánam Karai Station, lat. $9^{\circ} 16^{\prime}$, long. $79^{\circ} 22^{\prime}$-observed at in 1876 -is situated on the drifting sand hillock rising about 50 feet above the sea level, about $1 \frac{1}{2}$ miles S . of the Rámeswaram temple, and 300 yards S. E. by E. of a small square masonry temple called Mári Ammankoil. Taluk Pámban, district Madura.

    The station consists of a circle and dot cut on the head of a wooden pile driven deeply into the highest point of the sand hill. As the sand hill is constantly shifting, the station is not likely to remain in existence any length of time. The azimuths and distances of the circumjacent places are :-Sadai-yu-tíratánkoil $13^{\circ} 43^{\prime}$, mile 0.75 ; Kŏdándarámaswámi temple $317^{\circ} 29^{\prime}$, miles. 3.02; and Kundukál masonry beacon $88^{\circ} \mathbf{2}^{\prime}$, miles $5 \cdot 46$.

[^14]:    Note.-The triangular errors were, of $A B C-6^{\prime \prime} \cdot 33$ and of $B C E+5^{\prime \prime} \cdot 58$ : hence I suspected that the signal at $B$ or $C$ was not in the normal of the mark, the distance between them being only as stated $\frac{5}{8}$ mile, and accordingly I treated the figure as above indicated. The result shows the displacement of signal to have occurred at $B$, for at $C$ the observed values when compared with the computed are found to have these errors; $\triangle C B=-4^{\prime \prime} \cdot 93$ and $D C B=+3^{\prime \prime} \cdot 60$.

[^15]:    ＊In the case of Trestle Stations the theodolite stood on the treatle and not on the pillar；the heights however are referred to the pillar．

[^16]:    - Asaumed height of the rentangular protecting pillar above the circular pillar.

[^17]:    Nots-Stations LXXXIII (Koilpati) and LXXXV (Kulayanallár) appertain to the Great Arc Meridional Series, Section $\mathbf{8}^{\circ}$ to $18^{\circ}$.

[^18]:    * Corrected for Figural and Circuit Errors.

[^19]:    * Soe Section 3, Chapter XI, Volume II of the Acoownt of the Operations of the Great Trigonometrical Survey of India.

[^20]:    The station consists of a platform enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{2}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 1.0 foot above it on a stone imbedded flush with the surface of the pillar. When again visited in 1871, the station was found in a state of perfect preservation and no alteration in its construction appears to have been made from the absence of any remarks in the original records. The azimuths and perambulated distances of the adjacent places are :-Nughalli (principal spire of a temple on the W. side of the fort) $359^{\circ} 2^{\prime}$, miles 1.09 ; Jambúr (temple) $20^{\circ} 6^{\prime}$, miles $2 \cdot 7^{\prime}$; and Dasapur $283^{\circ} 51^{\prime}$, miles $1 \cdot 20$.

[^21]:    The station consists of a platform of stones and earth, enclosing a solid, circular and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter, which contains two marks, one engraved on the rock in situ and the other 20 feet above it on a stone imbedded in the upper surface of the pillar. The directions and distances of the circumjacent villages are :-Mudugundúr E.N.E., miles 24 ; Dúd S.S.E., miles 2; Bilianhalli S.W., miles $3 \frac{1}{2}$; Arkangiri W.N.W., miles $4 \frac{1}{2}$; and Mattegiri N., miles 4.

[^22]:    Nots．－Stations XLVIII（Kolar）and XLIX（Bhúpatamma）appertain to the Great Arc Meridional Series，Section $8^{\circ}$ to $18^{\circ}$ ．

[^23]:    - These are auxiliary stations for the determination of height only, and their data are not publibhed in this Volumo.
    $\dagger$ Assumed. $\ddagger$ No pillars built at these stations.

[^24]:    ＊Assumed height of the rectangular proteoting pillar above the ciroular pillar．

[^25]:    （1）The mean of obeervations taken on 13 th and 15 th April，1865，and 6th January， 1866.
    （2）Do．
    do．
    4th
    
    $15 \cdot$＊These heights are to be combined with negative signs because the tower at XXXV（Chembedu）had a subeequent permanent addition made to it of 15．4 feet．

[^26]:    XLIII（Rangaswámibětta）
    （Of the Great Arc Meridional Beries，Section $8^{\circ}$ to $18^{\circ}$ ）

